xref: /linux/drivers/iio/health/afe4403.c (revision e7e2296b0ecf9b6e934f7a1118cee91d4d486a84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
4  *
5  * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
6  *	Andrew F. Davis <afd@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/regmap.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/trigger_consumer.h>
25 
26 #include <linux/unaligned.h>
27 
28 #include "afe440x.h"
29 
30 #define AFE4403_DRIVER_NAME		"afe4403"
31 
32 /* AFE4403 Registers */
33 #define AFE4403_TIAGAIN			0x20
34 #define AFE4403_TIA_AMB_GAIN		0x21
35 
36 enum afe4403_fields {
37 	/* Gains */
38 	F_RF_LED1, F_CF_LED1,
39 	F_RF_LED, F_CF_LED,
40 
41 	/* LED Current */
42 	F_ILED1, F_ILED2,
43 
44 	/* sentinel */
45 	F_MAX_FIELDS
46 };
47 
48 static const struct reg_field afe4403_reg_fields[] = {
49 	/* Gains */
50 	[F_RF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 0, 2),
51 	[F_CF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 3, 7),
52 	[F_RF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
53 	[F_CF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
54 	/* LED Current */
55 	[F_ILED1]	= REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
56 	[F_ILED2]	= REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
57 };
58 
59 /**
60  * struct afe4403_data - AFE4403 device instance data
61  * @spi: SPI device handle
62  * @regmap: Register map of the device
63  * @fields: Register fields of the device
64  * @regulator: Pointer to the regulator for the IC
65  * @trig: IIO trigger for this device
66  * @irq: ADC_RDY line interrupt number
67  * @buffer: Used to construct data layout to push into IIO buffer.
68  */
69 struct afe4403_data {
70 	struct spi_device *spi;
71 	struct regmap *regmap;
72 	struct regmap_field *fields[F_MAX_FIELDS];
73 	struct regulator *regulator;
74 	struct iio_trigger *trig;
75 	int irq;
76 	/* Ensure suitable alignment for timestamp */
77 	s32 buffer[8] __aligned(8);
78 };
79 
80 enum afe4403_chan_id {
81 	LED2 = 1,
82 	ALED2,
83 	LED1,
84 	ALED1,
85 	LED2_ALED2,
86 	LED1_ALED1,
87 };
88 
89 static const unsigned int afe4403_channel_values[] = {
90 	[LED2] = AFE440X_LED2VAL,
91 	[ALED2] = AFE440X_ALED2VAL,
92 	[LED1] = AFE440X_LED1VAL,
93 	[ALED1] = AFE440X_ALED1VAL,
94 	[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
95 	[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
96 };
97 
98 static const unsigned int afe4403_channel_leds[] = {
99 	[LED2] = F_ILED2,
100 	[LED1] = F_ILED1,
101 };
102 
103 static const struct iio_chan_spec afe4403_channels[] = {
104 	/* ADC values */
105 	AFE440X_INTENSITY_CHAN(LED2, 0),
106 	AFE440X_INTENSITY_CHAN(ALED2, 0),
107 	AFE440X_INTENSITY_CHAN(LED1, 0),
108 	AFE440X_INTENSITY_CHAN(ALED1, 0),
109 	AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
110 	AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
111 	/* LED current */
112 	AFE440X_CURRENT_CHAN(LED2),
113 	AFE440X_CURRENT_CHAN(LED1),
114 };
115 
116 static const struct afe440x_val_table afe4403_res_table[] = {
117 	{ 500000 }, { 250000 }, { 100000 }, { 50000 },
118 	{ 25000 }, { 10000 }, { 1000000 }, { 0 },
119 };
120 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
121 
122 static const struct afe440x_val_table afe4403_cap_table[] = {
123 	{ 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
124 	{ 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
125 	{ 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
126 	{ 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
127 	{ 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
128 	{ 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
129 	{ 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
130 	{ 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
131 };
132 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
133 
134 static ssize_t afe440x_show_register(struct device *dev,
135 				     struct device_attribute *attr,
136 				     char *buf)
137 {
138 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
139 	struct afe4403_data *afe = iio_priv(indio_dev);
140 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
141 	unsigned int reg_val;
142 	int vals[2];
143 	int ret;
144 
145 	ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
146 	if (ret)
147 		return ret;
148 
149 	if (reg_val >= afe440x_attr->table_size)
150 		return -EINVAL;
151 
152 	vals[0] = afe440x_attr->val_table[reg_val].integer;
153 	vals[1] = afe440x_attr->val_table[reg_val].fract;
154 
155 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
156 }
157 
158 static ssize_t afe440x_store_register(struct device *dev,
159 				      struct device_attribute *attr,
160 				      const char *buf, size_t count)
161 {
162 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
163 	struct afe4403_data *afe = iio_priv(indio_dev);
164 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
165 	int val, integer, fract, ret;
166 
167 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
168 	if (ret)
169 		return ret;
170 
171 	for (val = 0; val < afe440x_attr->table_size; val++)
172 		if (afe440x_attr->val_table[val].integer == integer &&
173 		    afe440x_attr->val_table[val].fract == fract)
174 			break;
175 	if (val == afe440x_attr->table_size)
176 		return -EINVAL;
177 
178 	ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
179 	if (ret)
180 		return ret;
181 
182 	return count;
183 }
184 
185 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
186 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
187 
188 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
189 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
190 
191 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
192 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
193 
194 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
195 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
196 
197 static struct attribute *afe440x_attributes[] = {
198 	&dev_attr_in_intensity_resistance_available.attr,
199 	&dev_attr_in_intensity_capacitance_available.attr,
200 	&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
201 	&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
202 	&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
203 	&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
204 	&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
205 	&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
206 	&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
207 	&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
208 	NULL
209 };
210 
211 static const struct attribute_group afe440x_attribute_group = {
212 	.attrs = afe440x_attributes
213 };
214 
215 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
216 {
217 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
218 	u8 rx[3];
219 	int ret;
220 
221 	/* Enable reading from the device */
222 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
223 	if (ret)
224 		return ret;
225 
226 	ret = spi_write_then_read(afe->spi, &reg, 1, rx, sizeof(rx));
227 	if (ret)
228 		return ret;
229 
230 	*val = get_unaligned_be24(&rx[0]);
231 
232 	/* Disable reading from the device */
233 	tx[3] = AFE440X_CONTROL0_WRITE;
234 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
235 	if (ret)
236 		return ret;
237 
238 	return 0;
239 }
240 
241 static int afe4403_read_raw(struct iio_dev *indio_dev,
242 			    struct iio_chan_spec const *chan,
243 			    int *val, int *val2, long mask)
244 {
245 	struct afe4403_data *afe = iio_priv(indio_dev);
246 	unsigned int reg, field;
247 	int ret;
248 
249 	switch (chan->type) {
250 	case IIO_INTENSITY:
251 		switch (mask) {
252 		case IIO_CHAN_INFO_RAW:
253 			reg = afe4403_channel_values[chan->address];
254 			ret = afe4403_read(afe, reg, val);
255 			if (ret)
256 				return ret;
257 			return IIO_VAL_INT;
258 		}
259 		break;
260 	case IIO_CURRENT:
261 		switch (mask) {
262 		case IIO_CHAN_INFO_RAW:
263 			field = afe4403_channel_leds[chan->address];
264 			ret = regmap_field_read(afe->fields[field], val);
265 			if (ret)
266 				return ret;
267 			return IIO_VAL_INT;
268 		case IIO_CHAN_INFO_SCALE:
269 			*val = 0;
270 			*val2 = 800000;
271 			return IIO_VAL_INT_PLUS_MICRO;
272 		}
273 		break;
274 	default:
275 		break;
276 	}
277 
278 	return -EINVAL;
279 }
280 
281 static int afe4403_write_raw(struct iio_dev *indio_dev,
282 			     struct iio_chan_spec const *chan,
283 			     int val, int val2, long mask)
284 {
285 	struct afe4403_data *afe = iio_priv(indio_dev);
286 	unsigned int field = afe4403_channel_leds[chan->address];
287 
288 	switch (chan->type) {
289 	case IIO_CURRENT:
290 		switch (mask) {
291 		case IIO_CHAN_INFO_RAW:
292 			return regmap_field_write(afe->fields[field], val);
293 		}
294 		break;
295 	default:
296 		break;
297 	}
298 
299 	return -EINVAL;
300 }
301 
302 static const struct iio_info afe4403_iio_info = {
303 	.attrs = &afe440x_attribute_group,
304 	.read_raw = afe4403_read_raw,
305 	.write_raw = afe4403_write_raw,
306 };
307 
308 static irqreturn_t afe4403_trigger_handler(int irq, void *private)
309 {
310 	struct iio_poll_func *pf = private;
311 	struct iio_dev *indio_dev = pf->indio_dev;
312 	struct afe4403_data *afe = iio_priv(indio_dev);
313 	int ret, bit, i = 0;
314 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
315 	u8 rx[3];
316 
317 	/* Enable reading from the device */
318 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
319 	if (ret)
320 		goto err;
321 
322 	iio_for_each_active_channel(indio_dev, bit) {
323 		ret = spi_write_then_read(afe->spi,
324 					  &afe4403_channel_values[bit], 1,
325 					  rx, sizeof(rx));
326 		if (ret)
327 			goto err;
328 
329 		afe->buffer[i++] = get_unaligned_be24(&rx[0]);
330 	}
331 
332 	/* Disable reading from the device */
333 	tx[3] = AFE440X_CONTROL0_WRITE;
334 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
335 	if (ret)
336 		goto err;
337 
338 	iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
339 					   pf->timestamp);
340 err:
341 	iio_trigger_notify_done(indio_dev->trig);
342 
343 	return IRQ_HANDLED;
344 }
345 
346 static void afe4403_regulator_disable(void *data)
347 {
348 	struct regulator *regulator = data;
349 
350 	regulator_disable(regulator);
351 }
352 
353 #define AFE4403_TIMING_PAIRS			\
354 	{ AFE440X_LED2STC,	0x000050 },	\
355 	{ AFE440X_LED2ENDC,	0x0003e7 },	\
356 	{ AFE440X_LED1LEDSTC,	0x0007d0 },	\
357 	{ AFE440X_LED1LEDENDC,	0x000bb7 },	\
358 	{ AFE440X_ALED2STC,	0x000438 },	\
359 	{ AFE440X_ALED2ENDC,	0x0007cf },	\
360 	{ AFE440X_LED1STC,	0x000820 },	\
361 	{ AFE440X_LED1ENDC,	0x000bb7 },	\
362 	{ AFE440X_LED2LEDSTC,	0x000000 },	\
363 	{ AFE440X_LED2LEDENDC,	0x0003e7 },	\
364 	{ AFE440X_ALED1STC,	0x000c08 },	\
365 	{ AFE440X_ALED1ENDC,	0x000f9f },	\
366 	{ AFE440X_LED2CONVST,	0x0003ef },	\
367 	{ AFE440X_LED2CONVEND,	0x0007cf },	\
368 	{ AFE440X_ALED2CONVST,	0x0007d7 },	\
369 	{ AFE440X_ALED2CONVEND,	0x000bb7 },	\
370 	{ AFE440X_LED1CONVST,	0x000bbf },	\
371 	{ AFE440X_LED1CONVEND,	0x009c3f },	\
372 	{ AFE440X_ALED1CONVST,	0x000fa7 },	\
373 	{ AFE440X_ALED1CONVEND,	0x001387 },	\
374 	{ AFE440X_ADCRSTSTCT0,	0x0003e8 },	\
375 	{ AFE440X_ADCRSTENDCT0,	0x0003eb },	\
376 	{ AFE440X_ADCRSTSTCT1,	0x0007d0 },	\
377 	{ AFE440X_ADCRSTENDCT1,	0x0007d3 },	\
378 	{ AFE440X_ADCRSTSTCT2,	0x000bb8 },	\
379 	{ AFE440X_ADCRSTENDCT2,	0x000bbb },	\
380 	{ AFE440X_ADCRSTSTCT3,	0x000fa0 },	\
381 	{ AFE440X_ADCRSTENDCT3,	0x000fa3 },	\
382 	{ AFE440X_PRPCOUNT,	0x009c3f },	\
383 	{ AFE440X_PDNCYCLESTC,	0x001518 },	\
384 	{ AFE440X_PDNCYCLEENDC,	0x00991f }
385 
386 static const struct reg_sequence afe4403_reg_sequences[] = {
387 	AFE4403_TIMING_PAIRS,
388 	{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
389 	{ AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
390 };
391 
392 static const struct regmap_range afe4403_yes_ranges[] = {
393 	regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
394 };
395 
396 static const struct regmap_access_table afe4403_volatile_table = {
397 	.yes_ranges = afe4403_yes_ranges,
398 	.n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
399 };
400 
401 static const struct regmap_config afe4403_regmap_config = {
402 	.reg_bits = 8,
403 	.val_bits = 24,
404 
405 	.max_register = AFE440X_PDNCYCLEENDC,
406 	.cache_type = REGCACHE_MAPLE,
407 	.volatile_table = &afe4403_volatile_table,
408 };
409 
410 static const struct of_device_id afe4403_of_match[] = {
411 	{ .compatible = "ti,afe4403", },
412 	{ }
413 };
414 MODULE_DEVICE_TABLE(of, afe4403_of_match);
415 
416 static int afe4403_suspend(struct device *dev)
417 {
418 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
419 	struct afe4403_data *afe = iio_priv(indio_dev);
420 	int ret;
421 
422 	ret = regmap_set_bits(afe->regmap, AFE440X_CONTROL2,
423 			      AFE440X_CONTROL2_PDN_AFE);
424 	if (ret)
425 		return ret;
426 
427 	ret = regulator_disable(afe->regulator);
428 	if (ret) {
429 		dev_err(dev, "Unable to disable regulator\n");
430 		return ret;
431 	}
432 
433 	return 0;
434 }
435 
436 static int afe4403_resume(struct device *dev)
437 {
438 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
439 	struct afe4403_data *afe = iio_priv(indio_dev);
440 	int ret;
441 
442 	ret = regulator_enable(afe->regulator);
443 	if (ret) {
444 		dev_err(dev, "Unable to enable regulator\n");
445 		return ret;
446 	}
447 
448 	ret = regmap_clear_bits(afe->regmap, AFE440X_CONTROL2,
449 				AFE440X_CONTROL2_PDN_AFE);
450 	if (ret)
451 		return ret;
452 
453 	return 0;
454 }
455 
456 static DEFINE_SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend,
457 				afe4403_resume);
458 
459 static int afe4403_probe(struct spi_device *spi)
460 {
461 	struct device *dev = &spi->dev;
462 	struct iio_dev *indio_dev;
463 	struct afe4403_data *afe;
464 	int i, ret;
465 
466 	indio_dev = devm_iio_device_alloc(dev, sizeof(*afe));
467 	if (!indio_dev)
468 		return -ENOMEM;
469 
470 	afe = iio_priv(indio_dev);
471 	spi_set_drvdata(spi, indio_dev);
472 
473 	afe->spi = spi;
474 	afe->irq = spi->irq;
475 
476 	afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
477 	if (IS_ERR(afe->regmap)) {
478 		dev_err(dev, "Unable to allocate register map\n");
479 		return PTR_ERR(afe->regmap);
480 	}
481 
482 	for (i = 0; i < F_MAX_FIELDS; i++) {
483 		afe->fields[i] = devm_regmap_field_alloc(dev, afe->regmap,
484 							 afe4403_reg_fields[i]);
485 		if (IS_ERR(afe->fields[i])) {
486 			dev_err(dev, "Unable to allocate regmap fields\n");
487 			return PTR_ERR(afe->fields[i]);
488 		}
489 	}
490 
491 	afe->regulator = devm_regulator_get(dev, "tx_sup");
492 	if (IS_ERR(afe->regulator))
493 		return dev_err_probe(dev, PTR_ERR(afe->regulator),
494 				     "Unable to get regulator\n");
495 
496 	ret = regulator_enable(afe->regulator);
497 	if (ret) {
498 		dev_err(dev, "Unable to enable regulator\n");
499 		return ret;
500 	}
501 	ret = devm_add_action_or_reset(dev, afe4403_regulator_disable, afe->regulator);
502 	if (ret) {
503 		dev_err(dev, "Unable to add regulator disable action\n");
504 		return ret;
505 	}
506 
507 	ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
508 			   AFE440X_CONTROL0_SW_RESET);
509 	if (ret) {
510 		dev_err(dev, "Unable to reset device\n");
511 		return ret;
512 	}
513 
514 	ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
515 				     ARRAY_SIZE(afe4403_reg_sequences));
516 	if (ret) {
517 		dev_err(dev, "Unable to set register defaults\n");
518 		return ret;
519 	}
520 
521 	indio_dev->modes = INDIO_DIRECT_MODE;
522 	indio_dev->channels = afe4403_channels;
523 	indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
524 	indio_dev->name = AFE4403_DRIVER_NAME;
525 	indio_dev->info = &afe4403_iio_info;
526 
527 	if (afe->irq > 0) {
528 		afe->trig = devm_iio_trigger_alloc(dev,
529 						   "%s-dev%d",
530 						   indio_dev->name,
531 						   iio_device_id(indio_dev));
532 		if (!afe->trig)
533 			return -ENOMEM;
534 
535 		iio_trigger_set_drvdata(afe->trig, indio_dev);
536 
537 		ret = devm_iio_trigger_register(dev, afe->trig);
538 		if (ret) {
539 			dev_err(dev, "Unable to register IIO trigger\n");
540 			return ret;
541 		}
542 
543 		ret = devm_request_threaded_irq(dev, afe->irq,
544 						iio_trigger_generic_data_rdy_poll,
545 						NULL, IRQF_ONESHOT,
546 						AFE4403_DRIVER_NAME,
547 						afe->trig);
548 		if (ret) {
549 			dev_err(dev, "Unable to request IRQ\n");
550 			return ret;
551 		}
552 	}
553 
554 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
555 					      &iio_pollfunc_store_time,
556 					      afe4403_trigger_handler, NULL);
557 	if (ret) {
558 		dev_err(dev, "Unable to setup buffer\n");
559 		return ret;
560 	}
561 
562 	ret = devm_iio_device_register(dev, indio_dev);
563 	if (ret) {
564 		dev_err(dev, "Unable to register IIO device\n");
565 		return ret;
566 	}
567 
568 	return 0;
569 }
570 
571 static const struct spi_device_id afe4403_ids[] = {
572 	{ "afe4403", 0 },
573 	{ }
574 };
575 MODULE_DEVICE_TABLE(spi, afe4403_ids);
576 
577 static struct spi_driver afe4403_spi_driver = {
578 	.driver = {
579 		.name = AFE4403_DRIVER_NAME,
580 		.of_match_table = afe4403_of_match,
581 		.pm = pm_sleep_ptr(&afe4403_pm_ops),
582 	},
583 	.probe = afe4403_probe,
584 	.id_table = afe4403_ids,
585 };
586 module_spi_driver(afe4403_spi_driver);
587 
588 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
589 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
590 MODULE_LICENSE("GPL v2");
591