xref: /linux/drivers/iio/health/afe4403.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
4  *
5  * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
6  *	Andrew F. Davis <afd@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/regmap.h>
15 #include <linux/spi/spi.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/trigger_consumer.h>
25 
26 #include <asm/unaligned.h>
27 
28 #include "afe440x.h"
29 
30 #define AFE4403_DRIVER_NAME		"afe4403"
31 
32 /* AFE4403 Registers */
33 #define AFE4403_TIAGAIN			0x20
34 #define AFE4403_TIA_AMB_GAIN		0x21
35 
36 enum afe4403_fields {
37 	/* Gains */
38 	F_RF_LED1, F_CF_LED1,
39 	F_RF_LED, F_CF_LED,
40 
41 	/* LED Current */
42 	F_ILED1, F_ILED2,
43 
44 	/* sentinel */
45 	F_MAX_FIELDS
46 };
47 
48 static const struct reg_field afe4403_reg_fields[] = {
49 	/* Gains */
50 	[F_RF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 0, 2),
51 	[F_CF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 3, 7),
52 	[F_RF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
53 	[F_CF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
54 	/* LED Current */
55 	[F_ILED1]	= REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
56 	[F_ILED2]	= REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
57 };
58 
59 /**
60  * struct afe4403_data - AFE4403 device instance data
61  * @dev: Device structure
62  * @spi: SPI device handle
63  * @regmap: Register map of the device
64  * @fields: Register fields of the device
65  * @regulator: Pointer to the regulator for the IC
66  * @trig: IIO trigger for this device
67  * @irq: ADC_RDY line interrupt number
68  * @buffer: Used to construct data layout to push into IIO buffer.
69  */
70 struct afe4403_data {
71 	struct device *dev;
72 	struct spi_device *spi;
73 	struct regmap *regmap;
74 	struct regmap_field *fields[F_MAX_FIELDS];
75 	struct regulator *regulator;
76 	struct iio_trigger *trig;
77 	int irq;
78 	/* Ensure suitable alignment for timestamp */
79 	s32 buffer[8] __aligned(8);
80 };
81 
82 enum afe4403_chan_id {
83 	LED2 = 1,
84 	ALED2,
85 	LED1,
86 	ALED1,
87 	LED2_ALED2,
88 	LED1_ALED1,
89 };
90 
91 static const unsigned int afe4403_channel_values[] = {
92 	[LED2] = AFE440X_LED2VAL,
93 	[ALED2] = AFE440X_ALED2VAL,
94 	[LED1] = AFE440X_LED1VAL,
95 	[ALED1] = AFE440X_ALED1VAL,
96 	[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
97 	[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
98 };
99 
100 static const unsigned int afe4403_channel_leds[] = {
101 	[LED2] = F_ILED2,
102 	[LED1] = F_ILED1,
103 };
104 
105 static const struct iio_chan_spec afe4403_channels[] = {
106 	/* ADC values */
107 	AFE440X_INTENSITY_CHAN(LED2, 0),
108 	AFE440X_INTENSITY_CHAN(ALED2, 0),
109 	AFE440X_INTENSITY_CHAN(LED1, 0),
110 	AFE440X_INTENSITY_CHAN(ALED1, 0),
111 	AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
112 	AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
113 	/* LED current */
114 	AFE440X_CURRENT_CHAN(LED2),
115 	AFE440X_CURRENT_CHAN(LED1),
116 };
117 
118 static const struct afe440x_val_table afe4403_res_table[] = {
119 	{ 500000 }, { 250000 }, { 100000 }, { 50000 },
120 	{ 25000 }, { 10000 }, { 1000000 }, { 0 },
121 };
122 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
123 
124 static const struct afe440x_val_table afe4403_cap_table[] = {
125 	{ 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
126 	{ 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
127 	{ 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
128 	{ 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
129 	{ 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
130 	{ 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
131 	{ 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
132 	{ 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
133 };
134 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
135 
136 static ssize_t afe440x_show_register(struct device *dev,
137 				     struct device_attribute *attr,
138 				     char *buf)
139 {
140 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
141 	struct afe4403_data *afe = iio_priv(indio_dev);
142 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
143 	unsigned int reg_val;
144 	int vals[2];
145 	int ret;
146 
147 	ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
148 	if (ret)
149 		return ret;
150 
151 	if (reg_val >= afe440x_attr->table_size)
152 		return -EINVAL;
153 
154 	vals[0] = afe440x_attr->val_table[reg_val].integer;
155 	vals[1] = afe440x_attr->val_table[reg_val].fract;
156 
157 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
158 }
159 
160 static ssize_t afe440x_store_register(struct device *dev,
161 				      struct device_attribute *attr,
162 				      const char *buf, size_t count)
163 {
164 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
165 	struct afe4403_data *afe = iio_priv(indio_dev);
166 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
167 	int val, integer, fract, ret;
168 
169 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
170 	if (ret)
171 		return ret;
172 
173 	for (val = 0; val < afe440x_attr->table_size; val++)
174 		if (afe440x_attr->val_table[val].integer == integer &&
175 		    afe440x_attr->val_table[val].fract == fract)
176 			break;
177 	if (val == afe440x_attr->table_size)
178 		return -EINVAL;
179 
180 	ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
181 	if (ret)
182 		return ret;
183 
184 	return count;
185 }
186 
187 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
188 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
189 
190 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
191 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
192 
193 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
194 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
195 
196 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
197 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
198 
199 static struct attribute *afe440x_attributes[] = {
200 	&dev_attr_in_intensity_resistance_available.attr,
201 	&dev_attr_in_intensity_capacitance_available.attr,
202 	&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
203 	&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
204 	&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
205 	&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
206 	&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
207 	&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
208 	&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
209 	&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
210 	NULL
211 };
212 
213 static const struct attribute_group afe440x_attribute_group = {
214 	.attrs = afe440x_attributes
215 };
216 
217 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
218 {
219 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
220 	u8 rx[3];
221 	int ret;
222 
223 	/* Enable reading from the device */
224 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
225 	if (ret)
226 		return ret;
227 
228 	ret = spi_write_then_read(afe->spi, &reg, 1, rx, sizeof(rx));
229 	if (ret)
230 		return ret;
231 
232 	*val = get_unaligned_be24(&rx[0]);
233 
234 	/* Disable reading from the device */
235 	tx[3] = AFE440X_CONTROL0_WRITE;
236 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
237 	if (ret)
238 		return ret;
239 
240 	return 0;
241 }
242 
243 static int afe4403_read_raw(struct iio_dev *indio_dev,
244 			    struct iio_chan_spec const *chan,
245 			    int *val, int *val2, long mask)
246 {
247 	struct afe4403_data *afe = iio_priv(indio_dev);
248 	unsigned int reg, field;
249 	int ret;
250 
251 	switch (chan->type) {
252 	case IIO_INTENSITY:
253 		switch (mask) {
254 		case IIO_CHAN_INFO_RAW:
255 			reg = afe4403_channel_values[chan->address];
256 			ret = afe4403_read(afe, reg, val);
257 			if (ret)
258 				return ret;
259 			return IIO_VAL_INT;
260 		}
261 		break;
262 	case IIO_CURRENT:
263 		switch (mask) {
264 		case IIO_CHAN_INFO_RAW:
265 			field = afe4403_channel_leds[chan->address];
266 			ret = regmap_field_read(afe->fields[field], val);
267 			if (ret)
268 				return ret;
269 			return IIO_VAL_INT;
270 		case IIO_CHAN_INFO_SCALE:
271 			*val = 0;
272 			*val2 = 800000;
273 			return IIO_VAL_INT_PLUS_MICRO;
274 		}
275 		break;
276 	default:
277 		break;
278 	}
279 
280 	return -EINVAL;
281 }
282 
283 static int afe4403_write_raw(struct iio_dev *indio_dev,
284 			     struct iio_chan_spec const *chan,
285 			     int val, int val2, long mask)
286 {
287 	struct afe4403_data *afe = iio_priv(indio_dev);
288 	unsigned int field = afe4403_channel_leds[chan->address];
289 
290 	switch (chan->type) {
291 	case IIO_CURRENT:
292 		switch (mask) {
293 		case IIO_CHAN_INFO_RAW:
294 			return regmap_field_write(afe->fields[field], val);
295 		}
296 		break;
297 	default:
298 		break;
299 	}
300 
301 	return -EINVAL;
302 }
303 
304 static const struct iio_info afe4403_iio_info = {
305 	.attrs = &afe440x_attribute_group,
306 	.read_raw = afe4403_read_raw,
307 	.write_raw = afe4403_write_raw,
308 };
309 
310 static irqreturn_t afe4403_trigger_handler(int irq, void *private)
311 {
312 	struct iio_poll_func *pf = private;
313 	struct iio_dev *indio_dev = pf->indio_dev;
314 	struct afe4403_data *afe = iio_priv(indio_dev);
315 	int ret, bit, i = 0;
316 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
317 	u8 rx[3];
318 
319 	/* Enable reading from the device */
320 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
321 	if (ret)
322 		goto err;
323 
324 	for_each_set_bit(bit, indio_dev->active_scan_mask,
325 			 indio_dev->masklength) {
326 		ret = spi_write_then_read(afe->spi,
327 					  &afe4403_channel_values[bit], 1,
328 					  rx, sizeof(rx));
329 		if (ret)
330 			goto err;
331 
332 		afe->buffer[i++] = get_unaligned_be24(&rx[0]);
333 	}
334 
335 	/* Disable reading from the device */
336 	tx[3] = AFE440X_CONTROL0_WRITE;
337 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
338 	if (ret)
339 		goto err;
340 
341 	iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
342 					   pf->timestamp);
343 err:
344 	iio_trigger_notify_done(indio_dev->trig);
345 
346 	return IRQ_HANDLED;
347 }
348 
349 static void afe4403_regulator_disable(void *data)
350 {
351 	struct regulator *regulator = data;
352 
353 	regulator_disable(regulator);
354 }
355 
356 #define AFE4403_TIMING_PAIRS			\
357 	{ AFE440X_LED2STC,	0x000050 },	\
358 	{ AFE440X_LED2ENDC,	0x0003e7 },	\
359 	{ AFE440X_LED1LEDSTC,	0x0007d0 },	\
360 	{ AFE440X_LED1LEDENDC,	0x000bb7 },	\
361 	{ AFE440X_ALED2STC,	0x000438 },	\
362 	{ AFE440X_ALED2ENDC,	0x0007cf },	\
363 	{ AFE440X_LED1STC,	0x000820 },	\
364 	{ AFE440X_LED1ENDC,	0x000bb7 },	\
365 	{ AFE440X_LED2LEDSTC,	0x000000 },	\
366 	{ AFE440X_LED2LEDENDC,	0x0003e7 },	\
367 	{ AFE440X_ALED1STC,	0x000c08 },	\
368 	{ AFE440X_ALED1ENDC,	0x000f9f },	\
369 	{ AFE440X_LED2CONVST,	0x0003ef },	\
370 	{ AFE440X_LED2CONVEND,	0x0007cf },	\
371 	{ AFE440X_ALED2CONVST,	0x0007d7 },	\
372 	{ AFE440X_ALED2CONVEND,	0x000bb7 },	\
373 	{ AFE440X_LED1CONVST,	0x000bbf },	\
374 	{ AFE440X_LED1CONVEND,	0x009c3f },	\
375 	{ AFE440X_ALED1CONVST,	0x000fa7 },	\
376 	{ AFE440X_ALED1CONVEND,	0x001387 },	\
377 	{ AFE440X_ADCRSTSTCT0,	0x0003e8 },	\
378 	{ AFE440X_ADCRSTENDCT0,	0x0003eb },	\
379 	{ AFE440X_ADCRSTSTCT1,	0x0007d0 },	\
380 	{ AFE440X_ADCRSTENDCT1,	0x0007d3 },	\
381 	{ AFE440X_ADCRSTSTCT2,	0x000bb8 },	\
382 	{ AFE440X_ADCRSTENDCT2,	0x000bbb },	\
383 	{ AFE440X_ADCRSTSTCT3,	0x000fa0 },	\
384 	{ AFE440X_ADCRSTENDCT3,	0x000fa3 },	\
385 	{ AFE440X_PRPCOUNT,	0x009c3f },	\
386 	{ AFE440X_PDNCYCLESTC,	0x001518 },	\
387 	{ AFE440X_PDNCYCLEENDC,	0x00991f }
388 
389 static const struct reg_sequence afe4403_reg_sequences[] = {
390 	AFE4403_TIMING_PAIRS,
391 	{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
392 	{ AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
393 };
394 
395 static const struct regmap_range afe4403_yes_ranges[] = {
396 	regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
397 };
398 
399 static const struct regmap_access_table afe4403_volatile_table = {
400 	.yes_ranges = afe4403_yes_ranges,
401 	.n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
402 };
403 
404 static const struct regmap_config afe4403_regmap_config = {
405 	.reg_bits = 8,
406 	.val_bits = 24,
407 
408 	.max_register = AFE440X_PDNCYCLEENDC,
409 	.cache_type = REGCACHE_RBTREE,
410 	.volatile_table = &afe4403_volatile_table,
411 };
412 
413 static const struct of_device_id afe4403_of_match[] = {
414 	{ .compatible = "ti,afe4403", },
415 	{ /* sentinel */ }
416 };
417 MODULE_DEVICE_TABLE(of, afe4403_of_match);
418 
419 static int afe4403_suspend(struct device *dev)
420 {
421 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
422 	struct afe4403_data *afe = iio_priv(indio_dev);
423 	int ret;
424 
425 	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
426 				 AFE440X_CONTROL2_PDN_AFE,
427 				 AFE440X_CONTROL2_PDN_AFE);
428 	if (ret)
429 		return ret;
430 
431 	ret = regulator_disable(afe->regulator);
432 	if (ret) {
433 		dev_err(dev, "Unable to disable regulator\n");
434 		return ret;
435 	}
436 
437 	return 0;
438 }
439 
440 static int afe4403_resume(struct device *dev)
441 {
442 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
443 	struct afe4403_data *afe = iio_priv(indio_dev);
444 	int ret;
445 
446 	ret = regulator_enable(afe->regulator);
447 	if (ret) {
448 		dev_err(dev, "Unable to enable regulator\n");
449 		return ret;
450 	}
451 
452 	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
453 				 AFE440X_CONTROL2_PDN_AFE, 0);
454 	if (ret)
455 		return ret;
456 
457 	return 0;
458 }
459 
460 static DEFINE_SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend,
461 				afe4403_resume);
462 
463 static int afe4403_probe(struct spi_device *spi)
464 {
465 	struct iio_dev *indio_dev;
466 	struct afe4403_data *afe;
467 	int i, ret;
468 
469 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
470 	if (!indio_dev)
471 		return -ENOMEM;
472 
473 	afe = iio_priv(indio_dev);
474 	spi_set_drvdata(spi, indio_dev);
475 
476 	afe->dev = &spi->dev;
477 	afe->spi = spi;
478 	afe->irq = spi->irq;
479 
480 	afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
481 	if (IS_ERR(afe->regmap)) {
482 		dev_err(afe->dev, "Unable to allocate register map\n");
483 		return PTR_ERR(afe->regmap);
484 	}
485 
486 	for (i = 0; i < F_MAX_FIELDS; i++) {
487 		afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
488 							 afe4403_reg_fields[i]);
489 		if (IS_ERR(afe->fields[i])) {
490 			dev_err(afe->dev, "Unable to allocate regmap fields\n");
491 			return PTR_ERR(afe->fields[i]);
492 		}
493 	}
494 
495 	afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
496 	if (IS_ERR(afe->regulator))
497 		return dev_err_probe(afe->dev, PTR_ERR(afe->regulator),
498 				     "Unable to get regulator\n");
499 
500 	ret = regulator_enable(afe->regulator);
501 	if (ret) {
502 		dev_err(afe->dev, "Unable to enable regulator\n");
503 		return ret;
504 	}
505 	ret = devm_add_action_or_reset(afe->dev, afe4403_regulator_disable, afe->regulator);
506 	if (ret) {
507 		dev_err(afe->dev, "Unable to add regulator disable action\n");
508 		return ret;
509 	}
510 
511 	ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
512 			   AFE440X_CONTROL0_SW_RESET);
513 	if (ret) {
514 		dev_err(afe->dev, "Unable to reset device\n");
515 		return ret;
516 	}
517 
518 	ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
519 				     ARRAY_SIZE(afe4403_reg_sequences));
520 	if (ret) {
521 		dev_err(afe->dev, "Unable to set register defaults\n");
522 		return ret;
523 	}
524 
525 	indio_dev->modes = INDIO_DIRECT_MODE;
526 	indio_dev->channels = afe4403_channels;
527 	indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
528 	indio_dev->name = AFE4403_DRIVER_NAME;
529 	indio_dev->info = &afe4403_iio_info;
530 
531 	if (afe->irq > 0) {
532 		afe->trig = devm_iio_trigger_alloc(afe->dev,
533 						   "%s-dev%d",
534 						   indio_dev->name,
535 						   iio_device_id(indio_dev));
536 		if (!afe->trig) {
537 			dev_err(afe->dev, "Unable to allocate IIO trigger\n");
538 			return -ENOMEM;
539 		}
540 
541 		iio_trigger_set_drvdata(afe->trig, indio_dev);
542 
543 		ret = devm_iio_trigger_register(afe->dev, afe->trig);
544 		if (ret) {
545 			dev_err(afe->dev, "Unable to register IIO trigger\n");
546 			return ret;
547 		}
548 
549 		ret = devm_request_threaded_irq(afe->dev, afe->irq,
550 						iio_trigger_generic_data_rdy_poll,
551 						NULL, IRQF_ONESHOT,
552 						AFE4403_DRIVER_NAME,
553 						afe->trig);
554 		if (ret) {
555 			dev_err(afe->dev, "Unable to request IRQ\n");
556 			return ret;
557 		}
558 	}
559 
560 	ret = devm_iio_triggered_buffer_setup(afe->dev, indio_dev,
561 					      &iio_pollfunc_store_time,
562 					      afe4403_trigger_handler, NULL);
563 	if (ret) {
564 		dev_err(afe->dev, "Unable to setup buffer\n");
565 		return ret;
566 	}
567 
568 	ret = devm_iio_device_register(afe->dev, indio_dev);
569 	if (ret) {
570 		dev_err(afe->dev, "Unable to register IIO device\n");
571 		return ret;
572 	}
573 
574 	return 0;
575 }
576 
577 static const struct spi_device_id afe4403_ids[] = {
578 	{ "afe4403", 0 },
579 	{ /* sentinel */ }
580 };
581 MODULE_DEVICE_TABLE(spi, afe4403_ids);
582 
583 static struct spi_driver afe4403_spi_driver = {
584 	.driver = {
585 		.name = AFE4403_DRIVER_NAME,
586 		.of_match_table = afe4403_of_match,
587 		.pm = pm_sleep_ptr(&afe4403_pm_ops),
588 	},
589 	.probe = afe4403_probe,
590 	.id_table = afe4403_ids,
591 };
592 module_spi_driver(afe4403_spi_driver);
593 
594 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
595 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
596 MODULE_LICENSE("GPL v2");
597