xref: /linux/drivers/iio/gyro/mpu3050-core.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MPU3050 gyroscope driver
4  *
5  * Copyright (C) 2016 Linaro Ltd.
6  * Author: Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12  *
13  * TODO: add support for setting up the low pass 3dB frequency.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 
32 #include "mpu3050.h"
33 
34 #define MPU3050_CHIP_ID		0x68
35 #define MPU3050_CHIP_ID_MASK	0x7E
36 
37 /*
38  * Register map: anything suffixed *_H is a big-endian high byte and always
39  * followed by the corresponding low byte (*_L) even though these are not
40  * explicitly included in the register definitions.
41  */
42 #define MPU3050_CHIP_ID_REG	0x00
43 #define MPU3050_PRODUCT_ID_REG	0x01
44 #define MPU3050_XG_OFFS_TC	0x05
45 #define MPU3050_YG_OFFS_TC	0x08
46 #define MPU3050_ZG_OFFS_TC	0x0B
47 #define MPU3050_X_OFFS_USR_H	0x0C
48 #define MPU3050_Y_OFFS_USR_H	0x0E
49 #define MPU3050_Z_OFFS_USR_H	0x10
50 #define MPU3050_FIFO_EN		0x12
51 #define MPU3050_AUX_VDDIO	0x13
52 #define MPU3050_SLV_ADDR	0x14
53 #define MPU3050_SMPLRT_DIV	0x15
54 #define MPU3050_DLPF_FS_SYNC	0x16
55 #define MPU3050_INT_CFG		0x17
56 #define MPU3050_AUX_ADDR	0x18
57 #define MPU3050_INT_STATUS	0x1A
58 #define MPU3050_TEMP_H		0x1B
59 #define MPU3050_XOUT_H		0x1D
60 #define MPU3050_YOUT_H		0x1F
61 #define MPU3050_ZOUT_H		0x21
62 #define MPU3050_DMP_CFG1	0x35
63 #define MPU3050_DMP_CFG2	0x36
64 #define MPU3050_BANK_SEL	0x37
65 #define MPU3050_MEM_START_ADDR	0x38
66 #define MPU3050_MEM_R_W		0x39
67 #define MPU3050_FIFO_COUNT_H	0x3A
68 #define MPU3050_FIFO_R		0x3C
69 #define MPU3050_USR_CTRL	0x3D
70 #define MPU3050_PWR_MGM		0x3E
71 
72 /* MPU memory bank read options */
73 #define MPU3050_MEM_PRFTCH	BIT(5)
74 #define MPU3050_MEM_USER_BANK	BIT(4)
75 /* Bits 8-11 select memory bank */
76 #define MPU3050_MEM_RAM_BANK_0	0
77 #define MPU3050_MEM_RAM_BANK_1	1
78 #define MPU3050_MEM_RAM_BANK_2	2
79 #define MPU3050_MEM_RAM_BANK_3	3
80 #define MPU3050_MEM_OTP_BANK_0	4
81 
82 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
83 
84 /* Register bits */
85 
86 /* FIFO Enable */
87 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
88 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
89 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
90 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
91 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
92 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
93 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
94 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
95 
96 /*
97  * Digital Low Pass filter (DLPF)
98  * Full Scale (FS)
99  * and Synchronization
100  */
101 #define MPU3050_EXT_SYNC_NONE		0x00
102 #define MPU3050_EXT_SYNC_TEMP		0x20
103 #define MPU3050_EXT_SYNC_GYROX		0x40
104 #define MPU3050_EXT_SYNC_GYROY		0x60
105 #define MPU3050_EXT_SYNC_GYROZ		0x80
106 #define MPU3050_EXT_SYNC_ACCELX	0xA0
107 #define MPU3050_EXT_SYNC_ACCELY	0xC0
108 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
109 #define MPU3050_EXT_SYNC_MASK		0xE0
110 #define MPU3050_EXT_SYNC_SHIFT		5
111 
112 #define MPU3050_FS_250DPS		0x00
113 #define MPU3050_FS_500DPS		0x08
114 #define MPU3050_FS_1000DPS		0x10
115 #define MPU3050_FS_2000DPS		0x18
116 #define MPU3050_FS_MASK			0x18
117 #define MPU3050_FS_SHIFT		3
118 
119 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
120 #define MPU3050_DLPF_CFG_188HZ		0x01
121 #define MPU3050_DLPF_CFG_98HZ		0x02
122 #define MPU3050_DLPF_CFG_42HZ		0x03
123 #define MPU3050_DLPF_CFG_20HZ		0x04
124 #define MPU3050_DLPF_CFG_10HZ		0x05
125 #define MPU3050_DLPF_CFG_5HZ		0x06
126 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
127 #define MPU3050_DLPF_CFG_MASK		0x07
128 #define MPU3050_DLPF_CFG_SHIFT		0
129 
130 /* Interrupt config */
131 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
132 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
133 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
134 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
135 #define MPU3050_INT_LATCH_EN		BIT(5)
136 #define MPU3050_INT_OPEN		BIT(6)
137 #define MPU3050_INT_ACTL		BIT(7)
138 /* Interrupt status */
139 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
140 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
141 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
142 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
143 /* USR_CTRL */
144 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
145 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
146 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
147 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
148 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
149 /* PWR_MGM */
150 #define MPU3050_PWR_MGM_PLL_X		0x01
151 #define MPU3050_PWR_MGM_PLL_Y		0x02
152 #define MPU3050_PWR_MGM_PLL_Z		0x03
153 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
154 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
155 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
156 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
157 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
158 #define MPU3050_PWR_MGM_RESET		BIT(7)
159 #define MPU3050_PWR_MGM_MASK		0xff
160 
161 /*
162  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
163  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
164  * in two's complement.
165  */
166 static unsigned int mpu3050_fs_precision[] = {
167 	IIO_DEGREE_TO_RAD(250),
168 	IIO_DEGREE_TO_RAD(500),
169 	IIO_DEGREE_TO_RAD(1000),
170 	IIO_DEGREE_TO_RAD(2000)
171 };
172 
173 /*
174  * Regulator names
175  */
176 static const char mpu3050_reg_vdd[] = "vdd";
177 static const char mpu3050_reg_vlogic[] = "vlogic";
178 
179 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
180 {
181 	unsigned int freq;
182 
183 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
184 		freq = 8000;
185 	else
186 		freq = 1000;
187 	freq /= (mpu3050->divisor + 1);
188 
189 	return freq;
190 }
191 
192 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
193 {
194 	__be16 raw_val[3];
195 	int ret;
196 	int i;
197 
198 	/* Reset */
199 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
200 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
201 	if (ret)
202 		return ret;
203 
204 	/* Turn on the Z-axis PLL */
205 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
206 				 MPU3050_PWR_MGM_CLKSEL_MASK,
207 				 MPU3050_PWR_MGM_PLL_Z);
208 	if (ret)
209 		return ret;
210 
211 	/* Write calibration offset registers */
212 	for (i = 0; i < 3; i++)
213 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
214 
215 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
216 				sizeof(raw_val));
217 	if (ret)
218 		return ret;
219 
220 	/* Set low pass filter (sample rate), sync and full scale */
221 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
222 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
223 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
224 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
225 	if (ret)
226 		return ret;
227 
228 	/* Set up sampling frequency */
229 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
230 	if (ret)
231 		return ret;
232 
233 	/*
234 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
235 	 * according to the data sheet, then wait for the next sample
236 	 * at this frequency T = 1000/f ms.
237 	 */
238 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
239 
240 	return 0;
241 }
242 
243 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
244 {
245 	int ret;
246 	u8 divisor;
247 	enum mpu3050_lpf lpf;
248 
249 	lpf = mpu3050->lpf;
250 	divisor = mpu3050->divisor;
251 
252 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
253 	mpu3050->divisor = 0; /* Divide by 1 */
254 	ret = mpu3050_start_sampling(mpu3050);
255 
256 	mpu3050->lpf = lpf;
257 	mpu3050->divisor = divisor;
258 
259 	return ret;
260 }
261 
262 static int mpu3050_read_raw(struct iio_dev *indio_dev,
263 			    struct iio_chan_spec const *chan,
264 			    int *val, int *val2,
265 			    long mask)
266 {
267 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
268 	int ret;
269 	__be16 raw_val;
270 
271 	switch (mask) {
272 	case IIO_CHAN_INFO_OFFSET:
273 		switch (chan->type) {
274 		case IIO_TEMP:
275 			/* The temperature scaling is (x+23000)/280 Celsius */
276 			*val = 23000;
277 			return IIO_VAL_INT;
278 		default:
279 			return -EINVAL;
280 		}
281 	case IIO_CHAN_INFO_CALIBBIAS:
282 		switch (chan->type) {
283 		case IIO_ANGL_VEL:
284 			*val = mpu3050->calibration[chan->scan_index-1];
285 			return IIO_VAL_INT;
286 		default:
287 			return -EINVAL;
288 		}
289 	case IIO_CHAN_INFO_SAMP_FREQ:
290 		*val = mpu3050_get_freq(mpu3050);
291 		return IIO_VAL_INT;
292 	case IIO_CHAN_INFO_SCALE:
293 		switch (chan->type) {
294 		case IIO_TEMP:
295 			/* Millidegrees, see about temperature scaling above */
296 			*val = 1000;
297 			*val2 = 280;
298 			return IIO_VAL_FRACTIONAL;
299 		case IIO_ANGL_VEL:
300 			/*
301 			 * Convert to the corresponding full scale in
302 			 * radians. All 16 bits are used with sign to
303 			 * span the available scale: to account for the one
304 			 * missing value if we multiply by 1/S16_MAX, instead
305 			 * multiply with 2/U16_MAX.
306 			 */
307 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
308 			*val2 = U16_MAX;
309 			return IIO_VAL_FRACTIONAL;
310 		default:
311 			return -EINVAL;
312 		}
313 	case IIO_CHAN_INFO_RAW:
314 		/* Resume device */
315 		pm_runtime_get_sync(mpu3050->dev);
316 		mutex_lock(&mpu3050->lock);
317 
318 		ret = mpu3050_set_8khz_samplerate(mpu3050);
319 		if (ret)
320 			goto out_read_raw_unlock;
321 
322 		switch (chan->type) {
323 		case IIO_TEMP:
324 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
325 					       &raw_val, sizeof(raw_val));
326 			if (ret) {
327 				dev_err(mpu3050->dev,
328 					"error reading temperature\n");
329 				goto out_read_raw_unlock;
330 			}
331 
332 			*val = be16_to_cpu(raw_val);
333 			ret = IIO_VAL_INT;
334 
335 			goto out_read_raw_unlock;
336 		case IIO_ANGL_VEL:
337 			ret = regmap_bulk_read(mpu3050->map,
338 				       MPU3050_AXIS_REGS(chan->scan_index-1),
339 				       &raw_val,
340 				       sizeof(raw_val));
341 			if (ret) {
342 				dev_err(mpu3050->dev,
343 					"error reading axis data\n");
344 				goto out_read_raw_unlock;
345 			}
346 
347 			*val = be16_to_cpu(raw_val);
348 			ret = IIO_VAL_INT;
349 
350 			goto out_read_raw_unlock;
351 		default:
352 			ret = -EINVAL;
353 			goto out_read_raw_unlock;
354 		}
355 	default:
356 		break;
357 	}
358 
359 	return -EINVAL;
360 
361 out_read_raw_unlock:
362 	mutex_unlock(&mpu3050->lock);
363 	pm_runtime_mark_last_busy(mpu3050->dev);
364 	pm_runtime_put_autosuspend(mpu3050->dev);
365 
366 	return ret;
367 }
368 
369 static int mpu3050_write_raw(struct iio_dev *indio_dev,
370 			     const struct iio_chan_spec *chan,
371 			     int val, int val2, long mask)
372 {
373 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
374 	/*
375 	 * Couldn't figure out a way to precalculate these at compile time.
376 	 */
377 	unsigned int fs250 =
378 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
379 				  U16_MAX);
380 	unsigned int fs500 =
381 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
382 				  U16_MAX);
383 	unsigned int fs1000 =
384 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
385 				  U16_MAX);
386 	unsigned int fs2000 =
387 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
388 				  U16_MAX);
389 
390 	switch (mask) {
391 	case IIO_CHAN_INFO_CALIBBIAS:
392 		if (chan->type != IIO_ANGL_VEL)
393 			return -EINVAL;
394 		mpu3050->calibration[chan->scan_index-1] = val;
395 		return 0;
396 	case IIO_CHAN_INFO_SAMP_FREQ:
397 		/*
398 		 * The max samplerate is 8000 Hz, the minimum
399 		 * 1000 / 256 ~= 4 Hz
400 		 */
401 		if (val < 4 || val > 8000)
402 			return -EINVAL;
403 
404 		/*
405 		 * Above 1000 Hz we must turn off the digital low pass filter
406 		 * so we get a base frequency of 8kHz to the divider
407 		 */
408 		if (val > 1000) {
409 			mpu3050->lpf = LPF_256_HZ_NOLPF;
410 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
411 			return 0;
412 		}
413 
414 		mpu3050->lpf = LPF_188_HZ;
415 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
416 		return 0;
417 	case IIO_CHAN_INFO_SCALE:
418 		if (chan->type != IIO_ANGL_VEL)
419 			return -EINVAL;
420 		/*
421 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
422 		 * which means we need to round to the closest radians
423 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
424 		 * rad/s. The scale is then for the 16 bits used to cover
425 		 * it 2/(2^16) of that.
426 		 */
427 
428 		/* Just too large, set the max range */
429 		if (val != 0) {
430 			mpu3050->fullscale = FS_2000_DPS;
431 			return 0;
432 		}
433 
434 		/*
435 		 * Now we're dealing with fractions below zero in millirad/s
436 		 * do some integer interpolation and match with the closest
437 		 * fullscale in the table.
438 		 */
439 		if (val2 <= fs250 ||
440 		    val2 < ((fs500 + fs250) / 2))
441 			mpu3050->fullscale = FS_250_DPS;
442 		else if (val2 <= fs500 ||
443 			 val2 < ((fs1000 + fs500) / 2))
444 			mpu3050->fullscale = FS_500_DPS;
445 		else if (val2 <= fs1000 ||
446 			 val2 < ((fs2000 + fs1000) / 2))
447 			mpu3050->fullscale = FS_1000_DPS;
448 		else
449 			/* Catch-all */
450 			mpu3050->fullscale = FS_2000_DPS;
451 		return 0;
452 	default:
453 		break;
454 	}
455 
456 	return -EINVAL;
457 }
458 
459 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
460 {
461 	const struct iio_poll_func *pf = p;
462 	struct iio_dev *indio_dev = pf->indio_dev;
463 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
464 	int ret;
465 	/*
466 	 * Temperature 1*16 bits
467 	 * Three axes 3*16 bits
468 	 * Timestamp 64 bits (4*16 bits)
469 	 * Sum total 8*16 bits
470 	 */
471 	__be16 hw_values[8];
472 	s64 timestamp;
473 	unsigned int datums_from_fifo = 0;
474 
475 	/*
476 	 * If we're using the hardware trigger, get the precise timestamp from
477 	 * the top half of the threaded IRQ handler. Otherwise get the
478 	 * timestamp here so it will be close in time to the actual values
479 	 * read from the registers.
480 	 */
481 	if (iio_trigger_using_own(indio_dev))
482 		timestamp = mpu3050->hw_timestamp;
483 	else
484 		timestamp = iio_get_time_ns(indio_dev);
485 
486 	mutex_lock(&mpu3050->lock);
487 
488 	/* Using the hardware IRQ trigger? Check the buffer then. */
489 	if (mpu3050->hw_irq_trigger) {
490 		__be16 raw_fifocnt;
491 		u16 fifocnt;
492 		/* X, Y, Z + temperature */
493 		unsigned int bytes_per_datum = 8;
494 		bool fifo_overflow = false;
495 
496 		ret = regmap_bulk_read(mpu3050->map,
497 				       MPU3050_FIFO_COUNT_H,
498 				       &raw_fifocnt,
499 				       sizeof(raw_fifocnt));
500 		if (ret)
501 			goto out_trigger_unlock;
502 		fifocnt = be16_to_cpu(raw_fifocnt);
503 
504 		if (fifocnt == 512) {
505 			dev_info(mpu3050->dev,
506 				 "FIFO overflow! Emptying and resetting FIFO\n");
507 			fifo_overflow = true;
508 			/* Reset and enable the FIFO */
509 			ret = regmap_update_bits(mpu3050->map,
510 						 MPU3050_USR_CTRL,
511 						 MPU3050_USR_CTRL_FIFO_EN |
512 						 MPU3050_USR_CTRL_FIFO_RST,
513 						 MPU3050_USR_CTRL_FIFO_EN |
514 						 MPU3050_USR_CTRL_FIFO_RST);
515 			if (ret) {
516 				dev_info(mpu3050->dev, "error resetting FIFO\n");
517 				goto out_trigger_unlock;
518 			}
519 			mpu3050->pending_fifo_footer = false;
520 		}
521 
522 		if (fifocnt)
523 			dev_dbg(mpu3050->dev,
524 				"%d bytes in the FIFO\n",
525 				fifocnt);
526 
527 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
528 			unsigned int toread;
529 			unsigned int offset;
530 			__be16 fifo_values[5];
531 
532 			/*
533 			 * If there is a FIFO footer in the pipe, first clear
534 			 * that out. This follows the complex algorithm in the
535 			 * datasheet that states that you may never leave the
536 			 * FIFO empty after the first reading: you have to
537 			 * always leave two footer bytes in it. The footer is
538 			 * in practice just two zero bytes.
539 			 */
540 			if (mpu3050->pending_fifo_footer) {
541 				toread = bytes_per_datum + 2;
542 				offset = 0;
543 			} else {
544 				toread = bytes_per_datum;
545 				offset = 1;
546 				/* Put in some dummy value */
547 				fifo_values[0] = cpu_to_be16(0xAAAA);
548 			}
549 
550 			ret = regmap_bulk_read(mpu3050->map,
551 					       MPU3050_FIFO_R,
552 					       &fifo_values[offset],
553 					       toread);
554 			if (ret)
555 				goto out_trigger_unlock;
556 
557 			dev_dbg(mpu3050->dev,
558 				"%04x %04x %04x %04x %04x\n",
559 				fifo_values[0],
560 				fifo_values[1],
561 				fifo_values[2],
562 				fifo_values[3],
563 				fifo_values[4]);
564 
565 			/* Index past the footer (fifo_values[0]) and push */
566 			iio_push_to_buffers_with_timestamp(indio_dev,
567 							   &fifo_values[1],
568 							   timestamp);
569 
570 			fifocnt -= toread;
571 			datums_from_fifo++;
572 			mpu3050->pending_fifo_footer = true;
573 
574 			/*
575 			 * If we're emptying the FIFO, just make sure to
576 			 * check if something new appeared.
577 			 */
578 			if (fifocnt < bytes_per_datum) {
579 				ret = regmap_bulk_read(mpu3050->map,
580 						       MPU3050_FIFO_COUNT_H,
581 						       &raw_fifocnt,
582 						       sizeof(raw_fifocnt));
583 				if (ret)
584 					goto out_trigger_unlock;
585 				fifocnt = be16_to_cpu(raw_fifocnt);
586 			}
587 
588 			if (fifocnt < bytes_per_datum)
589 				dev_dbg(mpu3050->dev,
590 					"%d bytes left in the FIFO\n",
591 					fifocnt);
592 
593 			/*
594 			 * At this point, the timestamp that triggered the
595 			 * hardware interrupt is no longer valid for what
596 			 * we are reading (the interrupt likely fired for
597 			 * the value on the top of the FIFO), so set the
598 			 * timestamp to zero and let userspace deal with it.
599 			 */
600 			timestamp = 0;
601 		}
602 	}
603 
604 	/*
605 	 * If we picked some datums from the FIFO that's enough, else
606 	 * fall through and just read from the current value registers.
607 	 * This happens in two cases:
608 	 *
609 	 * - We are using some other trigger (external, like an HRTimer)
610 	 *   than the sensor's own sample generator. In this case the
611 	 *   sensor is just set to the max sampling frequency and we give
612 	 *   the trigger a copy of the latest value every time we get here.
613 	 *
614 	 * - The hardware trigger is active but unused and we actually use
615 	 *   another trigger which calls here with a frequency higher
616 	 *   than what the device provides data. We will then just read
617 	 *   duplicate values directly from the hardware registers.
618 	 */
619 	if (datums_from_fifo) {
620 		dev_dbg(mpu3050->dev,
621 			"read %d datums from the FIFO\n",
622 			datums_from_fifo);
623 		goto out_trigger_unlock;
624 	}
625 
626 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
627 			       sizeof(hw_values));
628 	if (ret) {
629 		dev_err(mpu3050->dev,
630 			"error reading axis data\n");
631 		goto out_trigger_unlock;
632 	}
633 
634 	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
635 
636 out_trigger_unlock:
637 	mutex_unlock(&mpu3050->lock);
638 	iio_trigger_notify_done(indio_dev->trig);
639 
640 	return IRQ_HANDLED;
641 }
642 
643 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
644 {
645 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
646 
647 	pm_runtime_get_sync(mpu3050->dev);
648 
649 	/* Unless we have OUR trigger active, run at full speed */
650 	if (!mpu3050->hw_irq_trigger)
651 		return mpu3050_set_8khz_samplerate(mpu3050);
652 
653 	return 0;
654 }
655 
656 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
657 {
658 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
659 
660 	pm_runtime_mark_last_busy(mpu3050->dev);
661 	pm_runtime_put_autosuspend(mpu3050->dev);
662 
663 	return 0;
664 }
665 
666 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
667 	.preenable = mpu3050_buffer_preenable,
668 	.postdisable = mpu3050_buffer_postdisable,
669 };
670 
671 static const struct iio_mount_matrix *
672 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
673 			 const struct iio_chan_spec *chan)
674 {
675 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
676 
677 	return &mpu3050->orientation;
678 }
679 
680 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
681 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
682 	{ },
683 };
684 
685 #define MPU3050_AXIS_CHANNEL(axis, index)				\
686 	{								\
687 		.type = IIO_ANGL_VEL,					\
688 		.modified = 1,						\
689 		.channel2 = IIO_MOD_##axis,				\
690 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
691 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
692 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
693 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
694 		.ext_info = mpu3050_ext_info,				\
695 		.scan_index = index,					\
696 		.scan_type = {						\
697 			.sign = 's',					\
698 			.realbits = 16,					\
699 			.storagebits = 16,				\
700 			.endianness = IIO_BE,				\
701 		},							\
702 	}
703 
704 static const struct iio_chan_spec mpu3050_channels[] = {
705 	{
706 		.type = IIO_TEMP,
707 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
708 				      BIT(IIO_CHAN_INFO_SCALE) |
709 				      BIT(IIO_CHAN_INFO_OFFSET),
710 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
711 		.scan_index = 0,
712 		.scan_type = {
713 			.sign = 's',
714 			.realbits = 16,
715 			.storagebits = 16,
716 			.endianness = IIO_BE,
717 		},
718 	},
719 	MPU3050_AXIS_CHANNEL(X, 1),
720 	MPU3050_AXIS_CHANNEL(Y, 2),
721 	MPU3050_AXIS_CHANNEL(Z, 3),
722 	IIO_CHAN_SOFT_TIMESTAMP(4),
723 };
724 
725 /* Four channels apart from timestamp, scan mask = 0x0f */
726 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
727 
728 /*
729  * These are just the hardcoded factors resulting from the more elaborate
730  * calculations done with fractions in the scale raw get/set functions.
731  */
732 static IIO_CONST_ATTR(anglevel_scale_available,
733 		      "0.000122070 "
734 		      "0.000274658 "
735 		      "0.000518798 "
736 		      "0.001068115");
737 
738 static struct attribute *mpu3050_attributes[] = {
739 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
740 	NULL,
741 };
742 
743 static const struct attribute_group mpu3050_attribute_group = {
744 	.attrs = mpu3050_attributes,
745 };
746 
747 static const struct iio_info mpu3050_info = {
748 	.read_raw = mpu3050_read_raw,
749 	.write_raw = mpu3050_write_raw,
750 	.attrs = &mpu3050_attribute_group,
751 };
752 
753 /**
754  * mpu3050_read_mem() - read MPU-3050 internal memory
755  * @mpu3050: device to read from
756  * @bank: target bank
757  * @addr: target address
758  * @len: number of bytes
759  * @buf: the buffer to store the read bytes in
760  */
761 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
762 			    u8 bank,
763 			    u8 addr,
764 			    u8 len,
765 			    u8 *buf)
766 {
767 	int ret;
768 
769 	ret = regmap_write(mpu3050->map,
770 			   MPU3050_BANK_SEL,
771 			   bank);
772 	if (ret)
773 		return ret;
774 
775 	ret = regmap_write(mpu3050->map,
776 			   MPU3050_MEM_START_ADDR,
777 			   addr);
778 	if (ret)
779 		return ret;
780 
781 	return regmap_bulk_read(mpu3050->map,
782 				MPU3050_MEM_R_W,
783 				buf,
784 				len);
785 }
786 
787 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
788 {
789 	int ret;
790 	__le64 otp_le;
791 	u64 otp;
792 
793 	/* Reset */
794 	ret = regmap_update_bits(mpu3050->map,
795 				 MPU3050_PWR_MGM,
796 				 MPU3050_PWR_MGM_RESET,
797 				 MPU3050_PWR_MGM_RESET);
798 	if (ret)
799 		return ret;
800 
801 	/* Turn on the PLL */
802 	ret = regmap_update_bits(mpu3050->map,
803 				 MPU3050_PWR_MGM,
804 				 MPU3050_PWR_MGM_CLKSEL_MASK,
805 				 MPU3050_PWR_MGM_PLL_Z);
806 	if (ret)
807 		return ret;
808 
809 	/* Disable IRQs */
810 	ret = regmap_write(mpu3050->map,
811 			   MPU3050_INT_CFG,
812 			   0);
813 	if (ret)
814 		return ret;
815 
816 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
817 	ret = mpu3050_read_mem(mpu3050,
818 			       (MPU3050_MEM_PRFTCH |
819 				MPU3050_MEM_USER_BANK |
820 				MPU3050_MEM_OTP_BANK_0),
821 			       0,
822 			       sizeof(otp_le),
823 			       (u8 *)&otp_le);
824 	if (ret)
825 		return ret;
826 
827 	/* This is device-unique data so it goes into the entropy pool */
828 	add_device_randomness(&otp_le, sizeof(otp_le));
829 
830 	otp = le64_to_cpu(otp_le);
831 
832 	dev_info(mpu3050->dev,
833 		 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
834 		 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
835 		 /* Die ID, bits 0-12 */
836 		 FIELD_GET(GENMASK_ULL(12, 0), otp),
837 		 /* Wafer ID, bits 13-17 */
838 		 FIELD_GET(GENMASK_ULL(17, 13), otp),
839 		 /* A lot ID, bits 18-33 */
840 		 FIELD_GET(GENMASK_ULL(33, 18), otp),
841 		 /* W lot ID, bits 34-45 */
842 		 FIELD_GET(GENMASK_ULL(45, 34), otp),
843 		 /* WP ID, bits 47-49 */
844 		 FIELD_GET(GENMASK_ULL(49, 47), otp),
845 		 /* rev ID, bits 50-55 */
846 		 FIELD_GET(GENMASK_ULL(55, 50), otp));
847 
848 	return 0;
849 }
850 
851 static int mpu3050_power_up(struct mpu3050 *mpu3050)
852 {
853 	int ret;
854 
855 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
856 	if (ret) {
857 		dev_err(mpu3050->dev, "cannot enable regulators\n");
858 		return ret;
859 	}
860 	/*
861 	 * 20-100 ms start-up time for register read/write according to
862 	 * the datasheet, be on the safe side and wait 200 ms.
863 	 */
864 	msleep(200);
865 
866 	/* Take device out of sleep mode */
867 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
868 				 MPU3050_PWR_MGM_SLEEP, 0);
869 	if (ret) {
870 		dev_err(mpu3050->dev, "error setting power mode\n");
871 		return ret;
872 	}
873 	usleep_range(10000, 20000);
874 
875 	return 0;
876 }
877 
878 static int mpu3050_power_down(struct mpu3050 *mpu3050)
879 {
880 	int ret;
881 
882 	/*
883 	 * Put MPU-3050 into sleep mode before cutting regulators.
884 	 * This is important, because we may not be the sole user
885 	 * of the regulator so the power may stay on after this, and
886 	 * then we would be wasting power unless we go to sleep mode
887 	 * first.
888 	 */
889 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
890 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
891 	if (ret)
892 		dev_err(mpu3050->dev, "error putting to sleep\n");
893 
894 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
895 	if (ret)
896 		dev_err(mpu3050->dev, "error disabling regulators\n");
897 
898 	return 0;
899 }
900 
901 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
902 {
903 	struct iio_trigger *trig = p;
904 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
905 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
906 
907 	if (!mpu3050->hw_irq_trigger)
908 		return IRQ_NONE;
909 
910 	/* Get the time stamp as close in time as possible */
911 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
912 
913 	return IRQ_WAKE_THREAD;
914 }
915 
916 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
917 {
918 	struct iio_trigger *trig = p;
919 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
920 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
921 	unsigned int val;
922 	int ret;
923 
924 	/* ACK IRQ and check if it was from us */
925 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
926 	if (ret) {
927 		dev_err(mpu3050->dev, "error reading IRQ status\n");
928 		return IRQ_HANDLED;
929 	}
930 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
931 		return IRQ_NONE;
932 
933 	iio_trigger_poll_chained(p);
934 
935 	return IRQ_HANDLED;
936 }
937 
938 /**
939  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
940  * @trig: trigger instance
941  * @enable: true if trigger should be enabled, false to disable
942  */
943 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
944 					  bool enable)
945 {
946 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
947 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
948 	unsigned int val;
949 	int ret;
950 
951 	/* Disabling trigger: disable interrupt and return */
952 	if (!enable) {
953 		/* Disable all interrupts */
954 		ret = regmap_write(mpu3050->map,
955 				   MPU3050_INT_CFG,
956 				   0);
957 		if (ret)
958 			dev_err(mpu3050->dev, "error disabling IRQ\n");
959 
960 		/* Clear IRQ flag */
961 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
962 		if (ret)
963 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
964 
965 		/* Disable all things in the FIFO and reset it */
966 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
967 		if (ret)
968 			dev_err(mpu3050->dev, "error disabling FIFO\n");
969 
970 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
971 				   MPU3050_USR_CTRL_FIFO_RST);
972 		if (ret)
973 			dev_err(mpu3050->dev, "error resetting FIFO\n");
974 
975 		pm_runtime_mark_last_busy(mpu3050->dev);
976 		pm_runtime_put_autosuspend(mpu3050->dev);
977 		mpu3050->hw_irq_trigger = false;
978 
979 		return 0;
980 	} else {
981 		/* Else we're enabling the trigger from this point */
982 		pm_runtime_get_sync(mpu3050->dev);
983 		mpu3050->hw_irq_trigger = true;
984 
985 		/* Disable all things in the FIFO */
986 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
987 		if (ret)
988 			return ret;
989 
990 		/* Reset and enable the FIFO */
991 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
992 					 MPU3050_USR_CTRL_FIFO_EN |
993 					 MPU3050_USR_CTRL_FIFO_RST,
994 					 MPU3050_USR_CTRL_FIFO_EN |
995 					 MPU3050_USR_CTRL_FIFO_RST);
996 		if (ret)
997 			return ret;
998 
999 		mpu3050->pending_fifo_footer = false;
1000 
1001 		/* Turn on the FIFO for temp+X+Y+Z */
1002 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1003 				   MPU3050_FIFO_EN_TEMP_OUT |
1004 				   MPU3050_FIFO_EN_GYRO_XOUT |
1005 				   MPU3050_FIFO_EN_GYRO_YOUT |
1006 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1007 				   MPU3050_FIFO_EN_FOOTER);
1008 		if (ret)
1009 			return ret;
1010 
1011 		/* Configure the sample engine */
1012 		ret = mpu3050_start_sampling(mpu3050);
1013 		if (ret)
1014 			return ret;
1015 
1016 		/* Clear IRQ flag */
1017 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1018 		if (ret)
1019 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1020 
1021 		/* Give us interrupts whenever there is new data ready */
1022 		val = MPU3050_INT_RAW_RDY_EN;
1023 
1024 		if (mpu3050->irq_actl)
1025 			val |= MPU3050_INT_ACTL;
1026 		if (mpu3050->irq_latch)
1027 			val |= MPU3050_INT_LATCH_EN;
1028 		if (mpu3050->irq_opendrain)
1029 			val |= MPU3050_INT_OPEN;
1030 
1031 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1040 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1041 };
1042 
1043 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1044 {
1045 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1046 	unsigned long irq_trig;
1047 	int ret;
1048 
1049 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1050 					       "%s-dev%d",
1051 					       indio_dev->name,
1052 					       indio_dev->id);
1053 	if (!mpu3050->trig)
1054 		return -ENOMEM;
1055 
1056 	/* Check if IRQ is open drain */
1057 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1058 		mpu3050->irq_opendrain = true;
1059 
1060 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1061 	/*
1062 	 * Configure the interrupt generator hardware to supply whatever
1063 	 * the interrupt is configured for, edges low/high level low/high,
1064 	 * we can provide it all.
1065 	 */
1066 	switch (irq_trig) {
1067 	case IRQF_TRIGGER_RISING:
1068 		dev_info(&indio_dev->dev,
1069 			 "pulse interrupts on the rising edge\n");
1070 		break;
1071 	case IRQF_TRIGGER_FALLING:
1072 		mpu3050->irq_actl = true;
1073 		dev_info(&indio_dev->dev,
1074 			 "pulse interrupts on the falling edge\n");
1075 		break;
1076 	case IRQF_TRIGGER_HIGH:
1077 		mpu3050->irq_latch = true;
1078 		dev_info(&indio_dev->dev,
1079 			 "interrupts active high level\n");
1080 		/*
1081 		 * With level IRQs, we mask the IRQ until it is processed,
1082 		 * but with edge IRQs (pulses) we can queue several interrupts
1083 		 * in the top half.
1084 		 */
1085 		irq_trig |= IRQF_ONESHOT;
1086 		break;
1087 	case IRQF_TRIGGER_LOW:
1088 		mpu3050->irq_latch = true;
1089 		mpu3050->irq_actl = true;
1090 		irq_trig |= IRQF_ONESHOT;
1091 		dev_info(&indio_dev->dev,
1092 			 "interrupts active low level\n");
1093 		break;
1094 	default:
1095 		/* This is the most preferred mode, if possible */
1096 		dev_err(&indio_dev->dev,
1097 			"unsupported IRQ trigger specified (%lx), enforce "
1098 			"rising edge\n", irq_trig);
1099 		irq_trig = IRQF_TRIGGER_RISING;
1100 		break;
1101 	}
1102 
1103 	/* An open drain line can be shared with several devices */
1104 	if (mpu3050->irq_opendrain)
1105 		irq_trig |= IRQF_SHARED;
1106 
1107 	ret = request_threaded_irq(irq,
1108 				   mpu3050_irq_handler,
1109 				   mpu3050_irq_thread,
1110 				   irq_trig,
1111 				   mpu3050->trig->name,
1112 				   mpu3050->trig);
1113 	if (ret) {
1114 		dev_err(mpu3050->dev,
1115 			"can't get IRQ %d, error %d\n", irq, ret);
1116 		return ret;
1117 	}
1118 
1119 	mpu3050->irq = irq;
1120 	mpu3050->trig->dev.parent = mpu3050->dev;
1121 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1122 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1123 
1124 	ret = iio_trigger_register(mpu3050->trig);
1125 	if (ret)
1126 		return ret;
1127 
1128 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1129 
1130 	return 0;
1131 }
1132 
1133 int mpu3050_common_probe(struct device *dev,
1134 			 struct regmap *map,
1135 			 int irq,
1136 			 const char *name)
1137 {
1138 	struct iio_dev *indio_dev;
1139 	struct mpu3050 *mpu3050;
1140 	unsigned int val;
1141 	int ret;
1142 
1143 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1144 	if (!indio_dev)
1145 		return -ENOMEM;
1146 	mpu3050 = iio_priv(indio_dev);
1147 
1148 	mpu3050->dev = dev;
1149 	mpu3050->map = map;
1150 	mutex_init(&mpu3050->lock);
1151 	/* Default fullscale: 2000 degrees per second */
1152 	mpu3050->fullscale = FS_2000_DPS;
1153 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1154 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1155 	mpu3050->divisor = 99;
1156 
1157 	/* Read the mounting matrix, if present */
1158 	ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* Fetch and turn on regulators */
1163 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1164 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1165 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1166 				      mpu3050->regs);
1167 	if (ret) {
1168 		dev_err(dev, "Cannot get regulators\n");
1169 		return ret;
1170 	}
1171 
1172 	ret = mpu3050_power_up(mpu3050);
1173 	if (ret)
1174 		return ret;
1175 
1176 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1177 	if (ret) {
1178 		dev_err(dev, "could not read device ID\n");
1179 		ret = -ENODEV;
1180 
1181 		goto err_power_down;
1182 	}
1183 
1184 	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1185 		dev_err(dev, "unsupported chip id %02x\n",
1186 				(u8)(val & MPU3050_CHIP_ID_MASK));
1187 		ret = -ENODEV;
1188 		goto err_power_down;
1189 	}
1190 
1191 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1192 	if (ret) {
1193 		dev_err(dev, "could not read device ID\n");
1194 		ret = -ENODEV;
1195 
1196 		goto err_power_down;
1197 	}
1198 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1199 		 ((val >> 4) & 0xf), (val & 0xf));
1200 
1201 	ret = mpu3050_hw_init(mpu3050);
1202 	if (ret)
1203 		goto err_power_down;
1204 
1205 	indio_dev->channels = mpu3050_channels;
1206 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1207 	indio_dev->info = &mpu3050_info;
1208 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1209 	indio_dev->modes = INDIO_DIRECT_MODE;
1210 	indio_dev->name = name;
1211 
1212 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1213 					 mpu3050_trigger_handler,
1214 					 &mpu3050_buffer_setup_ops);
1215 	if (ret) {
1216 		dev_err(dev, "triggered buffer setup failed\n");
1217 		goto err_power_down;
1218 	}
1219 
1220 	ret = iio_device_register(indio_dev);
1221 	if (ret) {
1222 		dev_err(dev, "device register failed\n");
1223 		goto err_cleanup_buffer;
1224 	}
1225 
1226 	dev_set_drvdata(dev, indio_dev);
1227 
1228 	/* Check if we have an assigned IRQ to use as trigger */
1229 	if (irq) {
1230 		ret = mpu3050_trigger_probe(indio_dev, irq);
1231 		if (ret)
1232 			dev_err(dev, "failed to register trigger\n");
1233 	}
1234 
1235 	/* Enable runtime PM */
1236 	pm_runtime_get_noresume(dev);
1237 	pm_runtime_set_active(dev);
1238 	pm_runtime_enable(dev);
1239 	/*
1240 	 * Set autosuspend to two orders of magnitude larger than the
1241 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1242 	 * i.e. 10 seconds.
1243 	 */
1244 	pm_runtime_set_autosuspend_delay(dev, 10000);
1245 	pm_runtime_use_autosuspend(dev);
1246 	pm_runtime_put(dev);
1247 
1248 	return 0;
1249 
1250 err_cleanup_buffer:
1251 	iio_triggered_buffer_cleanup(indio_dev);
1252 err_power_down:
1253 	mpu3050_power_down(mpu3050);
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(mpu3050_common_probe);
1258 
1259 int mpu3050_common_remove(struct device *dev)
1260 {
1261 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1262 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1263 
1264 	pm_runtime_get_sync(dev);
1265 	pm_runtime_put_noidle(dev);
1266 	pm_runtime_disable(dev);
1267 	iio_triggered_buffer_cleanup(indio_dev);
1268 	if (mpu3050->irq)
1269 		free_irq(mpu3050->irq, mpu3050);
1270 	iio_device_unregister(indio_dev);
1271 	mpu3050_power_down(mpu3050);
1272 
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(mpu3050_common_remove);
1276 
1277 #ifdef CONFIG_PM
1278 static int mpu3050_runtime_suspend(struct device *dev)
1279 {
1280 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1281 }
1282 
1283 static int mpu3050_runtime_resume(struct device *dev)
1284 {
1285 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1286 }
1287 #endif /* CONFIG_PM */
1288 
1289 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1290 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1291 				pm_runtime_force_resume)
1292 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1293 			   mpu3050_runtime_resume, NULL)
1294 };
1295 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1296 
1297 MODULE_AUTHOR("Linus Walleij");
1298 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1299 MODULE_LICENSE("GPL");
1300