xref: /linux/drivers/iio/gyro/fxas21002c_core.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for NXP FXAS21002C Gyroscope - Core
4  *
5  * Copyright (C) 2019 Linaro Ltd.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/pm.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/property.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 
16 #include <linux/iio/events.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/sysfs.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 
24 #include "fxas21002c.h"
25 
26 #define FXAS21002C_CHIP_ID_1	0xD6
27 #define FXAS21002C_CHIP_ID_2	0xD7
28 
29 enum fxas21002c_mode_state {
30 	FXAS21002C_MODE_STANDBY,
31 	FXAS21002C_MODE_READY,
32 	FXAS21002C_MODE_ACTIVE,
33 };
34 
35 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS	62
36 #define FXAS21002C_READY_ACTIVE_TIME_MS		7
37 
38 #define FXAS21002C_ODR_LIST_MAX		10
39 
40 #define FXAS21002C_SCALE_FRACTIONAL	32
41 #define FXAS21002C_RANGE_LIMIT_DOUBLE	2000
42 
43 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
44 
45 static const struct reg_field fxas21002c_reg_fields[] = {
46 	[F_DR_STATUS]		= REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
47 	[F_OUT_X_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
48 	[F_OUT_X_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
49 	[F_OUT_Y_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
50 	[F_OUT_Y_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
51 	[F_OUT_Z_MSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
52 	[F_OUT_Z_LSB]		= REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
53 	[F_ZYX_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
54 	[F_Z_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
55 	[F_Y_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
56 	[F_X_OW]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
57 	[F_ZYX_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
58 	[F_Z_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
59 	[F_Y_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
60 	[F_X_DR]		= REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
61 	[F_OVF]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
62 	[F_WMKF]		= REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
63 	[F_CNT]			= REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
64 	[F_MODE]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
65 	[F_WMRK]		= REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
66 	[F_EVENT]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
67 	[FE_TIME]		= REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
68 	[F_BOOTEND]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
69 	[F_SRC_FIFO]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
70 	[F_SRC_RT]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
71 	[F_SRC_DRDY]		= REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
72 	[F_WHO_AM_I]		= REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
73 	[F_BW]			= REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
74 	[F_SPIW]		= REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
75 	[F_SEL]			= REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
76 	[F_HPF_EN]		= REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
77 	[F_FS]			= REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
78 	[F_ELE]			= REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
79 	[F_ZTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
80 	[F_YTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
81 	[F_XTEFE]		= REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
82 	[F_EA]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
83 	[F_ZRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
84 	[F_ZRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
85 	[F_YRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
86 	[F_YRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
87 	[F_XRT]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
88 	[F_XRT_POL]		= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
89 	[F_DBCNTM]		= REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
90 	[F_THS]			= REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
91 	[F_RT_COUNT]		= REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
92 	[F_TEMP]		= REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
93 	[F_RST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
94 	[F_ST]			= REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
95 	[F_DR]			= REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
96 	[F_ACTIVE]		= REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
97 	[F_READY]		= REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
98 	[F_INT_CFG_FIFO]	= REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
99 	[F_INT_EN_FIFO]		= REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
100 	[F_INT_CFG_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
101 	[F_INT_EN_RT]		= REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
102 	[F_INT_CFG_DRDY]	= REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
103 	[F_INT_EN_DRDY]		= REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
104 	[F_IPOL]		= REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
105 	[F_PP_OD]		= REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
106 	[F_WRAPTOONE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
107 	[F_EXTCTRLEN]		= REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
108 	[F_FS_DOUBLE]		= REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
109 };
110 
111 static const int fxas21002c_odr_values[] = {
112 	800, 400, 200, 100, 50, 25, 12, 12
113 };
114 
115 /*
116  * These values are taken from the low-pass filter cutoff frequency calculated
117  * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
118  * => LPF cutoff frequency = 800 * 0.32 = 256 Hz
119  */
120 static const int fxas21002c_lpf_values[] = {
121 	32, 16, 8
122 };
123 
124 /*
125  * These values are taken from the high-pass filter cutoff frequency calculated
126  * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
127  * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
128  */
129 static const int fxas21002c_hpf_values[] = {
130 	18750, 9625, 4875, 2475
131 };
132 
133 static const int fxas21002c_range_values[] = {
134 	4000, 2000, 1000, 500, 250
135 };
136 
137 struct fxas21002c_data {
138 	u8 chip_id;
139 	enum fxas21002c_mode_state mode;
140 	enum fxas21002c_mode_state prev_mode;
141 
142 	struct mutex lock;		/* serialize data access */
143 	struct regmap *regmap;
144 	struct regmap_field *regmap_fields[F_MAX_FIELDS];
145 	struct iio_trigger *dready_trig;
146 	s64 timestamp;
147 	int irq;
148 
149 	struct regulator *vdd;
150 	struct regulator *vddio;
151 
152 	/*
153 	 * DMA (thus cache coherency maintenance) requires the
154 	 * transfer buffers to live in their own cache lines.
155 	 */
156 	s16 buffer[8] ____cacheline_aligned;
157 };
158 
159 enum fxas21002c_channel_index {
160 	CHANNEL_SCAN_INDEX_X,
161 	CHANNEL_SCAN_INDEX_Y,
162 	CHANNEL_SCAN_INDEX_Z,
163 	CHANNEL_SCAN_MAX,
164 };
165 
166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
167 {
168 	int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
169 
170 	value = min_t(u8, value, odr_value_max);
171 
172 	return fxas21002c_odr_values[value];
173 }
174 
175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
176 					unsigned int hz)
177 {
178 	int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
179 	int i;
180 
181 	for (i = 0; i < odr_table_size; i++)
182 		if (fxas21002c_odr_values[i] == hz)
183 			return i;
184 
185 	return -EINVAL;
186 }
187 
188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
189 {
190 	int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
191 
192 	value = min_t(u8, value, lpf_value_max);
193 
194 	return fxas21002c_lpf_values[value];
195 }
196 
197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
198 					unsigned int hz)
199 {
200 	int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
201 	int i;
202 
203 	for (i = 0; i < lpf_table_size; i++)
204 		if (fxas21002c_lpf_values[i] == hz)
205 			return i;
206 
207 	return -EINVAL;
208 }
209 
210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
211 {
212 	int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
213 
214 	value = min_t(u8, value, hpf_value_max);
215 
216 	return fxas21002c_hpf_values[value];
217 }
218 
219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
220 					 unsigned int hz)
221 {
222 	int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
223 	int i;
224 
225 	for (i = 0; i < hpf_table_size; i++)
226 		if (fxas21002c_hpf_values[i] == hz)
227 			return i;
228 
229 	return -EINVAL;
230 }
231 
232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
233 					  u8 value)
234 {
235 	int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
236 	unsigned int fs_double;
237 	int ret;
238 
239 	/* We need to check if FS_DOUBLE is enabled to offset the value */
240 	ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
241 	if (ret < 0)
242 		return ret;
243 
244 	if (!fs_double)
245 		value += 1;
246 
247 	value = min_t(u8, value, range_value_max);
248 
249 	return fxas21002c_range_values[value];
250 }
251 
252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
253 					  unsigned int range)
254 {
255 	int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
256 	bool found = false;
257 	int fs_double = 0;
258 	int ret;
259 	int i;
260 
261 	for (i = 0; i < range_table_size; i++)
262 		if (fxas21002c_range_values[i] == range) {
263 			found = true;
264 			break;
265 		}
266 
267 	if (!found)
268 		return -EINVAL;
269 
270 	if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
271 		fs_double = 1;
272 
273 	ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
274 	if (ret < 0)
275 		return ret;
276 
277 	return i;
278 }
279 
280 static int fxas21002c_mode_get(struct fxas21002c_data *data)
281 {
282 	unsigned int active;
283 	unsigned int ready;
284 	int ret;
285 
286 	ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
287 	if (ret < 0)
288 		return ret;
289 	if (active)
290 		return FXAS21002C_MODE_ACTIVE;
291 
292 	ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
293 	if (ret < 0)
294 		return ret;
295 	if (ready)
296 		return FXAS21002C_MODE_READY;
297 
298 	return FXAS21002C_MODE_STANDBY;
299 }
300 
301 static int fxas21002c_mode_set(struct fxas21002c_data *data,
302 			       enum fxas21002c_mode_state mode)
303 {
304 	int ret;
305 
306 	if (mode == data->mode)
307 		return 0;
308 
309 	if (mode == FXAS21002C_MODE_READY)
310 		ret = regmap_field_write(data->regmap_fields[F_READY], 1);
311 	else
312 		ret = regmap_field_write(data->regmap_fields[F_READY], 0);
313 	if (ret < 0)
314 		return ret;
315 
316 	if (mode == FXAS21002C_MODE_ACTIVE)
317 		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
318 	else
319 		ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
320 	if (ret < 0)
321 		return ret;
322 
323 	/* if going to active wait the setup times */
324 	if (mode == FXAS21002C_MODE_ACTIVE &&
325 	    data->mode == FXAS21002C_MODE_STANDBY)
326 		msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
327 
328 	if (data->mode == FXAS21002C_MODE_READY)
329 		msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
330 
331 	data->prev_mode = data->mode;
332 	data->mode = mode;
333 
334 	return ret;
335 }
336 
337 static int fxas21002c_write(struct fxas21002c_data *data,
338 			    enum fxas21002c_fields field, int bits)
339 {
340 	int actual_mode;
341 	int ret;
342 
343 	mutex_lock(&data->lock);
344 
345 	actual_mode = fxas21002c_mode_get(data);
346 	if (actual_mode < 0) {
347 		ret = actual_mode;
348 		goto out_unlock;
349 	}
350 
351 	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
352 	if (ret < 0)
353 		goto out_unlock;
354 
355 	ret = regmap_field_write(data->regmap_fields[field], bits);
356 	if (ret < 0)
357 		goto out_unlock;
358 
359 	ret = fxas21002c_mode_set(data, data->prev_mode);
360 
361 out_unlock:
362 	mutex_unlock(&data->lock);
363 
364 	return ret;
365 }
366 
367 static int  fxas21002c_pm_get(struct fxas21002c_data *data)
368 {
369 	return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
370 }
371 
372 static int  fxas21002c_pm_put(struct fxas21002c_data *data)
373 {
374 	struct device *dev = regmap_get_device(data->regmap);
375 
376 	pm_runtime_mark_last_busy(dev);
377 
378 	return pm_runtime_put_autosuspend(dev);
379 }
380 
381 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
382 {
383 	struct device *dev = regmap_get_device(data->regmap);
384 	unsigned int temp;
385 	int ret;
386 
387 	mutex_lock(&data->lock);
388 	ret = fxas21002c_pm_get(data);
389 	if (ret < 0)
390 		goto data_unlock;
391 
392 	ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
393 	if (ret < 0) {
394 		dev_err(dev, "failed to read temp: %d\n", ret);
395 		fxas21002c_pm_put(data);
396 		goto data_unlock;
397 	}
398 
399 	*val = sign_extend32(temp, 7);
400 
401 	ret = fxas21002c_pm_put(data);
402 	if (ret < 0)
403 		goto data_unlock;
404 
405 	ret = IIO_VAL_INT;
406 
407 data_unlock:
408 	mutex_unlock(&data->lock);
409 
410 	return ret;
411 }
412 
413 static int fxas21002c_axis_get(struct fxas21002c_data *data,
414 			       int index, int *val)
415 {
416 	struct device *dev = regmap_get_device(data->regmap);
417 	__be16 axis_be;
418 	int ret;
419 
420 	mutex_lock(&data->lock);
421 	ret = fxas21002c_pm_get(data);
422 	if (ret < 0)
423 		goto data_unlock;
424 
425 	ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
426 			       &axis_be, sizeof(axis_be));
427 	if (ret < 0) {
428 		dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
429 		fxas21002c_pm_put(data);
430 		goto data_unlock;
431 	}
432 
433 	*val = sign_extend32(be16_to_cpu(axis_be), 15);
434 
435 	ret = fxas21002c_pm_put(data);
436 	if (ret < 0)
437 		goto data_unlock;
438 
439 	ret = IIO_VAL_INT;
440 
441 data_unlock:
442 	mutex_unlock(&data->lock);
443 
444 	return ret;
445 }
446 
447 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
448 {
449 	unsigned int odr_bits;
450 	int ret;
451 
452 	mutex_lock(&data->lock);
453 	ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
454 	if (ret < 0)
455 		goto data_unlock;
456 
457 	*odr = fxas21002c_odr_hz_from_value(data, odr_bits);
458 
459 	ret = IIO_VAL_INT;
460 
461 data_unlock:
462 	mutex_unlock(&data->lock);
463 
464 	return ret;
465 }
466 
467 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
468 {
469 	int odr_bits;
470 
471 	odr_bits = fxas21002c_odr_value_from_hz(data, odr);
472 	if (odr_bits < 0)
473 		return odr_bits;
474 
475 	return fxas21002c_write(data, F_DR, odr_bits);
476 }
477 
478 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
479 {
480 	unsigned int bw_bits;
481 	int ret;
482 
483 	mutex_lock(&data->lock);
484 	ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
485 	if (ret < 0)
486 		goto data_unlock;
487 
488 	*val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
489 
490 	ret = IIO_VAL_INT_PLUS_MICRO;
491 
492 data_unlock:
493 	mutex_unlock(&data->lock);
494 
495 	return ret;
496 }
497 
498 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
499 {
500 	int bw_bits;
501 	int odr;
502 	int ret;
503 
504 	bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
505 	if (bw_bits < 0)
506 		return bw_bits;
507 
508 	/*
509 	 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
510 	 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed
511 	 */
512 	ret = fxas21002c_odr_get(data, &odr);
513 	if (ret < 0)
514 		return -EINVAL;
515 
516 	if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
517 		return -EINVAL;
518 
519 	return fxas21002c_write(data, F_BW, bw_bits);
520 }
521 
522 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
523 {
524 	unsigned int sel_bits;
525 	int ret;
526 
527 	mutex_lock(&data->lock);
528 	ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
529 	if (ret < 0)
530 		goto data_unlock;
531 
532 	*val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
533 
534 	ret = IIO_VAL_INT_PLUS_MICRO;
535 
536 data_unlock:
537 	mutex_unlock(&data->lock);
538 
539 	return ret;
540 }
541 
542 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
543 {
544 	int sel_bits;
545 
546 	sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
547 	if (sel_bits < 0)
548 		return sel_bits;
549 
550 	return fxas21002c_write(data, F_SEL, sel_bits);
551 }
552 
553 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
554 {
555 	int fs_bits;
556 	int scale;
557 	int ret;
558 
559 	mutex_lock(&data->lock);
560 	ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
561 	if (ret < 0)
562 		goto data_unlock;
563 
564 	scale = fxas21002c_range_fs_from_value(data, fs_bits);
565 	if (scale < 0) {
566 		ret = scale;
567 		goto data_unlock;
568 	}
569 
570 	*val = scale;
571 
572 data_unlock:
573 	mutex_unlock(&data->lock);
574 
575 	return ret;
576 }
577 
578 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
579 {
580 	int fs_bits;
581 
582 	fs_bits = fxas21002c_range_value_from_fs(data, range);
583 	if (fs_bits < 0)
584 		return fs_bits;
585 
586 	return fxas21002c_write(data, F_FS, fs_bits);
587 }
588 
589 static int fxas21002c_read_raw(struct iio_dev *indio_dev,
590 			       struct iio_chan_spec const *chan, int *val,
591 			       int *val2, long mask)
592 {
593 	struct fxas21002c_data *data = iio_priv(indio_dev);
594 	int ret;
595 
596 	switch (mask) {
597 	case IIO_CHAN_INFO_RAW:
598 		switch (chan->type) {
599 		case IIO_TEMP:
600 			return fxas21002c_temp_get(data, val);
601 		case IIO_ANGL_VEL:
602 			return fxas21002c_axis_get(data, chan->scan_index, val);
603 		default:
604 			return -EINVAL;
605 		}
606 	case IIO_CHAN_INFO_SCALE:
607 		switch (chan->type) {
608 		case IIO_ANGL_VEL:
609 			*val2 = FXAS21002C_SCALE_FRACTIONAL;
610 			ret = fxas21002c_scale_get(data, val);
611 			if (ret < 0)
612 				return ret;
613 
614 			return IIO_VAL_FRACTIONAL;
615 		default:
616 			return -EINVAL;
617 		}
618 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
619 		*val = 0;
620 		return fxas21002c_lpf_get(data, val2);
621 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
622 		*val = 0;
623 		return fxas21002c_hpf_get(data, val2);
624 	case IIO_CHAN_INFO_SAMP_FREQ:
625 		*val2 = 0;
626 		return fxas21002c_odr_get(data, val);
627 	default:
628 		return -EINVAL;
629 	}
630 }
631 
632 static int fxas21002c_write_raw(struct iio_dev *indio_dev,
633 				struct iio_chan_spec const *chan, int val,
634 				int val2, long mask)
635 {
636 	struct fxas21002c_data *data = iio_priv(indio_dev);
637 	int range;
638 
639 	switch (mask) {
640 	case IIO_CHAN_INFO_SAMP_FREQ:
641 		if (val2)
642 			return -EINVAL;
643 
644 		return fxas21002c_odr_set(data, val);
645 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
646 		if (val)
647 			return -EINVAL;
648 
649 		val2 = val2 / 10000;
650 		return fxas21002c_lpf_set(data, val2);
651 	case IIO_CHAN_INFO_SCALE:
652 		switch (chan->type) {
653 		case IIO_ANGL_VEL:
654 			range = (((val * 1000 + val2 / 1000) *
655 				  FXAS21002C_SCALE_FRACTIONAL) / 1000);
656 			return fxas21002c_scale_set(data, range);
657 		default:
658 			return -EINVAL;
659 		}
660 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
661 		return fxas21002c_hpf_set(data, val2);
662 	default:
663 		return -EINVAL;
664 	}
665 }
666 
667 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
668 
669 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
670 		      "0.32 0.16 0.08");
671 
672 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
673 		      "0.018750 0.009625 0.004875 0.002475");
674 
675 static IIO_CONST_ATTR(in_anglvel_scale_available,
676 		      "125.0 62.5 31.25 15.625 7.8125");
677 
678 static struct attribute *fxas21002c_attributes[] = {
679 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
680 	&iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
681 	&iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
682 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
683 	NULL,
684 };
685 
686 static const struct attribute_group fxas21002c_attrs_group = {
687 	.attrs = fxas21002c_attributes,
688 };
689 
690 #define FXAS21002C_CHANNEL(_axis) {					\
691 	.type = IIO_ANGL_VEL,						\
692 	.modified = 1,							\
693 	.channel2 = IIO_MOD_##_axis,					\
694 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
695 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
696 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |	\
697 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) |	\
698 		BIT(IIO_CHAN_INFO_SAMP_FREQ),				\
699 	.scan_index = CHANNEL_SCAN_INDEX_##_axis,			\
700 	.scan_type = {							\
701 		.sign = 's',						\
702 		.realbits = 16,						\
703 		.storagebits = 16,					\
704 		.endianness = IIO_BE,					\
705 	},								\
706 }
707 
708 static const struct iio_chan_spec fxas21002c_channels[] = {
709 	{
710 		.type = IIO_TEMP,
711 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
712 		.scan_index = -1,
713 	},
714 	FXAS21002C_CHANNEL(X),
715 	FXAS21002C_CHANNEL(Y),
716 	FXAS21002C_CHANNEL(Z),
717 };
718 
719 static const struct iio_info fxas21002c_info = {
720 	.attrs			= &fxas21002c_attrs_group,
721 	.read_raw		= &fxas21002c_read_raw,
722 	.write_raw		= &fxas21002c_write_raw,
723 };
724 
725 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
726 {
727 	struct iio_poll_func *pf = p;
728 	struct iio_dev *indio_dev = pf->indio_dev;
729 	struct fxas21002c_data *data = iio_priv(indio_dev);
730 	int ret;
731 
732 	mutex_lock(&data->lock);
733 	ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
734 			       data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
735 	if (ret < 0)
736 		goto out_unlock;
737 
738 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
739 					   data->timestamp);
740 
741 out_unlock:
742 	mutex_unlock(&data->lock);
743 
744 	iio_trigger_notify_done(indio_dev->trig);
745 
746 	return IRQ_HANDLED;
747 }
748 
749 static int fxas21002c_chip_init(struct fxas21002c_data *data)
750 {
751 	struct device *dev = regmap_get_device(data->regmap);
752 	unsigned int chip_id;
753 	int ret;
754 
755 	ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
756 	if (ret < 0)
757 		return ret;
758 
759 	if (chip_id != FXAS21002C_CHIP_ID_1 &&
760 	    chip_id != FXAS21002C_CHIP_ID_2) {
761 		dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
762 		return -EINVAL;
763 	}
764 
765 	data->chip_id = chip_id;
766 
767 	ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
768 	if (ret < 0)
769 		return ret;
770 
771 	/* Set ODR to 200HZ as default */
772 	ret = fxas21002c_odr_set(data, 200);
773 	if (ret < 0)
774 		dev_err(dev, "failed to set ODR: %d\n", ret);
775 
776 	return ret;
777 }
778 
779 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
780 						 bool state)
781 {
782 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
783 	struct fxas21002c_data *data = iio_priv(indio_dev);
784 
785 	return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
786 }
787 
788 static const struct iio_trigger_ops fxas21002c_trigger_ops = {
789 	.set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
790 };
791 
792 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
793 {
794 	struct iio_dev *indio_dev = private;
795 	struct fxas21002c_data *data = iio_priv(indio_dev);
796 
797 	data->timestamp = iio_get_time_ns(indio_dev);
798 
799 	return IRQ_WAKE_THREAD;
800 }
801 
802 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
803 {
804 	struct iio_dev *indio_dev = private;
805 	struct fxas21002c_data *data = iio_priv(indio_dev);
806 	unsigned int data_ready;
807 	int ret;
808 
809 	ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
810 	if (ret < 0)
811 		return IRQ_NONE;
812 
813 	if (!data_ready)
814 		return IRQ_NONE;
815 
816 	iio_trigger_poll_chained(data->dready_trig);
817 
818 	return IRQ_HANDLED;
819 }
820 
821 static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
822 {
823 	struct device *dev = regmap_get_device(data->regmap);
824 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
825 	unsigned long irq_trig;
826 	bool irq_open_drain;
827 	int irq1;
828 	int ret;
829 
830 	if (!data->irq)
831 		return 0;
832 
833 	irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
834 	if (irq1 == data->irq) {
835 		dev_info(dev, "using interrupt line INT1\n");
836 		ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
837 					 1);
838 		if (ret < 0)
839 			return ret;
840 	}
841 
842 	dev_info(dev, "using interrupt line INT2\n");
843 
844 	irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
845 
846 	data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
847 						   indio_dev->name,
848 						   iio_device_id(indio_dev));
849 	if (!data->dready_trig)
850 		return -ENOMEM;
851 
852 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
853 
854 	if (irq_trig == IRQF_TRIGGER_RISING) {
855 		ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
856 		if (ret < 0)
857 			return ret;
858 	}
859 
860 	if (irq_open_drain)
861 		irq_trig |= IRQF_SHARED;
862 
863 	ret = devm_request_threaded_irq(dev, data->irq,
864 					fxas21002c_data_rdy_handler,
865 					fxas21002c_data_rdy_thread,
866 					irq_trig, "fxas21002c_data_ready",
867 					indio_dev);
868 	if (ret < 0)
869 		return ret;
870 
871 	data->dready_trig->ops = &fxas21002c_trigger_ops;
872 	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
873 
874 	return devm_iio_trigger_register(dev, data->dready_trig);
875 }
876 
877 static int fxas21002c_power_enable(struct fxas21002c_data *data)
878 {
879 	int ret;
880 
881 	ret = regulator_enable(data->vdd);
882 	if (ret < 0)
883 		return ret;
884 
885 	ret = regulator_enable(data->vddio);
886 	if (ret < 0) {
887 		regulator_disable(data->vdd);
888 		return ret;
889 	}
890 
891 	return 0;
892 }
893 
894 static void fxas21002c_power_disable(struct fxas21002c_data *data)
895 {
896 	regulator_disable(data->vdd);
897 	regulator_disable(data->vddio);
898 }
899 
900 static void fxas21002c_power_disable_action(void *_data)
901 {
902 	struct fxas21002c_data *data = _data;
903 
904 	fxas21002c_power_disable(data);
905 }
906 
907 static int fxas21002c_regulators_get(struct fxas21002c_data *data)
908 {
909 	struct device *dev = regmap_get_device(data->regmap);
910 
911 	data->vdd = devm_regulator_get(dev->parent, "vdd");
912 	if (IS_ERR(data->vdd))
913 		return PTR_ERR(data->vdd);
914 
915 	data->vddio = devm_regulator_get(dev->parent, "vddio");
916 
917 	return PTR_ERR_OR_ZERO(data->vddio);
918 }
919 
920 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
921 			  const char *name)
922 {
923 	struct fxas21002c_data *data;
924 	struct iio_dev *indio_dev;
925 	struct regmap_field *f;
926 	int i;
927 	int ret;
928 
929 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
930 	if (!indio_dev)
931 		return -ENOMEM;
932 
933 	data = iio_priv(indio_dev);
934 	dev_set_drvdata(dev, indio_dev);
935 	data->irq = irq;
936 	data->regmap = regmap;
937 
938 	for (i = 0; i < F_MAX_FIELDS; i++) {
939 		f = devm_regmap_field_alloc(dev, data->regmap,
940 					    fxas21002c_reg_fields[i]);
941 		if (IS_ERR(f))
942 			return PTR_ERR(f);
943 
944 		data->regmap_fields[i] = f;
945 	}
946 
947 	mutex_init(&data->lock);
948 
949 	ret = fxas21002c_regulators_get(data);
950 	if (ret < 0)
951 		return ret;
952 
953 	ret = fxas21002c_power_enable(data);
954 	if (ret < 0)
955 		return ret;
956 
957 	ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
958 				       data);
959 	if (ret < 0)
960 		return ret;
961 
962 	ret = fxas21002c_chip_init(data);
963 	if (ret < 0)
964 		return ret;
965 
966 	indio_dev->channels = fxas21002c_channels;
967 	indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
968 	indio_dev->name = name;
969 	indio_dev->modes = INDIO_DIRECT_MODE;
970 	indio_dev->info = &fxas21002c_info;
971 
972 	ret = fxas21002c_trigger_probe(data);
973 	if (ret < 0)
974 		return ret;
975 
976 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
977 					      fxas21002c_trigger_handler, NULL);
978 	if (ret < 0)
979 		return ret;
980 
981 	ret = pm_runtime_set_active(dev);
982 	if (ret)
983 		return ret;
984 
985 	pm_runtime_enable(dev);
986 	pm_runtime_set_autosuspend_delay(dev, 2000);
987 	pm_runtime_use_autosuspend(dev);
988 
989 	ret = iio_device_register(indio_dev);
990 	if (ret < 0)
991 		goto pm_disable;
992 
993 	return 0;
994 
995 pm_disable:
996 	pm_runtime_disable(dev);
997 	pm_runtime_set_suspended(dev);
998 
999 	return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(fxas21002c_core_probe);
1002 
1003 void fxas21002c_core_remove(struct device *dev)
1004 {
1005 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1006 
1007 	iio_device_unregister(indio_dev);
1008 
1009 	pm_runtime_disable(dev);
1010 	pm_runtime_set_suspended(dev);
1011 }
1012 EXPORT_SYMBOL_GPL(fxas21002c_core_remove);
1013 
1014 static int __maybe_unused fxas21002c_suspend(struct device *dev)
1015 {
1016 	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1017 
1018 	fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
1019 	fxas21002c_power_disable(data);
1020 
1021 	return 0;
1022 }
1023 
1024 static int __maybe_unused fxas21002c_resume(struct device *dev)
1025 {
1026 	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1027 	int ret;
1028 
1029 	ret = fxas21002c_power_enable(data);
1030 	if (ret < 0)
1031 		return ret;
1032 
1033 	return fxas21002c_mode_set(data, data->prev_mode);
1034 }
1035 
1036 static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev)
1037 {
1038 	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1039 
1040 	return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
1041 }
1042 
1043 static int __maybe_unused fxas21002c_runtime_resume(struct device *dev)
1044 {
1045 	struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1046 
1047 	return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
1048 }
1049 
1050 const struct dev_pm_ops fxas21002c_pm_ops = {
1051 	SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
1052 	SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend,
1053 			   fxas21002c_runtime_resume, NULL)
1054 };
1055 EXPORT_SYMBOL_GPL(fxas21002c_pm_ops);
1056 
1057 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
1058 MODULE_LICENSE("GPL v2");
1059 MODULE_DESCRIPTION("FXAS21002C Gyro driver");
1060