xref: /linux/drivers/iio/frequency/adf4371.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices ADF4371 SPI Wideband Synthesizer driver
4  *
5  * Copyright 2019 Analog Devices Inc.
6  */
7 #include "linux/dev_printk.h"
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/gcd.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/regmap.h>
16 #include <linux/sysfs.h>
17 #include <linux/spi/spi.h>
18 
19 #include <linux/iio/iio.h>
20 
21 /* Registers address macro */
22 #define ADF4371_REG(x)			(x)
23 
24 /* ADF4371_REG0 */
25 #define ADF4371_ADDR_ASC_MSK		BIT(2)
26 #define ADF4371_ADDR_ASC(x)		FIELD_PREP(ADF4371_ADDR_ASC_MSK, x)
27 #define ADF4371_ADDR_ASC_R_MSK		BIT(5)
28 #define ADF4371_ADDR_ASC_R(x)		FIELD_PREP(ADF4371_ADDR_ASC_R_MSK, x)
29 #define ADF4371_RESET_CMD		0x81
30 
31 /* ADF4371_REG17 */
32 #define ADF4371_FRAC2WORD_L_MSK		GENMASK(7, 1)
33 #define ADF4371_FRAC2WORD_L(x)		FIELD_PREP(ADF4371_FRAC2WORD_L_MSK, x)
34 #define ADF4371_FRAC1WORD_MSK		BIT(0)
35 #define ADF4371_FRAC1WORD(x)		FIELD_PREP(ADF4371_FRAC1WORD_MSK, x)
36 
37 /* ADF4371_REG18 */
38 #define ADF4371_FRAC2WORD_H_MSK		GENMASK(6, 0)
39 #define ADF4371_FRAC2WORD_H(x)		FIELD_PREP(ADF4371_FRAC2WORD_H_MSK, x)
40 
41 /* ADF4371_REG1A */
42 #define ADF4371_MOD2WORD_MSK		GENMASK(5, 0)
43 #define ADF4371_MOD2WORD(x)		FIELD_PREP(ADF4371_MOD2WORD_MSK, x)
44 
45 /* ADF4371_REG24 */
46 #define ADF4371_RF_DIV_SEL_MSK		GENMASK(6, 4)
47 #define ADF4371_RF_DIV_SEL(x)		FIELD_PREP(ADF4371_RF_DIV_SEL_MSK, x)
48 
49 /* ADF4371_REG25 */
50 #define ADF4371_MUTE_LD_MSK		BIT(7)
51 #define ADF4371_MUTE_LD(x)		FIELD_PREP(ADF4371_MUTE_LD_MSK, x)
52 
53 /* ADF4371_REG32 */
54 #define ADF4371_TIMEOUT_MSK		GENMASK(1, 0)
55 #define ADF4371_TIMEOUT(x)		FIELD_PREP(ADF4371_TIMEOUT_MSK, x)
56 
57 /* ADF4371_REG34 */
58 #define ADF4371_VCO_ALC_TOUT_MSK	GENMASK(4, 0)
59 #define ADF4371_VCO_ALC_TOUT(x)		FIELD_PREP(ADF4371_VCO_ALC_TOUT_MSK, x)
60 
61 /* Specifications */
62 #define ADF4371_MIN_VCO_FREQ		4000000000ULL /* 4000 MHz */
63 #define ADF4371_MAX_VCO_FREQ		8000000000ULL /* 8000 MHz */
64 #define ADF4371_MAX_OUT_RF8_FREQ	ADF4371_MAX_VCO_FREQ /* Hz */
65 #define ADF4371_MIN_OUT_RF8_FREQ	(ADF4371_MIN_VCO_FREQ / 64) /* Hz */
66 #define ADF4371_MAX_OUT_RF16_FREQ	(ADF4371_MAX_VCO_FREQ * 2) /* Hz */
67 #define ADF4371_MIN_OUT_RF16_FREQ	(ADF4371_MIN_VCO_FREQ * 2) /* Hz */
68 #define ADF4371_MAX_OUT_RF32_FREQ	(ADF4371_MAX_VCO_FREQ * 4) /* Hz */
69 #define ADF4371_MIN_OUT_RF32_FREQ	(ADF4371_MIN_VCO_FREQ * 4) /* Hz */
70 
71 #define ADF4371_MAX_FREQ_PFD		250000000UL /* Hz */
72 #define ADF4371_MAX_FREQ_REFIN		600000000UL /* Hz */
73 
74 /* MOD1 is a 24-bit primary modulus with fixed value of 2^25 */
75 #define ADF4371_MODULUS1		33554432ULL
76 /* MOD2 is the programmable, 14-bit auxiliary fractional modulus */
77 #define ADF4371_MAX_MODULUS2		BIT(14)
78 
79 #define ADF4371_CHECK_RANGE(freq, range) \
80 	((freq > ADF4371_MAX_ ## range) || (freq < ADF4371_MIN_ ## range))
81 
82 enum {
83 	ADF4371_FREQ,
84 	ADF4371_POWER_DOWN,
85 	ADF4371_CHANNEL_NAME
86 };
87 
88 enum {
89 	ADF4371_CH_RF8,
90 	ADF4371_CH_RFAUX8,
91 	ADF4371_CH_RF16,
92 	ADF4371_CH_RF32
93 };
94 
95 enum adf4371_variant {
96 	ADF4371,
97 	ADF4372
98 };
99 
100 struct adf4371_pwrdown {
101 	unsigned int reg;
102 	unsigned int bit;
103 };
104 
105 static const char * const adf4371_ch_names[] = {
106 	"RF8x", "RFAUX8x", "RF16x", "RF32x"
107 };
108 
109 static const struct adf4371_pwrdown adf4371_pwrdown_ch[4] = {
110 	[ADF4371_CH_RF8] = { ADF4371_REG(0x25), 2 },
111 	[ADF4371_CH_RFAUX8] = { ADF4371_REG(0x72), 3 },
112 	[ADF4371_CH_RF16] = { ADF4371_REG(0x25), 3 },
113 	[ADF4371_CH_RF32] = { ADF4371_REG(0x25), 4 },
114 };
115 
116 static const struct reg_sequence adf4371_reg_defaults[] = {
117 	{ ADF4371_REG(0x0),  0x18 },
118 	{ ADF4371_REG(0x12), 0x40 },
119 	{ ADF4371_REG(0x1E), 0x48 },
120 	{ ADF4371_REG(0x20), 0x14 },
121 	{ ADF4371_REG(0x22), 0x00 },
122 	{ ADF4371_REG(0x23), 0x00 },
123 	{ ADF4371_REG(0x24), 0x80 },
124 	{ ADF4371_REG(0x25), 0x07 },
125 	{ ADF4371_REG(0x27), 0xC5 },
126 	{ ADF4371_REG(0x28), 0x83 },
127 	{ ADF4371_REG(0x2C), 0x44 },
128 	{ ADF4371_REG(0x2D), 0x11 },
129 	{ ADF4371_REG(0x2E), 0x12 },
130 	{ ADF4371_REG(0x2F), 0x94 },
131 	{ ADF4371_REG(0x32), 0x04 },
132 	{ ADF4371_REG(0x35), 0xFA },
133 	{ ADF4371_REG(0x36), 0x30 },
134 	{ ADF4371_REG(0x39), 0x07 },
135 	{ ADF4371_REG(0x3A), 0x55 },
136 	{ ADF4371_REG(0x3E), 0x0C },
137 	{ ADF4371_REG(0x3F), 0x80 },
138 	{ ADF4371_REG(0x40), 0x50 },
139 	{ ADF4371_REG(0x41), 0x28 },
140 	{ ADF4371_REG(0x47), 0xC0 },
141 	{ ADF4371_REG(0x52), 0xF4 },
142 	{ ADF4371_REG(0x70), 0x03 },
143 	{ ADF4371_REG(0x71), 0x60 },
144 	{ ADF4371_REG(0x72), 0x32 },
145 };
146 
147 static const struct regmap_config adf4371_regmap_config = {
148 	.reg_bits = 16,
149 	.val_bits = 8,
150 	.read_flag_mask = BIT(7),
151 };
152 
153 struct adf4371_chip_info {
154 	const char *name;
155 	unsigned int num_channels;
156 	const struct iio_chan_spec *channels;
157 };
158 
159 struct adf4371_state {
160 	struct spi_device *spi;
161 	struct regmap *regmap;
162 	/*
163 	 * Lock for accessing device registers. Some operations require
164 	 * multiple consecutive R/W operations, during which the device
165 	 * shouldn't be interrupted. The buffers are also shared across
166 	 * all operations so need to be protected on stand alone reads and
167 	 * writes.
168 	 */
169 	struct mutex lock;
170 	const struct adf4371_chip_info *chip_info;
171 	unsigned long clkin_freq;
172 	unsigned long fpfd;
173 	unsigned int integer;
174 	unsigned int fract1;
175 	unsigned int fract2;
176 	unsigned int mod2;
177 	unsigned int rf_div_sel;
178 	unsigned int ref_div_factor;
179 	u8 buf[10] __aligned(IIO_DMA_MINALIGN);
180 };
181 
182 static unsigned long long adf4371_pll_fract_n_get_rate(struct adf4371_state *st,
183 						       u32 channel)
184 {
185 	unsigned long long val, tmp;
186 	unsigned int ref_div_sel;
187 
188 	val = (((u64)st->integer * ADF4371_MODULUS1) + st->fract1) * st->fpfd;
189 	tmp = (u64)st->fract2 * st->fpfd;
190 	do_div(tmp, st->mod2);
191 	val += tmp + ADF4371_MODULUS1 / 2;
192 
193 	if (channel == ADF4371_CH_RF8 || channel == ADF4371_CH_RFAUX8)
194 		ref_div_sel = st->rf_div_sel;
195 	else
196 		ref_div_sel = 0;
197 
198 	do_div(val, ADF4371_MODULUS1 * (1 << ref_div_sel));
199 
200 	if (channel == ADF4371_CH_RF16)
201 		val <<= 1;
202 	else if (channel == ADF4371_CH_RF32)
203 		val <<= 2;
204 
205 	return val;
206 }
207 
208 static void adf4371_pll_fract_n_compute(unsigned long long vco,
209 				       unsigned long long pfd,
210 				       unsigned int *integer,
211 				       unsigned int *fract1,
212 				       unsigned int *fract2,
213 				       unsigned int *mod2)
214 {
215 	unsigned long long tmp;
216 	u32 gcd_div;
217 
218 	tmp = do_div(vco, pfd);
219 	tmp = tmp * ADF4371_MODULUS1;
220 	*fract2 = do_div(tmp, pfd);
221 
222 	*integer = vco;
223 	*fract1 = tmp;
224 
225 	*mod2 = pfd;
226 
227 	while (*mod2 > ADF4371_MAX_MODULUS2) {
228 		*mod2 >>= 1;
229 		*fract2 >>= 1;
230 	}
231 
232 	gcd_div = gcd(*fract2, *mod2);
233 	*mod2 /= gcd_div;
234 	*fract2 /= gcd_div;
235 }
236 
237 static int adf4371_set_freq(struct adf4371_state *st, unsigned long long freq,
238 			    unsigned int channel)
239 {
240 	u32 cp_bleed;
241 	u8 int_mode = 0;
242 	int ret;
243 
244 	switch (channel) {
245 	case ADF4371_CH_RF8:
246 	case ADF4371_CH_RFAUX8:
247 		if (ADF4371_CHECK_RANGE(freq, OUT_RF8_FREQ))
248 			return -EINVAL;
249 
250 		st->rf_div_sel = 0;
251 
252 		while (freq < ADF4371_MIN_VCO_FREQ) {
253 			freq <<= 1;
254 			st->rf_div_sel++;
255 		}
256 		break;
257 	case ADF4371_CH_RF16:
258 		/* ADF4371 RF16 8000...16000 MHz */
259 		if (ADF4371_CHECK_RANGE(freq, OUT_RF16_FREQ))
260 			return -EINVAL;
261 
262 		freq >>= 1;
263 		break;
264 	case ADF4371_CH_RF32:
265 		/* ADF4371 RF32 16000...32000 MHz */
266 		if (ADF4371_CHECK_RANGE(freq, OUT_RF32_FREQ))
267 			return -EINVAL;
268 
269 		freq >>= 2;
270 		break;
271 	default:
272 		return -EINVAL;
273 	}
274 
275 	adf4371_pll_fract_n_compute(freq, st->fpfd, &st->integer, &st->fract1,
276 				    &st->fract2, &st->mod2);
277 	st->buf[0] = st->integer >> 8;
278 	st->buf[1] = 0x40; /* REG12 default */
279 	st->buf[2] = 0x00;
280 	st->buf[3] = st->fract1 & 0xFF;
281 	st->buf[4] = st->fract1 >> 8;
282 	st->buf[5] = st->fract1 >> 16;
283 	st->buf[6] = ADF4371_FRAC2WORD_L(st->fract2 & 0x7F) |
284 		     ADF4371_FRAC1WORD(st->fract1 >> 24);
285 	st->buf[7] = ADF4371_FRAC2WORD_H(st->fract2 >> 7);
286 	st->buf[8] = st->mod2 & 0xFF;
287 	st->buf[9] = ADF4371_MOD2WORD(st->mod2 >> 8);
288 
289 	ret = regmap_bulk_write(st->regmap, ADF4371_REG(0x11), st->buf, 10);
290 	if (ret < 0)
291 		return ret;
292 	/*
293 	 * The R counter allows the input reference frequency to be
294 	 * divided down to produce the reference clock to the PFD
295 	 */
296 	ret = regmap_write(st->regmap, ADF4371_REG(0x1F), st->ref_div_factor);
297 	if (ret < 0)
298 		return ret;
299 
300 	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x24),
301 				 ADF4371_RF_DIV_SEL_MSK,
302 				 ADF4371_RF_DIV_SEL(st->rf_div_sel));
303 	if (ret < 0)
304 		return ret;
305 
306 	cp_bleed = DIV_ROUND_UP(400 * 1750, st->integer * 375);
307 	cp_bleed = clamp(cp_bleed, 1U, 255U);
308 	ret = regmap_write(st->regmap, ADF4371_REG(0x26), cp_bleed);
309 	if (ret < 0)
310 		return ret;
311 	/*
312 	 * Set to 1 when in INT mode (when FRAC1 = FRAC2 = 0),
313 	 * and set to 0 when in FRAC mode.
314 	 */
315 	if (st->fract1 == 0 && st->fract2 == 0)
316 		int_mode = 0x01;
317 
318 	ret = regmap_write(st->regmap, ADF4371_REG(0x2B), int_mode);
319 	if (ret < 0)
320 		return ret;
321 
322 	return regmap_write(st->regmap, ADF4371_REG(0x10), st->integer & 0xFF);
323 }
324 
325 static ssize_t adf4371_read(struct iio_dev *indio_dev,
326 			    uintptr_t private,
327 			    const struct iio_chan_spec *chan,
328 			    char *buf)
329 {
330 	struct adf4371_state *st = iio_priv(indio_dev);
331 	unsigned long long val = 0;
332 	unsigned int readval, reg, bit;
333 	int ret;
334 
335 	switch ((u32)private) {
336 	case ADF4371_FREQ:
337 		val = adf4371_pll_fract_n_get_rate(st, chan->channel);
338 		ret = regmap_read(st->regmap, ADF4371_REG(0x7C), &readval);
339 		if (ret < 0)
340 			break;
341 
342 		if (readval == 0x00) {
343 			dev_dbg(&st->spi->dev, "PLL un-locked\n");
344 			ret = -EBUSY;
345 		}
346 		break;
347 	case ADF4371_POWER_DOWN:
348 		reg = adf4371_pwrdown_ch[chan->channel].reg;
349 		bit = adf4371_pwrdown_ch[chan->channel].bit;
350 
351 		ret = regmap_read(st->regmap, reg, &readval);
352 		if (ret < 0)
353 			break;
354 
355 		val = !(readval & BIT(bit));
356 		break;
357 	case ADF4371_CHANNEL_NAME:
358 		return sprintf(buf, "%s\n", adf4371_ch_names[chan->channel]);
359 	default:
360 		ret = -EINVAL;
361 		val = 0;
362 		break;
363 	}
364 
365 	return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
366 }
367 
368 static ssize_t adf4371_write(struct iio_dev *indio_dev,
369 			     uintptr_t private,
370 			     const struct iio_chan_spec *chan,
371 			     const char *buf, size_t len)
372 {
373 	struct adf4371_state *st = iio_priv(indio_dev);
374 	unsigned long long freq;
375 	bool power_down;
376 	unsigned int bit, readval, reg;
377 	int ret;
378 
379 	mutex_lock(&st->lock);
380 	switch ((u32)private) {
381 	case ADF4371_FREQ:
382 		ret = kstrtoull(buf, 10, &freq);
383 		if (ret)
384 			break;
385 
386 		ret = adf4371_set_freq(st, freq, chan->channel);
387 		break;
388 	case ADF4371_POWER_DOWN:
389 		ret = kstrtobool(buf, &power_down);
390 		if (ret)
391 			break;
392 
393 		reg = adf4371_pwrdown_ch[chan->channel].reg;
394 		bit = adf4371_pwrdown_ch[chan->channel].bit;
395 		ret = regmap_read(st->regmap, reg, &readval);
396 		if (ret < 0)
397 			break;
398 
399 		readval &= ~BIT(bit);
400 		readval |= (!power_down << bit);
401 
402 		ret = regmap_write(st->regmap, reg, readval);
403 		break;
404 	default:
405 		ret = -EINVAL;
406 		break;
407 	}
408 	mutex_unlock(&st->lock);
409 
410 	return ret ? ret : len;
411 }
412 
413 #define _ADF4371_EXT_INFO(_name, _ident) { \
414 		.name = _name, \
415 		.read = adf4371_read, \
416 		.write = adf4371_write, \
417 		.private = _ident, \
418 		.shared = IIO_SEPARATE, \
419 }
420 
421 static const struct iio_chan_spec_ext_info adf4371_ext_info[] = {
422 	/*
423 	 * Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
424 	 * values > 2^32 in order to support the entire frequency range
425 	 * in Hz. Using scale is a bit ugly.
426 	 */
427 	_ADF4371_EXT_INFO("frequency", ADF4371_FREQ),
428 	_ADF4371_EXT_INFO("powerdown", ADF4371_POWER_DOWN),
429 	_ADF4371_EXT_INFO("name", ADF4371_CHANNEL_NAME),
430 	{ },
431 };
432 
433 #define ADF4371_CHANNEL(index) { \
434 		.type = IIO_ALTVOLTAGE, \
435 		.output = 1, \
436 		.channel = index, \
437 		.ext_info = adf4371_ext_info, \
438 		.indexed = 1, \
439 	}
440 
441 static const struct iio_chan_spec adf4371_chan[] = {
442 	ADF4371_CHANNEL(ADF4371_CH_RF8),
443 	ADF4371_CHANNEL(ADF4371_CH_RFAUX8),
444 	ADF4371_CHANNEL(ADF4371_CH_RF16),
445 	ADF4371_CHANNEL(ADF4371_CH_RF32),
446 };
447 
448 static const struct adf4371_chip_info adf4371_chip_info = {
449 	.name = "adf4371",
450 	.channels = adf4371_chan,
451 	.num_channels = 4,
452 };
453 
454 static const struct adf4371_chip_info adf4372_chip_info = {
455 	.name = "adf4372",
456 	.channels = adf4371_chan,
457 	.num_channels = 3,
458 };
459 
460 static int adf4371_reg_access(struct iio_dev *indio_dev,
461 			      unsigned int reg,
462 			      unsigned int writeval,
463 			      unsigned int *readval)
464 {
465 	struct adf4371_state *st = iio_priv(indio_dev);
466 
467 	if (readval)
468 		return regmap_read(st->regmap, reg, readval);
469 	else
470 		return regmap_write(st->regmap, reg, writeval);
471 }
472 
473 static const struct iio_info adf4371_info = {
474 	.debugfs_reg_access = &adf4371_reg_access,
475 };
476 
477 static int adf4371_setup(struct adf4371_state *st)
478 {
479 	unsigned int synth_timeout = 2, timeout = 1, vco_alc_timeout = 1;
480 	unsigned int vco_band_div, tmp;
481 	int ret;
482 
483 	/* Perform a software reset */
484 	ret = regmap_write(st->regmap, ADF4371_REG(0x0), ADF4371_RESET_CMD);
485 	if (ret < 0)
486 		return ret;
487 
488 	ret = regmap_multi_reg_write(st->regmap, adf4371_reg_defaults,
489 				     ARRAY_SIZE(adf4371_reg_defaults));
490 	if (ret < 0)
491 		return ret;
492 
493 	/* Mute to Lock Detect */
494 	if (device_property_read_bool(&st->spi->dev, "adi,mute-till-lock-en")) {
495 		ret = regmap_update_bits(st->regmap, ADF4371_REG(0x25),
496 					 ADF4371_MUTE_LD_MSK,
497 					 ADF4371_MUTE_LD(1));
498 		if (ret < 0)
499 			return ret;
500 	}
501 
502 	/* Set address in ascending order, so the bulk_write() will work */
503 	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x0),
504 				 ADF4371_ADDR_ASC_MSK | ADF4371_ADDR_ASC_R_MSK,
505 				 ADF4371_ADDR_ASC(1) | ADF4371_ADDR_ASC_R(1));
506 	if (ret < 0)
507 		return ret;
508 	/*
509 	 * Calculate and maximize PFD frequency
510 	 * fPFD = REFIN × ((1 + D)/(R × (1 + T)))
511 	 * Where D is the REFIN doubler bit, T is the reference divide by 2,
512 	 * R is the reference division factor
513 	 * TODO: it is assumed D and T equal 0.
514 	 */
515 	do {
516 		st->ref_div_factor++;
517 		st->fpfd = st->clkin_freq / st->ref_div_factor;
518 	} while (st->fpfd > ADF4371_MAX_FREQ_PFD);
519 
520 	/* Calculate Timeouts */
521 	vco_band_div = DIV_ROUND_UP(st->fpfd, 2400000U);
522 
523 	tmp = DIV_ROUND_CLOSEST(st->fpfd, 1000000U);
524 	do {
525 		timeout++;
526 		if (timeout > 1023) {
527 			timeout = 2;
528 			synth_timeout++;
529 		}
530 	} while (synth_timeout * 1024 + timeout <= 20 * tmp);
531 
532 	do {
533 		vco_alc_timeout++;
534 	} while (vco_alc_timeout * 1024 - timeout <= 50 * tmp);
535 
536 	st->buf[0] = vco_band_div;
537 	st->buf[1] = timeout & 0xFF;
538 	st->buf[2] = ADF4371_TIMEOUT(timeout >> 8) | 0x04;
539 	st->buf[3] = synth_timeout;
540 	st->buf[4] = ADF4371_VCO_ALC_TOUT(vco_alc_timeout);
541 
542 	return regmap_bulk_write(st->regmap, ADF4371_REG(0x30), st->buf, 5);
543 }
544 
545 static int adf4371_probe(struct spi_device *spi)
546 {
547 	struct iio_dev *indio_dev;
548 	struct adf4371_state *st;
549 	struct regmap *regmap;
550 	struct clk *clkin;
551 	int ret;
552 
553 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
554 	if (!indio_dev)
555 		return -ENOMEM;
556 
557 	regmap = devm_regmap_init_spi(spi, &adf4371_regmap_config);
558 	if (IS_ERR(regmap))
559 		return dev_err_probe(&spi->dev, PTR_ERR(regmap),
560 				     "Error initializing spi regmap\n");
561 
562 	st = iio_priv(indio_dev);
563 	st->spi = spi;
564 	st->regmap = regmap;
565 	mutex_init(&st->lock);
566 
567 	st->chip_info = spi_get_device_match_data(spi);
568 	if (!st->chip_info)
569 		return -ENODEV;
570 
571 	indio_dev->name = st->chip_info->name;
572 	indio_dev->info = &adf4371_info;
573 	indio_dev->modes = INDIO_DIRECT_MODE;
574 	indio_dev->channels = st->chip_info->channels;
575 	indio_dev->num_channels = st->chip_info->num_channels;
576 
577 	clkin = devm_clk_get_enabled(&spi->dev, "clkin");
578 	if (IS_ERR(clkin))
579 		return dev_err_probe(&spi->dev, PTR_ERR(clkin),
580 				     "Failed to get clkin\n");
581 
582 	st->clkin_freq = clk_get_rate(clkin);
583 
584 	ret = adf4371_setup(st);
585 	if (ret < 0)
586 		return dev_err_probe(&spi->dev, ret, "ADF4371 setup failed\n");
587 
588 	return devm_iio_device_register(&spi->dev, indio_dev);
589 }
590 
591 static const struct spi_device_id adf4371_id_table[] = {
592 	{ "adf4371", (kernel_ulong_t)&adf4371_chip_info },
593 	{ "adf4372", (kernel_ulong_t)&adf4372_chip_info },
594 	{}
595 };
596 MODULE_DEVICE_TABLE(spi, adf4371_id_table);
597 
598 static const struct of_device_id adf4371_of_match[] = {
599 	{ .compatible = "adi,adf4371", .data = &adf4371_chip_info },
600 	{ .compatible = "adi,adf4372", .data = &adf4372_chip_info},
601 	{ },
602 };
603 MODULE_DEVICE_TABLE(of, adf4371_of_match);
604 
605 static struct spi_driver adf4371_driver = {
606 	.driver = {
607 		.name = "adf4371",
608 		.of_match_table = adf4371_of_match,
609 	},
610 	.probe = adf4371_probe,
611 	.id_table = adf4371_id_table,
612 };
613 module_spi_driver(adf4371_driver);
614 
615 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
616 MODULE_DESCRIPTION("Analog Devices ADF4371 SPI PLL");
617 MODULE_LICENSE("GPL");
618