xref: /linux/drivers/iio/frequency/adf4371.c (revision 0c078e310b6d16b9b9489bbc7bc1476430d19a7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices ADF4371 SPI Wideband Synthesizer driver
4  *
5  * Copyright 2019 Analog Devices Inc.
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/gcd.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/regmap.h>
15 #include <linux/sysfs.h>
16 #include <linux/spi/spi.h>
17 
18 #include <linux/iio/iio.h>
19 
20 /* Registers address macro */
21 #define ADF4371_REG(x)			(x)
22 
23 /* ADF4371_REG0 */
24 #define ADF4371_ADDR_ASC_MSK		BIT(2)
25 #define ADF4371_ADDR_ASC(x)		FIELD_PREP(ADF4371_ADDR_ASC_MSK, x)
26 #define ADF4371_ADDR_ASC_R_MSK		BIT(5)
27 #define ADF4371_ADDR_ASC_R(x)		FIELD_PREP(ADF4371_ADDR_ASC_R_MSK, x)
28 #define ADF4371_RESET_CMD		0x81
29 
30 /* ADF4371_REG17 */
31 #define ADF4371_FRAC2WORD_L_MSK		GENMASK(7, 1)
32 #define ADF4371_FRAC2WORD_L(x)		FIELD_PREP(ADF4371_FRAC2WORD_L_MSK, x)
33 #define ADF4371_FRAC1WORD_MSK		BIT(0)
34 #define ADF4371_FRAC1WORD(x)		FIELD_PREP(ADF4371_FRAC1WORD_MSK, x)
35 
36 /* ADF4371_REG18 */
37 #define ADF4371_FRAC2WORD_H_MSK		GENMASK(6, 0)
38 #define ADF4371_FRAC2WORD_H(x)		FIELD_PREP(ADF4371_FRAC2WORD_H_MSK, x)
39 
40 /* ADF4371_REG1A */
41 #define ADF4371_MOD2WORD_MSK		GENMASK(5, 0)
42 #define ADF4371_MOD2WORD(x)		FIELD_PREP(ADF4371_MOD2WORD_MSK, x)
43 
44 /* ADF4371_REG24 */
45 #define ADF4371_RF_DIV_SEL_MSK		GENMASK(6, 4)
46 #define ADF4371_RF_DIV_SEL(x)		FIELD_PREP(ADF4371_RF_DIV_SEL_MSK, x)
47 
48 /* ADF4371_REG25 */
49 #define ADF4371_MUTE_LD_MSK		BIT(7)
50 #define ADF4371_MUTE_LD(x)		FIELD_PREP(ADF4371_MUTE_LD_MSK, x)
51 
52 /* ADF4371_REG32 */
53 #define ADF4371_TIMEOUT_MSK		GENMASK(1, 0)
54 #define ADF4371_TIMEOUT(x)		FIELD_PREP(ADF4371_TIMEOUT_MSK, x)
55 
56 /* ADF4371_REG34 */
57 #define ADF4371_VCO_ALC_TOUT_MSK	GENMASK(4, 0)
58 #define ADF4371_VCO_ALC_TOUT(x)		FIELD_PREP(ADF4371_VCO_ALC_TOUT_MSK, x)
59 
60 /* Specifications */
61 #define ADF4371_MIN_VCO_FREQ		4000000000ULL /* 4000 MHz */
62 #define ADF4371_MAX_VCO_FREQ		8000000000ULL /* 8000 MHz */
63 #define ADF4371_MAX_OUT_RF8_FREQ	ADF4371_MAX_VCO_FREQ /* Hz */
64 #define ADF4371_MIN_OUT_RF8_FREQ	(ADF4371_MIN_VCO_FREQ / 64) /* Hz */
65 #define ADF4371_MAX_OUT_RF16_FREQ	(ADF4371_MAX_VCO_FREQ * 2) /* Hz */
66 #define ADF4371_MIN_OUT_RF16_FREQ	(ADF4371_MIN_VCO_FREQ * 2) /* Hz */
67 #define ADF4371_MAX_OUT_RF32_FREQ	(ADF4371_MAX_VCO_FREQ * 4) /* Hz */
68 #define ADF4371_MIN_OUT_RF32_FREQ	(ADF4371_MIN_VCO_FREQ * 4) /* Hz */
69 
70 #define ADF4371_MAX_FREQ_PFD		250000000UL /* Hz */
71 #define ADF4371_MAX_FREQ_REFIN		600000000UL /* Hz */
72 
73 /* MOD1 is a 24-bit primary modulus with fixed value of 2^25 */
74 #define ADF4371_MODULUS1		33554432ULL
75 /* MOD2 is the programmable, 14-bit auxiliary fractional modulus */
76 #define ADF4371_MAX_MODULUS2		BIT(14)
77 
78 #define ADF4371_CHECK_RANGE(freq, range) \
79 	((freq > ADF4371_MAX_ ## range) || (freq < ADF4371_MIN_ ## range))
80 
81 enum {
82 	ADF4371_FREQ,
83 	ADF4371_POWER_DOWN,
84 	ADF4371_CHANNEL_NAME
85 };
86 
87 enum {
88 	ADF4371_CH_RF8,
89 	ADF4371_CH_RFAUX8,
90 	ADF4371_CH_RF16,
91 	ADF4371_CH_RF32
92 };
93 
94 enum adf4371_variant {
95 	ADF4371,
96 	ADF4372
97 };
98 
99 struct adf4371_pwrdown {
100 	unsigned int reg;
101 	unsigned int bit;
102 };
103 
104 static const char * const adf4371_ch_names[] = {
105 	"RF8x", "RFAUX8x", "RF16x", "RF32x"
106 };
107 
108 static const struct adf4371_pwrdown adf4371_pwrdown_ch[4] = {
109 	[ADF4371_CH_RF8] = { ADF4371_REG(0x25), 2 },
110 	[ADF4371_CH_RFAUX8] = { ADF4371_REG(0x72), 3 },
111 	[ADF4371_CH_RF16] = { ADF4371_REG(0x25), 3 },
112 	[ADF4371_CH_RF32] = { ADF4371_REG(0x25), 4 },
113 };
114 
115 static const struct reg_sequence adf4371_reg_defaults[] = {
116 	{ ADF4371_REG(0x0),  0x18 },
117 	{ ADF4371_REG(0x12), 0x40 },
118 	{ ADF4371_REG(0x1E), 0x48 },
119 	{ ADF4371_REG(0x20), 0x14 },
120 	{ ADF4371_REG(0x22), 0x00 },
121 	{ ADF4371_REG(0x23), 0x00 },
122 	{ ADF4371_REG(0x24), 0x80 },
123 	{ ADF4371_REG(0x25), 0x07 },
124 	{ ADF4371_REG(0x27), 0xC5 },
125 	{ ADF4371_REG(0x28), 0x83 },
126 	{ ADF4371_REG(0x2C), 0x44 },
127 	{ ADF4371_REG(0x2D), 0x11 },
128 	{ ADF4371_REG(0x2E), 0x12 },
129 	{ ADF4371_REG(0x2F), 0x94 },
130 	{ ADF4371_REG(0x32), 0x04 },
131 	{ ADF4371_REG(0x35), 0xFA },
132 	{ ADF4371_REG(0x36), 0x30 },
133 	{ ADF4371_REG(0x39), 0x07 },
134 	{ ADF4371_REG(0x3A), 0x55 },
135 	{ ADF4371_REG(0x3E), 0x0C },
136 	{ ADF4371_REG(0x3F), 0x80 },
137 	{ ADF4371_REG(0x40), 0x50 },
138 	{ ADF4371_REG(0x41), 0x28 },
139 	{ ADF4371_REG(0x47), 0xC0 },
140 	{ ADF4371_REG(0x52), 0xF4 },
141 	{ ADF4371_REG(0x70), 0x03 },
142 	{ ADF4371_REG(0x71), 0x60 },
143 	{ ADF4371_REG(0x72), 0x32 },
144 };
145 
146 static const struct regmap_config adf4371_regmap_config = {
147 	.reg_bits = 16,
148 	.val_bits = 8,
149 	.read_flag_mask = BIT(7),
150 };
151 
152 struct adf4371_chip_info {
153 	unsigned int num_channels;
154 	const struct iio_chan_spec *channels;
155 };
156 
157 struct adf4371_state {
158 	struct spi_device *spi;
159 	struct regmap *regmap;
160 	struct clk *clkin;
161 	/*
162 	 * Lock for accessing device registers. Some operations require
163 	 * multiple consecutive R/W operations, during which the device
164 	 * shouldn't be interrupted. The buffers are also shared across
165 	 * all operations so need to be protected on stand alone reads and
166 	 * writes.
167 	 */
168 	struct mutex lock;
169 	const struct adf4371_chip_info *chip_info;
170 	unsigned long clkin_freq;
171 	unsigned long fpfd;
172 	unsigned int integer;
173 	unsigned int fract1;
174 	unsigned int fract2;
175 	unsigned int mod2;
176 	unsigned int rf_div_sel;
177 	unsigned int ref_div_factor;
178 	u8 buf[10] __aligned(IIO_DMA_MINALIGN);
179 };
180 
181 static unsigned long long adf4371_pll_fract_n_get_rate(struct adf4371_state *st,
182 						       u32 channel)
183 {
184 	unsigned long long val, tmp;
185 	unsigned int ref_div_sel;
186 
187 	val = (((u64)st->integer * ADF4371_MODULUS1) + st->fract1) * st->fpfd;
188 	tmp = (u64)st->fract2 * st->fpfd;
189 	do_div(tmp, st->mod2);
190 	val += tmp + ADF4371_MODULUS1 / 2;
191 
192 	if (channel == ADF4371_CH_RF8 || channel == ADF4371_CH_RFAUX8)
193 		ref_div_sel = st->rf_div_sel;
194 	else
195 		ref_div_sel = 0;
196 
197 	do_div(val, ADF4371_MODULUS1 * (1 << ref_div_sel));
198 
199 	if (channel == ADF4371_CH_RF16)
200 		val <<= 1;
201 	else if (channel == ADF4371_CH_RF32)
202 		val <<= 2;
203 
204 	return val;
205 }
206 
207 static void adf4371_pll_fract_n_compute(unsigned long long vco,
208 				       unsigned long long pfd,
209 				       unsigned int *integer,
210 				       unsigned int *fract1,
211 				       unsigned int *fract2,
212 				       unsigned int *mod2)
213 {
214 	unsigned long long tmp;
215 	u32 gcd_div;
216 
217 	tmp = do_div(vco, pfd);
218 	tmp = tmp * ADF4371_MODULUS1;
219 	*fract2 = do_div(tmp, pfd);
220 
221 	*integer = vco;
222 	*fract1 = tmp;
223 
224 	*mod2 = pfd;
225 
226 	while (*mod2 > ADF4371_MAX_MODULUS2) {
227 		*mod2 >>= 1;
228 		*fract2 >>= 1;
229 	}
230 
231 	gcd_div = gcd(*fract2, *mod2);
232 	*mod2 /= gcd_div;
233 	*fract2 /= gcd_div;
234 }
235 
236 static int adf4371_set_freq(struct adf4371_state *st, unsigned long long freq,
237 			    unsigned int channel)
238 {
239 	u32 cp_bleed;
240 	u8 int_mode = 0;
241 	int ret;
242 
243 	switch (channel) {
244 	case ADF4371_CH_RF8:
245 	case ADF4371_CH_RFAUX8:
246 		if (ADF4371_CHECK_RANGE(freq, OUT_RF8_FREQ))
247 			return -EINVAL;
248 
249 		st->rf_div_sel = 0;
250 
251 		while (freq < ADF4371_MIN_VCO_FREQ) {
252 			freq <<= 1;
253 			st->rf_div_sel++;
254 		}
255 		break;
256 	case ADF4371_CH_RF16:
257 		/* ADF4371 RF16 8000...16000 MHz */
258 		if (ADF4371_CHECK_RANGE(freq, OUT_RF16_FREQ))
259 			return -EINVAL;
260 
261 		freq >>= 1;
262 		break;
263 	case ADF4371_CH_RF32:
264 		/* ADF4371 RF32 16000...32000 MHz */
265 		if (ADF4371_CHECK_RANGE(freq, OUT_RF32_FREQ))
266 			return -EINVAL;
267 
268 		freq >>= 2;
269 		break;
270 	default:
271 		return -EINVAL;
272 	}
273 
274 	adf4371_pll_fract_n_compute(freq, st->fpfd, &st->integer, &st->fract1,
275 				    &st->fract2, &st->mod2);
276 	st->buf[0] = st->integer >> 8;
277 	st->buf[1] = 0x40; /* REG12 default */
278 	st->buf[2] = 0x00;
279 	st->buf[3] = st->fract1 & 0xFF;
280 	st->buf[4] = st->fract1 >> 8;
281 	st->buf[5] = st->fract1 >> 16;
282 	st->buf[6] = ADF4371_FRAC2WORD_L(st->fract2 & 0x7F) |
283 		     ADF4371_FRAC1WORD(st->fract1 >> 24);
284 	st->buf[7] = ADF4371_FRAC2WORD_H(st->fract2 >> 7);
285 	st->buf[8] = st->mod2 & 0xFF;
286 	st->buf[9] = ADF4371_MOD2WORD(st->mod2 >> 8);
287 
288 	ret = regmap_bulk_write(st->regmap, ADF4371_REG(0x11), st->buf, 10);
289 	if (ret < 0)
290 		return ret;
291 	/*
292 	 * The R counter allows the input reference frequency to be
293 	 * divided down to produce the reference clock to the PFD
294 	 */
295 	ret = regmap_write(st->regmap, ADF4371_REG(0x1F), st->ref_div_factor);
296 	if (ret < 0)
297 		return ret;
298 
299 	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x24),
300 				 ADF4371_RF_DIV_SEL_MSK,
301 				 ADF4371_RF_DIV_SEL(st->rf_div_sel));
302 	if (ret < 0)
303 		return ret;
304 
305 	cp_bleed = DIV_ROUND_UP(400 * 1750, st->integer * 375);
306 	cp_bleed = clamp(cp_bleed, 1U, 255U);
307 	ret = regmap_write(st->regmap, ADF4371_REG(0x26), cp_bleed);
308 	if (ret < 0)
309 		return ret;
310 	/*
311 	 * Set to 1 when in INT mode (when FRAC1 = FRAC2 = 0),
312 	 * and set to 0 when in FRAC mode.
313 	 */
314 	if (st->fract1 == 0 && st->fract2 == 0)
315 		int_mode = 0x01;
316 
317 	ret = regmap_write(st->regmap, ADF4371_REG(0x2B), int_mode);
318 	if (ret < 0)
319 		return ret;
320 
321 	return regmap_write(st->regmap, ADF4371_REG(0x10), st->integer & 0xFF);
322 }
323 
324 static ssize_t adf4371_read(struct iio_dev *indio_dev,
325 			    uintptr_t private,
326 			    const struct iio_chan_spec *chan,
327 			    char *buf)
328 {
329 	struct adf4371_state *st = iio_priv(indio_dev);
330 	unsigned long long val = 0;
331 	unsigned int readval, reg, bit;
332 	int ret;
333 
334 	switch ((u32)private) {
335 	case ADF4371_FREQ:
336 		val = adf4371_pll_fract_n_get_rate(st, chan->channel);
337 		ret = regmap_read(st->regmap, ADF4371_REG(0x7C), &readval);
338 		if (ret < 0)
339 			break;
340 
341 		if (readval == 0x00) {
342 			dev_dbg(&st->spi->dev, "PLL un-locked\n");
343 			ret = -EBUSY;
344 		}
345 		break;
346 	case ADF4371_POWER_DOWN:
347 		reg = adf4371_pwrdown_ch[chan->channel].reg;
348 		bit = adf4371_pwrdown_ch[chan->channel].bit;
349 
350 		ret = regmap_read(st->regmap, reg, &readval);
351 		if (ret < 0)
352 			break;
353 
354 		val = !(readval & BIT(bit));
355 		break;
356 	case ADF4371_CHANNEL_NAME:
357 		return sprintf(buf, "%s\n", adf4371_ch_names[chan->channel]);
358 	default:
359 		ret = -EINVAL;
360 		val = 0;
361 		break;
362 	}
363 
364 	return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
365 }
366 
367 static ssize_t adf4371_write(struct iio_dev *indio_dev,
368 			     uintptr_t private,
369 			     const struct iio_chan_spec *chan,
370 			     const char *buf, size_t len)
371 {
372 	struct adf4371_state *st = iio_priv(indio_dev);
373 	unsigned long long freq;
374 	bool power_down;
375 	unsigned int bit, readval, reg;
376 	int ret;
377 
378 	mutex_lock(&st->lock);
379 	switch ((u32)private) {
380 	case ADF4371_FREQ:
381 		ret = kstrtoull(buf, 10, &freq);
382 		if (ret)
383 			break;
384 
385 		ret = adf4371_set_freq(st, freq, chan->channel);
386 		break;
387 	case ADF4371_POWER_DOWN:
388 		ret = kstrtobool(buf, &power_down);
389 		if (ret)
390 			break;
391 
392 		reg = adf4371_pwrdown_ch[chan->channel].reg;
393 		bit = adf4371_pwrdown_ch[chan->channel].bit;
394 		ret = regmap_read(st->regmap, reg, &readval);
395 		if (ret < 0)
396 			break;
397 
398 		readval &= ~BIT(bit);
399 		readval |= (!power_down << bit);
400 
401 		ret = regmap_write(st->regmap, reg, readval);
402 		break;
403 	default:
404 		ret = -EINVAL;
405 		break;
406 	}
407 	mutex_unlock(&st->lock);
408 
409 	return ret ? ret : len;
410 }
411 
412 #define _ADF4371_EXT_INFO(_name, _ident) { \
413 		.name = _name, \
414 		.read = adf4371_read, \
415 		.write = adf4371_write, \
416 		.private = _ident, \
417 		.shared = IIO_SEPARATE, \
418 }
419 
420 static const struct iio_chan_spec_ext_info adf4371_ext_info[] = {
421 	/*
422 	 * Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
423 	 * values > 2^32 in order to support the entire frequency range
424 	 * in Hz. Using scale is a bit ugly.
425 	 */
426 	_ADF4371_EXT_INFO("frequency", ADF4371_FREQ),
427 	_ADF4371_EXT_INFO("powerdown", ADF4371_POWER_DOWN),
428 	_ADF4371_EXT_INFO("name", ADF4371_CHANNEL_NAME),
429 	{ },
430 };
431 
432 #define ADF4371_CHANNEL(index) { \
433 		.type = IIO_ALTVOLTAGE, \
434 		.output = 1, \
435 		.channel = index, \
436 		.ext_info = adf4371_ext_info, \
437 		.indexed = 1, \
438 	}
439 
440 static const struct iio_chan_spec adf4371_chan[] = {
441 	ADF4371_CHANNEL(ADF4371_CH_RF8),
442 	ADF4371_CHANNEL(ADF4371_CH_RFAUX8),
443 	ADF4371_CHANNEL(ADF4371_CH_RF16),
444 	ADF4371_CHANNEL(ADF4371_CH_RF32),
445 };
446 
447 static const struct adf4371_chip_info adf4371_chip_info[] = {
448 	[ADF4371] = {
449 		.channels = adf4371_chan,
450 		.num_channels = 4,
451 	},
452 	[ADF4372] = {
453 		.channels = adf4371_chan,
454 		.num_channels = 3,
455 	}
456 };
457 
458 static int adf4371_reg_access(struct iio_dev *indio_dev,
459 			      unsigned int reg,
460 			      unsigned int writeval,
461 			      unsigned int *readval)
462 {
463 	struct adf4371_state *st = iio_priv(indio_dev);
464 
465 	if (readval)
466 		return regmap_read(st->regmap, reg, readval);
467 	else
468 		return regmap_write(st->regmap, reg, writeval);
469 }
470 
471 static const struct iio_info adf4371_info = {
472 	.debugfs_reg_access = &adf4371_reg_access,
473 };
474 
475 static int adf4371_setup(struct adf4371_state *st)
476 {
477 	unsigned int synth_timeout = 2, timeout = 1, vco_alc_timeout = 1;
478 	unsigned int vco_band_div, tmp;
479 	int ret;
480 
481 	/* Perform a software reset */
482 	ret = regmap_write(st->regmap, ADF4371_REG(0x0), ADF4371_RESET_CMD);
483 	if (ret < 0)
484 		return ret;
485 
486 	ret = regmap_multi_reg_write(st->regmap, adf4371_reg_defaults,
487 				     ARRAY_SIZE(adf4371_reg_defaults));
488 	if (ret < 0)
489 		return ret;
490 
491 	/* Mute to Lock Detect */
492 	if (device_property_read_bool(&st->spi->dev, "adi,mute-till-lock-en")) {
493 		ret = regmap_update_bits(st->regmap, ADF4371_REG(0x25),
494 					 ADF4371_MUTE_LD_MSK,
495 					 ADF4371_MUTE_LD(1));
496 		if (ret < 0)
497 			return ret;
498 	}
499 
500 	/* Set address in ascending order, so the bulk_write() will work */
501 	ret = regmap_update_bits(st->regmap, ADF4371_REG(0x0),
502 				 ADF4371_ADDR_ASC_MSK | ADF4371_ADDR_ASC_R_MSK,
503 				 ADF4371_ADDR_ASC(1) | ADF4371_ADDR_ASC_R(1));
504 	if (ret < 0)
505 		return ret;
506 	/*
507 	 * Calculate and maximize PFD frequency
508 	 * fPFD = REFIN × ((1 + D)/(R × (1 + T)))
509 	 * Where D is the REFIN doubler bit, T is the reference divide by 2,
510 	 * R is the reference division factor
511 	 * TODO: it is assumed D and T equal 0.
512 	 */
513 	do {
514 		st->ref_div_factor++;
515 		st->fpfd = st->clkin_freq / st->ref_div_factor;
516 	} while (st->fpfd > ADF4371_MAX_FREQ_PFD);
517 
518 	/* Calculate Timeouts */
519 	vco_band_div = DIV_ROUND_UP(st->fpfd, 2400000U);
520 
521 	tmp = DIV_ROUND_CLOSEST(st->fpfd, 1000000U);
522 	do {
523 		timeout++;
524 		if (timeout > 1023) {
525 			timeout = 2;
526 			synth_timeout++;
527 		}
528 	} while (synth_timeout * 1024 + timeout <= 20 * tmp);
529 
530 	do {
531 		vco_alc_timeout++;
532 	} while (vco_alc_timeout * 1024 - timeout <= 50 * tmp);
533 
534 	st->buf[0] = vco_band_div;
535 	st->buf[1] = timeout & 0xFF;
536 	st->buf[2] = ADF4371_TIMEOUT(timeout >> 8) | 0x04;
537 	st->buf[3] = synth_timeout;
538 	st->buf[4] = ADF4371_VCO_ALC_TOUT(vco_alc_timeout);
539 
540 	return regmap_bulk_write(st->regmap, ADF4371_REG(0x30), st->buf, 5);
541 }
542 
543 static int adf4371_probe(struct spi_device *spi)
544 {
545 	const struct spi_device_id *id = spi_get_device_id(spi);
546 	struct iio_dev *indio_dev;
547 	struct adf4371_state *st;
548 	struct regmap *regmap;
549 	int ret;
550 
551 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
552 	if (!indio_dev)
553 		return -ENOMEM;
554 
555 	regmap = devm_regmap_init_spi(spi, &adf4371_regmap_config);
556 	if (IS_ERR(regmap)) {
557 		dev_err(&spi->dev, "Error initializing spi regmap: %ld\n",
558 			PTR_ERR(regmap));
559 		return PTR_ERR(regmap);
560 	}
561 
562 	st = iio_priv(indio_dev);
563 	spi_set_drvdata(spi, indio_dev);
564 	st->spi = spi;
565 	st->regmap = regmap;
566 	mutex_init(&st->lock);
567 
568 	st->chip_info = &adf4371_chip_info[id->driver_data];
569 	indio_dev->name = id->name;
570 	indio_dev->info = &adf4371_info;
571 	indio_dev->modes = INDIO_DIRECT_MODE;
572 	indio_dev->channels = st->chip_info->channels;
573 	indio_dev->num_channels = st->chip_info->num_channels;
574 
575 	st->clkin = devm_clk_get_enabled(&spi->dev, "clkin");
576 	if (IS_ERR(st->clkin))
577 		return PTR_ERR(st->clkin);
578 
579 	st->clkin_freq = clk_get_rate(st->clkin);
580 
581 	ret = adf4371_setup(st);
582 	if (ret < 0) {
583 		dev_err(&spi->dev, "ADF4371 setup failed\n");
584 		return ret;
585 	}
586 
587 	return devm_iio_device_register(&spi->dev, indio_dev);
588 }
589 
590 static const struct spi_device_id adf4371_id_table[] = {
591 	{ "adf4371", ADF4371 },
592 	{ "adf4372", ADF4372 },
593 	{}
594 };
595 MODULE_DEVICE_TABLE(spi, adf4371_id_table);
596 
597 static const struct of_device_id adf4371_of_match[] = {
598 	{ .compatible = "adi,adf4371" },
599 	{ .compatible = "adi,adf4372" },
600 	{ },
601 };
602 MODULE_DEVICE_TABLE(of, adf4371_of_match);
603 
604 static struct spi_driver adf4371_driver = {
605 	.driver = {
606 		.name = "adf4371",
607 		.of_match_table = adf4371_of_match,
608 	},
609 	.probe = adf4371_probe,
610 	.id_table = adf4371_id_table,
611 };
612 module_spi_driver(adf4371_driver);
613 
614 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
615 MODULE_DESCRIPTION("Analog Devices ADF4371 SPI PLL");
616 MODULE_LICENSE("GPL");
617