xref: /linux/drivers/iio/chemical/bme680_core.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor
4  *
5  * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
6  * Copyright (C) 2018 Himanshu Jha <himanshujha199640@gmail.com>
7  *
8  * Datasheet:
9  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
10  */
11 #include <linux/bitfield.h>
12 #include <linux/cleanup.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/regmap.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 
22 #include <asm/unaligned.h>
23 
24 #include "bme680.h"
25 
26 /* 1st set of calibration data */
27 enum {
28 	/* Temperature calib indexes */
29 	T2_LSB = 0,
30 	T3 = 2,
31 	/* Pressure calib indexes */
32 	P1_LSB = 4,
33 	P2_LSB = 6,
34 	P3 = 8,
35 	P4_LSB = 10,
36 	P5_LSB = 12,
37 	P7 = 14,
38 	P6 = 15,
39 	P8_LSB = 18,
40 	P9_LSB = 20,
41 	P10 = 22,
42 };
43 
44 /* 2nd set of calibration data */
45 enum {
46 	/* Humidity calib indexes */
47 	H2_MSB = 0,
48 	H1_LSB = 1,
49 	H3 = 3,
50 	H4 = 4,
51 	H5 = 5,
52 	H6 = 6,
53 	H7 = 7,
54 	/* Stray T1 calib index */
55 	T1_LSB = 8,
56 	/* Gas heater calib indexes */
57 	GH2_LSB = 10,
58 	GH1 = 12,
59 	GH3 = 13,
60 };
61 
62 /* 3rd set of calibration data */
63 enum {
64 	RES_HEAT_VAL = 0,
65 	RES_HEAT_RANGE = 2,
66 	RANGE_SW_ERR = 4,
67 };
68 
69 struct bme680_calib {
70 	u16 par_t1;
71 	s16 par_t2;
72 	s8  par_t3;
73 	u16 par_p1;
74 	s16 par_p2;
75 	s8  par_p3;
76 	s16 par_p4;
77 	s16 par_p5;
78 	s8  par_p6;
79 	s8  par_p7;
80 	s16 par_p8;
81 	s16 par_p9;
82 	u8  par_p10;
83 	u16 par_h1;
84 	u16 par_h2;
85 	s8  par_h3;
86 	s8  par_h4;
87 	s8  par_h5;
88 	u8  par_h6;
89 	s8  par_h7;
90 	s8  par_gh1;
91 	s16 par_gh2;
92 	s8  par_gh3;
93 	u8  res_heat_range;
94 	s8  res_heat_val;
95 	s8  range_sw_err;
96 };
97 
98 struct bme680_data {
99 	struct regmap *regmap;
100 	struct bme680_calib bme680;
101 	struct mutex lock; /* Protect multiple serial R/W ops to device. */
102 	u8 oversampling_temp;
103 	u8 oversampling_press;
104 	u8 oversampling_humid;
105 	u16 heater_dur;
106 	u16 heater_temp;
107 
108 	union {
109 		u8 buf[3];
110 		unsigned int check;
111 		__be16 be16;
112 		u8 bme680_cal_buf_1[BME680_CALIB_RANGE_1_LEN];
113 		u8 bme680_cal_buf_2[BME680_CALIB_RANGE_2_LEN];
114 		u8 bme680_cal_buf_3[BME680_CALIB_RANGE_3_LEN];
115 	};
116 };
117 
118 static const struct regmap_range bme680_volatile_ranges[] = {
119 	regmap_reg_range(BME680_REG_MEAS_STAT_0, BME680_REG_GAS_R_LSB),
120 	regmap_reg_range(BME680_REG_STATUS, BME680_REG_STATUS),
121 	regmap_reg_range(BME680_T2_LSB_REG, BME680_GH3_REG),
122 };
123 
124 static const struct regmap_access_table bme680_volatile_table = {
125 	.yes_ranges	= bme680_volatile_ranges,
126 	.n_yes_ranges	= ARRAY_SIZE(bme680_volatile_ranges),
127 };
128 
129 const struct regmap_config bme680_regmap_config = {
130 	.reg_bits = 8,
131 	.val_bits = 8,
132 	.max_register = 0xef,
133 	.volatile_table = &bme680_volatile_table,
134 	.cache_type = REGCACHE_RBTREE,
135 };
136 EXPORT_SYMBOL_NS(bme680_regmap_config, IIO_BME680);
137 
138 static const struct iio_chan_spec bme680_channels[] = {
139 	{
140 		.type = IIO_TEMP,
141 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
142 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
143 	},
144 	{
145 		.type = IIO_PRESSURE,
146 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
147 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
148 	},
149 	{
150 		.type = IIO_HUMIDITYRELATIVE,
151 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
152 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
153 	},
154 	{
155 		.type = IIO_RESISTANCE,
156 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
157 	},
158 };
159 
160 static int bme680_read_calib(struct bme680_data *data,
161 			     struct bme680_calib *calib)
162 {
163 	struct device *dev = regmap_get_device(data->regmap);
164 	unsigned int tmp_msb, tmp_lsb;
165 	int ret;
166 
167 	ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG,
168 			       data->bme680_cal_buf_1,
169 			       sizeof(data->bme680_cal_buf_1));
170 	if (ret < 0) {
171 		dev_err(dev, "failed to read 1st set of calib data;\n");
172 		return ret;
173 	}
174 
175 	calib->par_t2 = get_unaligned_le16(&data->bme680_cal_buf_1[T2_LSB]);
176 	calib->par_t3 = data->bme680_cal_buf_1[T3];
177 	calib->par_p1 = get_unaligned_le16(&data->bme680_cal_buf_1[P1_LSB]);
178 	calib->par_p2 = get_unaligned_le16(&data->bme680_cal_buf_1[P2_LSB]);
179 	calib->par_p3 = data->bme680_cal_buf_1[P3];
180 	calib->par_p4 = get_unaligned_le16(&data->bme680_cal_buf_1[P4_LSB]);
181 	calib->par_p5 = get_unaligned_le16(&data->bme680_cal_buf_1[P5_LSB]);
182 	calib->par_p7 = data->bme680_cal_buf_1[P7];
183 	calib->par_p6 = data->bme680_cal_buf_1[P6];
184 	calib->par_p8 = get_unaligned_le16(&data->bme680_cal_buf_1[P8_LSB]);
185 	calib->par_p9 = get_unaligned_le16(&data->bme680_cal_buf_1[P9_LSB]);
186 	calib->par_p10 = data->bme680_cal_buf_1[P10];
187 
188 	ret = regmap_bulk_read(data->regmap, BME680_H2_MSB_REG,
189 			       data->bme680_cal_buf_2,
190 			       sizeof(data->bme680_cal_buf_2));
191 	if (ret < 0) {
192 		dev_err(dev, "failed to read 2nd set of calib data;\n");
193 		return ret;
194 	}
195 
196 	tmp_lsb = data->bme680_cal_buf_2[H1_LSB];
197 	tmp_msb = data->bme680_cal_buf_2[H1_LSB + 1];
198 	calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
199 			(tmp_lsb & BME680_BIT_H1_DATA_MASK);
200 
201 	tmp_msb = data->bme680_cal_buf_2[H2_MSB];
202 	tmp_lsb = data->bme680_cal_buf_2[H2_MSB + 1];
203 	calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
204 			(tmp_lsb >> BME680_HUM_REG_SHIFT_VAL);
205 
206 	calib->par_h3 = data->bme680_cal_buf_2[H3];
207 	calib->par_h4 = data->bme680_cal_buf_2[H4];
208 	calib->par_h5 = data->bme680_cal_buf_2[H5];
209 	calib->par_h6 = data->bme680_cal_buf_2[H6];
210 	calib->par_h7 = data->bme680_cal_buf_2[H7];
211 	calib->par_t1 = get_unaligned_le16(&data->bme680_cal_buf_2[T1_LSB]);
212 	calib->par_gh2 = get_unaligned_le16(&data->bme680_cal_buf_2[GH2_LSB]);
213 	calib->par_gh1 = data->bme680_cal_buf_2[GH1];
214 	calib->par_gh3 = data->bme680_cal_buf_2[GH3];
215 
216 	ret = regmap_bulk_read(data->regmap, BME680_REG_RES_HEAT_VAL,
217 			       data->bme680_cal_buf_3,
218 			       sizeof(data->bme680_cal_buf_3));
219 	if (ret < 0) {
220 		dev_err(dev, "failed to read 3rd set of calib data;\n");
221 		return ret;
222 	}
223 
224 	calib->res_heat_val = data->bme680_cal_buf_3[RES_HEAT_VAL];
225 
226 	calib->res_heat_range = FIELD_GET(BME680_RHRANGE_MASK,
227 					data->bme680_cal_buf_3[RES_HEAT_RANGE]);
228 
229 	calib->range_sw_err = FIELD_GET(BME680_RSERROR_MASK,
230 					data->bme680_cal_buf_3[RANGE_SW_ERR]);
231 
232 	return 0;
233 }
234 
235 static int bme680_read_temp_adc(struct bme680_data *data, u32 *adc_temp)
236 {
237 	struct device *dev = regmap_get_device(data->regmap);
238 	u32 value_temp;
239 	int ret;
240 
241 	ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB,
242 			       data->buf, BME680_TEMP_NUM_BYTES);
243 	if (ret < 0) {
244 		dev_err(dev, "failed to read temperature\n");
245 		return ret;
246 	}
247 
248 	value_temp = FIELD_GET(BME680_MEAS_TRIM_MASK,
249 			       get_unaligned_be24(data->buf));
250 	if (value_temp == BME680_MEAS_SKIPPED) {
251 		/* reading was skipped */
252 		dev_err(dev, "reading temperature skipped\n");
253 		return -EINVAL;
254 	}
255 	*adc_temp = value_temp;
256 
257 	return 0;
258 }
259 
260 /*
261  * Taken from Bosch BME680 API:
262  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876
263  *
264  * Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore,
265  * output value of "3233" represents 32.33 DegC.
266  */
267 static s32 bme680_calc_t_fine(struct bme680_data *data, u32 adc_temp)
268 {
269 	struct bme680_calib *calib = &data->bme680;
270 	s64 var1, var2, var3;
271 
272 	/* If the calibration is invalid, attempt to reload it */
273 	if (!calib->par_t2)
274 		bme680_read_calib(data, calib);
275 
276 	var1 = ((s32)adc_temp >> 3) - ((s32)calib->par_t1 << 1);
277 	var2 = (var1 * calib->par_t2) >> 11;
278 	var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
279 	var3 = (var3 * ((s32)calib->par_t3 << 4)) >> 14;
280 	return var2 + var3; /* t_fine = var2 + var3 */
281 }
282 
283 static int bme680_get_t_fine(struct bme680_data *data, s32 *t_fine)
284 {
285 	u32 adc_temp;
286 	int ret;
287 
288 	ret = bme680_read_temp_adc(data, &adc_temp);
289 	if (ret)
290 		return ret;
291 
292 	*t_fine = bme680_calc_t_fine(data, adc_temp);
293 
294 	return 0;
295 }
296 
297 static s16 bme680_compensate_temp(struct bme680_data *data,
298 				  u32 adc_temp)
299 {
300 	return (bme680_calc_t_fine(data, adc_temp) * 5 + 128) / 256;
301 }
302 
303 static int bme680_read_press_adc(struct bme680_data *data, u32 *adc_press)
304 {
305 	struct device *dev = regmap_get_device(data->regmap);
306 	u32 value_press;
307 	int ret;
308 
309 	ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB,
310 			       data->buf, BME680_PRESS_NUM_BYTES);
311 	if (ret < 0) {
312 		dev_err(dev, "failed to read pressure\n");
313 		return ret;
314 	}
315 
316 	value_press = FIELD_GET(BME680_MEAS_TRIM_MASK,
317 				get_unaligned_be24(data->buf));
318 	if (value_press == BME680_MEAS_SKIPPED) {
319 		/* reading was skipped */
320 		dev_err(dev, "reading pressure skipped\n");
321 		return -EINVAL;
322 	}
323 	*adc_press = value_press;
324 
325 	return 0;
326 }
327 
328 /*
329  * Taken from Bosch BME680 API:
330  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896
331  *
332  * Returns pressure measurement in Pa. Output value of "97356" represents
333  * 97356 Pa = 973.56 hPa.
334  */
335 static u32 bme680_compensate_press(struct bme680_data *data,
336 				   u32 adc_press, s32 t_fine)
337 {
338 	struct bme680_calib *calib = &data->bme680;
339 	s32 var1, var2, var3, press_comp;
340 
341 	var1 = (t_fine >> 1) - 64000;
342 	var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2;
343 	var2 = var2 + (var1 * calib->par_p5 << 1);
344 	var2 = (var2 >> 2) + ((s32)calib->par_p4 << 16);
345 	var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
346 			((s32)calib->par_p3 << 5)) >> 3) +
347 			((calib->par_p2 * var1) >> 1);
348 	var1 = var1 >> 18;
349 	var1 = ((32768 + var1) * calib->par_p1) >> 15;
350 	press_comp = 1048576 - adc_press;
351 	press_comp = ((press_comp - (var2 >> 12)) * 3125);
352 
353 	if (press_comp >= BME680_MAX_OVERFLOW_VAL)
354 		press_comp = ((press_comp / (u32)var1) << 1);
355 	else
356 		press_comp = ((press_comp << 1) / (u32)var1);
357 
358 	var1 = (calib->par_p9 * (((press_comp >> 3) *
359 			(press_comp >> 3)) >> 13)) >> 12;
360 	var2 = ((press_comp >> 2) * calib->par_p8) >> 13;
361 	var3 = ((press_comp >> 8) * (press_comp >> 8) *
362 			(press_comp >> 8) * calib->par_p10) >> 17;
363 
364 	press_comp += (var1 + var2 + var3 + ((s32)calib->par_p7 << 7)) >> 4;
365 
366 	return press_comp;
367 }
368 
369 static int bme680_read_humid_adc(struct bme680_data *data, u32 *adc_humidity)
370 {
371 	struct device *dev = regmap_get_device(data->regmap);
372 	u32 value_humidity;
373 	int ret;
374 
375 	ret = regmap_bulk_read(data->regmap, BME680_REG_HUMIDITY_MSB,
376 			       &data->be16, BME680_HUMID_NUM_BYTES);
377 	if (ret < 0) {
378 		dev_err(dev, "failed to read humidity\n");
379 		return ret;
380 	}
381 
382 	value_humidity = be16_to_cpu(data->be16);
383 	if (value_humidity == BME680_MEAS_SKIPPED) {
384 		/* reading was skipped */
385 		dev_err(dev, "reading humidity skipped\n");
386 		return -EINVAL;
387 	}
388 	*adc_humidity = value_humidity;
389 
390 	return 0;
391 }
392 
393 /*
394  * Taken from Bosch BME680 API:
395  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937
396  *
397  * Returns humidity measurement in percent, resolution is 0.001 percent. Output
398  * value of "43215" represents 43.215 %rH.
399  */
400 static u32 bme680_compensate_humid(struct bme680_data *data,
401 				   u16 adc_humid, s32 t_fine)
402 {
403 	struct bme680_calib *calib = &data->bme680;
404 	s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum;
405 
406 	temp_scaled = (t_fine * 5 + 128) >> 8;
407 	var1 = (adc_humid - (((s32)calib->par_h1 * 16))) -
408 		(((temp_scaled * calib->par_h3) / 100) >> 1);
409 	var2 = (calib->par_h2 *
410 		(((temp_scaled * calib->par_h4) / 100) +
411 		 (((temp_scaled * ((temp_scaled * calib->par_h5) / 100))
412 		   >> 6) / 100) + (1 << 14))) >> 10;
413 	var3 = var1 * var2;
414 	var4 = (s32)calib->par_h6 << 7;
415 	var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4;
416 	var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
417 	var6 = (var4 * var5) >> 1;
418 	calc_hum = (((var3 + var6) >> 10) * 1000) >> 12;
419 
420 	calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */
421 
422 	return calc_hum;
423 }
424 
425 /*
426  * Taken from Bosch BME680 API:
427  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973
428  *
429  * Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms.
430  */
431 static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc,
432 				 u8 gas_range)
433 {
434 	struct bme680_calib *calib = &data->bme680;
435 	s64 var1;
436 	u64 var2;
437 	s64 var3;
438 	u32 calc_gas_res;
439 
440 	/* Look up table for the possible gas range values */
441 	static const u32 lookupTable[16] = {2147483647u, 2147483647u,
442 				2147483647u, 2147483647u, 2147483647u,
443 				2126008810u, 2147483647u, 2130303777u,
444 				2147483647u, 2147483647u, 2143188679u,
445 				2136746228u, 2147483647u, 2126008810u,
446 				2147483647u, 2147483647u};
447 
448 	var1 = ((1340 + (5 * (s64) calib->range_sw_err)) *
449 			((s64) lookupTable[gas_range])) >> 16;
450 	var2 = ((gas_res_adc << 15) - 16777216) + var1;
451 	var3 = ((125000 << (15 - gas_range)) * var1) >> 9;
452 	var3 += (var2 >> 1);
453 	calc_gas_res = div64_s64(var3, (s64) var2);
454 
455 	return calc_gas_res;
456 }
457 
458 /*
459  * Taken from Bosch BME680 API:
460  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002
461  */
462 static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp)
463 {
464 	struct bme680_calib *calib = &data->bme680;
465 	s32 var1, var2, var3, var4, var5, heatr_res_x100;
466 	u8 heatr_res;
467 
468 	if (temp > 400) /* Cap temperature */
469 		temp = 400;
470 
471 	var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256;
472 	var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) *
473 						temp * 5) / 100)
474 						+ 3276800) / 10);
475 	var3 = var1 + (var2 / 2);
476 	var4 = (var3 / (calib->res_heat_range + 4));
477 	var5 = 131 * calib->res_heat_val + 65536;
478 	heatr_res_x100 = ((var4 / var5) - 250) * 34;
479 	heatr_res = DIV_ROUND_CLOSEST(heatr_res_x100, 100);
480 
481 	return heatr_res;
482 }
483 
484 /*
485  * Taken from Bosch BME680 API:
486  * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188
487  */
488 static u8 bme680_calc_heater_dur(u16 dur)
489 {
490 	u8 durval, factor = 0;
491 
492 	if (dur >= 0xfc0) {
493 		durval = 0xff; /* Max duration */
494 	} else {
495 		while (dur > 0x3F) {
496 			dur = dur / 4;
497 			factor += 1;
498 		}
499 		durval = dur + (factor * 64);
500 	}
501 
502 	return durval;
503 }
504 
505 static int bme680_set_mode(struct bme680_data *data, bool mode)
506 {
507 	struct device *dev = regmap_get_device(data->regmap);
508 	int ret;
509 
510 	if (mode) {
511 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
512 					BME680_MODE_MASK, BME680_MODE_FORCED);
513 		if (ret < 0)
514 			dev_err(dev, "failed to set forced mode\n");
515 
516 	} else {
517 		ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
518 					BME680_MODE_MASK, BME680_MODE_SLEEP);
519 		if (ret < 0)
520 			dev_err(dev, "failed to set sleep mode\n");
521 
522 	}
523 
524 	return ret;
525 }
526 
527 static u8 bme680_oversampling_to_reg(u8 val)
528 {
529 	return ilog2(val) + 1;
530 }
531 
532 /*
533  * Taken from Bosch BME680 API:
534  * https://github.com/boschsensortec/BME68x_SensorAPI/blob/v4.4.8/bme68x.c#L490
535  */
536 static int bme680_wait_for_eoc(struct bme680_data *data)
537 {
538 	struct device *dev = regmap_get_device(data->regmap);
539 	int ret;
540 	/*
541 	 * (Sum of oversampling ratios * time per oversampling) +
542 	 * TPH measurement + gas measurement + wait transition from forced mode
543 	 * + heater duration
544 	 */
545 	int wait_eoc_us = ((data->oversampling_temp + data->oversampling_press +
546 			   data->oversampling_humid) * 1936) + (477 * 4) +
547 			   (477 * 5) + 1000 + (data->heater_dur * 1000);
548 
549 	usleep_range(wait_eoc_us, wait_eoc_us + 100);
550 
551 	ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check);
552 	if (ret) {
553 		dev_err(dev, "failed to read measurement status register.\n");
554 		return ret;
555 	}
556 	if (data->check & BME680_MEAS_BIT) {
557 		dev_err(dev, "Device measurement cycle incomplete.\n");
558 		return -EBUSY;
559 	}
560 	if (!(data->check & BME680_NEW_DATA_BIT)) {
561 		dev_err(dev, "No new data available from the device.\n");
562 		return -ENODATA;
563 	}
564 
565 	return 0;
566 }
567 
568 static int bme680_chip_config(struct bme680_data *data)
569 {
570 	struct device *dev = regmap_get_device(data->regmap);
571 	int ret;
572 	u8 osrs;
573 
574 	osrs = FIELD_PREP(
575 		BME680_OSRS_HUMIDITY_MASK,
576 		bme680_oversampling_to_reg(data->oversampling_humid));
577 	/*
578 	 * Highly recommended to set oversampling of humidity before
579 	 * temperature/pressure oversampling.
580 	 */
581 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY,
582 				 BME680_OSRS_HUMIDITY_MASK, osrs);
583 	if (ret < 0) {
584 		dev_err(dev, "failed to write ctrl_hum register\n");
585 		return ret;
586 	}
587 
588 	/* IIR filter settings */
589 	ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG,
590 				 BME680_FILTER_MASK,
591 				 BME680_FILTER_COEFF_VAL);
592 	if (ret < 0) {
593 		dev_err(dev, "failed to write config register\n");
594 		return ret;
595 	}
596 
597 	osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK,
598 			  bme680_oversampling_to_reg(data->oversampling_temp)) |
599 	       FIELD_PREP(BME680_OSRS_PRESS_MASK,
600 			  bme680_oversampling_to_reg(data->oversampling_press));
601 	ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
602 				BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK,
603 				osrs);
604 	if (ret < 0) {
605 		dev_err(dev, "failed to write ctrl_meas register\n");
606 		return ret;
607 	}
608 
609 	return 0;
610 }
611 
612 static int bme680_gas_config(struct bme680_data *data)
613 {
614 	struct device *dev = regmap_get_device(data->regmap);
615 	int ret;
616 	u8 heatr_res, heatr_dur;
617 
618 	/* Go to sleep */
619 	ret = bme680_set_mode(data, false);
620 	if (ret < 0)
621 		return ret;
622 
623 	heatr_res = bme680_calc_heater_res(data, data->heater_temp);
624 
625 	/* set target heater temperature */
626 	ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res);
627 	if (ret < 0) {
628 		dev_err(dev, "failed to write res_heat_0 register\n");
629 		return ret;
630 	}
631 
632 	heatr_dur = bme680_calc_heater_dur(data->heater_dur);
633 
634 	/* set target heating duration */
635 	ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur);
636 	if (ret < 0) {
637 		dev_err(dev, "failed to write gas_wait_0 register\n");
638 		return ret;
639 	}
640 
641 	/* Enable the gas sensor and select heater profile set-point 0 */
642 	ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1,
643 				 BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK,
644 				 FIELD_PREP(BME680_RUN_GAS_MASK, 1) |
645 				 FIELD_PREP(BME680_NB_CONV_MASK, 0));
646 	if (ret < 0)
647 		dev_err(dev, "failed to write ctrl_gas_1 register\n");
648 
649 	return ret;
650 }
651 
652 static int bme680_read_temp(struct bme680_data *data, int *val)
653 {
654 	int ret;
655 	u32 adc_temp;
656 	s16 comp_temp;
657 
658 	ret = bme680_read_temp_adc(data, &adc_temp);
659 	if (ret)
660 		return ret;
661 
662 	comp_temp = bme680_compensate_temp(data, adc_temp);
663 	*val = comp_temp * 10; /* Centidegrees to millidegrees */
664 	return IIO_VAL_INT;
665 }
666 
667 static int bme680_read_press(struct bme680_data *data,
668 			     int *val, int *val2)
669 {
670 	int ret;
671 	u32 adc_press;
672 	s32 t_fine;
673 
674 	ret = bme680_get_t_fine(data, &t_fine);
675 	if (ret)
676 		return ret;
677 
678 	ret = bme680_read_press_adc(data, &adc_press);
679 	if (ret)
680 		return ret;
681 
682 	*val = bme680_compensate_press(data, adc_press, t_fine);
683 	*val2 = 1000;
684 	return IIO_VAL_FRACTIONAL;
685 }
686 
687 static int bme680_read_humid(struct bme680_data *data,
688 			     int *val, int *val2)
689 {
690 	int ret;
691 	u32 adc_humidity, comp_humidity;
692 	s32 t_fine;
693 
694 	ret = bme680_get_t_fine(data, &t_fine);
695 	if (ret)
696 		return ret;
697 
698 	ret = bme680_read_humid_adc(data, &adc_humidity);
699 	if (ret)
700 		return ret;
701 
702 	comp_humidity = bme680_compensate_humid(data, adc_humidity, t_fine);
703 
704 	*val = comp_humidity;
705 	*val2 = 1000;
706 	return IIO_VAL_FRACTIONAL;
707 }
708 
709 static int bme680_read_gas(struct bme680_data *data,
710 			   int *val)
711 {
712 	struct device *dev = regmap_get_device(data->regmap);
713 	int ret;
714 	u16 adc_gas_res, gas_regs_val;
715 	u8 gas_range;
716 
717 	ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check);
718 	if (data->check & BME680_GAS_MEAS_BIT) {
719 		dev_err(dev, "gas measurement incomplete\n");
720 		return -EBUSY;
721 	}
722 
723 	ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB,
724 			       &data->be16, BME680_GAS_NUM_BYTES);
725 	if (ret < 0) {
726 		dev_err(dev, "failed to read gas resistance\n");
727 		return ret;
728 	}
729 
730 	gas_regs_val = be16_to_cpu(data->be16);
731 	adc_gas_res = FIELD_GET(BME680_ADC_GAS_RES, gas_regs_val);
732 
733 	/*
734 	 * occurs if either the gas heating duration was insuffient
735 	 * to reach the target heater temperature or the target
736 	 * heater temperature was too high for the heater sink to
737 	 * reach.
738 	 */
739 	if ((gas_regs_val & BME680_GAS_STAB_BIT) == 0) {
740 		dev_err(dev, "heater failed to reach the target temperature\n");
741 		return -EINVAL;
742 	}
743 
744 	gas_range = FIELD_GET(BME680_GAS_RANGE_MASK, gas_regs_val);
745 
746 	*val = bme680_compensate_gas(data, adc_gas_res, gas_range);
747 	return IIO_VAL_INT;
748 }
749 
750 static int bme680_read_raw(struct iio_dev *indio_dev,
751 			   struct iio_chan_spec const *chan,
752 			   int *val, int *val2, long mask)
753 {
754 	struct bme680_data *data = iio_priv(indio_dev);
755 	int ret;
756 
757 	guard(mutex)(&data->lock);
758 
759 	/* set forced mode to trigger measurement */
760 	ret = bme680_set_mode(data, true);
761 	if (ret < 0)
762 		return ret;
763 
764 	ret = bme680_wait_for_eoc(data);
765 	if (ret)
766 		return ret;
767 
768 	switch (mask) {
769 	case IIO_CHAN_INFO_PROCESSED:
770 		switch (chan->type) {
771 		case IIO_TEMP:
772 			return bme680_read_temp(data, val);
773 		case IIO_PRESSURE:
774 			return bme680_read_press(data, val, val2);
775 		case IIO_HUMIDITYRELATIVE:
776 			return bme680_read_humid(data, val, val2);
777 		case IIO_RESISTANCE:
778 			return bme680_read_gas(data, val);
779 		default:
780 			return -EINVAL;
781 		}
782 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
783 		switch (chan->type) {
784 		case IIO_TEMP:
785 			*val = data->oversampling_temp;
786 			return IIO_VAL_INT;
787 		case IIO_PRESSURE:
788 			*val = data->oversampling_press;
789 			return IIO_VAL_INT;
790 		case IIO_HUMIDITYRELATIVE:
791 			*val = data->oversampling_humid;
792 			return IIO_VAL_INT;
793 		default:
794 			return -EINVAL;
795 		}
796 	default:
797 		return -EINVAL;
798 	}
799 }
800 
801 static bool bme680_is_valid_oversampling(int rate)
802 {
803 	return (rate > 0 && rate <= 16 && is_power_of_2(rate));
804 }
805 
806 static int bme680_write_raw(struct iio_dev *indio_dev,
807 			    struct iio_chan_spec const *chan,
808 			    int val, int val2, long mask)
809 {
810 	struct bme680_data *data = iio_priv(indio_dev);
811 
812 	guard(mutex)(&data->lock);
813 
814 	if (val2 != 0)
815 		return -EINVAL;
816 
817 	switch (mask) {
818 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
819 	{
820 		if (!bme680_is_valid_oversampling(val))
821 			return -EINVAL;
822 
823 		switch (chan->type) {
824 		case IIO_TEMP:
825 			data->oversampling_temp = val;
826 			break;
827 		case IIO_PRESSURE:
828 			data->oversampling_press = val;
829 			break;
830 		case IIO_HUMIDITYRELATIVE:
831 			data->oversampling_humid = val;
832 			break;
833 		default:
834 			return -EINVAL;
835 		}
836 
837 		return bme680_chip_config(data);
838 	}
839 	default:
840 		return -EINVAL;
841 	}
842 }
843 
844 static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16";
845 
846 static IIO_CONST_ATTR(oversampling_ratio_available,
847 		      bme680_oversampling_ratio_show);
848 
849 static struct attribute *bme680_attributes[] = {
850 	&iio_const_attr_oversampling_ratio_available.dev_attr.attr,
851 	NULL,
852 };
853 
854 static const struct attribute_group bme680_attribute_group = {
855 	.attrs = bme680_attributes,
856 };
857 
858 static const struct iio_info bme680_info = {
859 	.read_raw = &bme680_read_raw,
860 	.write_raw = &bme680_write_raw,
861 	.attrs = &bme680_attribute_group,
862 };
863 
864 int bme680_core_probe(struct device *dev, struct regmap *regmap,
865 		      const char *name)
866 {
867 	struct iio_dev *indio_dev;
868 	struct bme680_data *data;
869 	int ret;
870 
871 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
872 	if (!indio_dev)
873 		return -ENOMEM;
874 
875 	data = iio_priv(indio_dev);
876 	mutex_init(&data->lock);
877 	dev_set_drvdata(dev, indio_dev);
878 	data->regmap = regmap;
879 	indio_dev->name = name;
880 	indio_dev->channels = bme680_channels;
881 	indio_dev->num_channels = ARRAY_SIZE(bme680_channels);
882 	indio_dev->info = &bme680_info;
883 	indio_dev->modes = INDIO_DIRECT_MODE;
884 
885 	/* default values for the sensor */
886 	data->oversampling_humid = 2; /* 2X oversampling rate */
887 	data->oversampling_press = 4; /* 4X oversampling rate */
888 	data->oversampling_temp = 8;  /* 8X oversampling rate */
889 	data->heater_temp = 320; /* degree Celsius */
890 	data->heater_dur = 150;  /* milliseconds */
891 
892 	ret = regmap_write(regmap, BME680_REG_SOFT_RESET,
893 			   BME680_CMD_SOFTRESET);
894 	if (ret < 0)
895 		return dev_err_probe(dev, ret, "Failed to reset chip\n");
896 
897 	usleep_range(BME680_STARTUP_TIME_US, BME680_STARTUP_TIME_US + 1000);
898 
899 	ret = regmap_read(regmap, BME680_REG_CHIP_ID, &data->check);
900 	if (ret < 0)
901 		return dev_err_probe(dev, ret, "Error reading chip ID\n");
902 
903 	if (data->check != BME680_CHIP_ID_VAL) {
904 		dev_err(dev, "Wrong chip ID, got %x expected %x\n",
905 			data->check, BME680_CHIP_ID_VAL);
906 		return -ENODEV;
907 	}
908 
909 	ret = bme680_read_calib(data, &data->bme680);
910 	if (ret < 0) {
911 		return dev_err_probe(dev, ret,
912 			"failed to read calibration coefficients at probe\n");
913 	}
914 
915 	ret = bme680_chip_config(data);
916 	if (ret < 0)
917 		return dev_err_probe(dev, ret,
918 				     "failed to set chip_config data\n");
919 
920 	ret = bme680_gas_config(data);
921 	if (ret < 0)
922 		return dev_err_probe(dev, ret,
923 				     "failed to set gas config data\n");
924 
925 	return devm_iio_device_register(dev, indio_dev);
926 }
927 EXPORT_SYMBOL_NS_GPL(bme680_core_probe, IIO_BME680);
928 
929 MODULE_AUTHOR("Himanshu Jha <himanshujha199640@gmail.com>");
930 MODULE_DESCRIPTION("Bosch BME680 Driver");
931 MODULE_LICENSE("GPL v2");
932