1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2013-2015 Analog Devices Inc. 4 * Author: Lars-Peter Clausen <lars@metafoo.de> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/device.h> 11 #include <linux/workqueue.h> 12 #include <linux/mutex.h> 13 #include <linux/sched.h> 14 #include <linux/poll.h> 15 #include <linux/iio/buffer_impl.h> 16 #include <linux/iio/buffer-dma.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sizes.h> 19 20 /* 21 * For DMA buffers the storage is sub-divided into so called blocks. Each block 22 * has its own memory buffer. The size of the block is the granularity at which 23 * memory is exchanged between the hardware and the application. Increasing the 24 * basic unit of data exchange from one sample to one block decreases the 25 * management overhead that is associated with each sample. E.g. if we say the 26 * management overhead for one exchange is x and the unit of exchange is one 27 * sample the overhead will be x for each sample. Whereas when using a block 28 * which contains n samples the overhead per sample is reduced to x/n. This 29 * allows to achieve much higher samplerates than what can be sustained with 30 * the one sample approach. 31 * 32 * Blocks are exchanged between the DMA controller and the application via the 33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the 34 * incoming queue are waiting for the DMA controller to pick them up and fill 35 * them with data. Block on the outgoing queue have been filled with data and 36 * are waiting for the application to dequeue them and read the data. 37 * 38 * A block can be in one of the following states: 39 * * Owned by the application. In this state the application can read data from 40 * the block. 41 * * On the incoming list: Blocks on the incoming list are queued up to be 42 * processed by the DMA controller. 43 * * Owned by the DMA controller: The DMA controller is processing the block 44 * and filling it with data. 45 * * On the outgoing list: Blocks on the outgoing list have been successfully 46 * processed by the DMA controller and contain data. They can be dequeued by 47 * the application. 48 * * Dead: A block that is dead has been marked as to be freed. It might still 49 * be owned by either the application or the DMA controller at the moment. 50 * But once they are done processing it instead of going to either the 51 * incoming or outgoing queue the block will be freed. 52 * 53 * In addition to this blocks are reference counted and the memory associated 54 * with both the block structure as well as the storage memory for the block 55 * will be freed when the last reference to the block is dropped. This means a 56 * block must not be accessed without holding a reference. 57 * 58 * The iio_dma_buffer implementation provides a generic infrastructure for 59 * managing the blocks. 60 * 61 * A driver for a specific piece of hardware that has DMA capabilities need to 62 * implement the submit() callback from the iio_dma_buffer_ops structure. This 63 * callback is supposed to initiate the DMA transfer copying data from the 64 * converter to the memory region of the block. Once the DMA transfer has been 65 * completed the driver must call iio_dma_buffer_block_done() for the completed 66 * block. 67 * 68 * Prior to this it must set the bytes_used field of the block contains 69 * the actual number of bytes in the buffer. Typically this will be equal to the 70 * size of the block, but if the DMA hardware has certain alignment requirements 71 * for the transfer length it might choose to use less than the full size. In 72 * either case it is expected that bytes_used is a multiple of the bytes per 73 * datum, i.e. the block must not contain partial samples. 74 * 75 * The driver must call iio_dma_buffer_block_done() for each block it has 76 * received through its submit_block() callback, even if it does not actually 77 * perform a DMA transfer for the block, e.g. because the buffer was disabled 78 * before the block transfer was started. In this case it should set bytes_used 79 * to 0. 80 * 81 * In addition it is recommended that a driver implements the abort() callback. 82 * It will be called when the buffer is disabled and can be used to cancel 83 * pending and stop active transfers. 84 * 85 * The specific driver implementation should use the default callback 86 * implementations provided by this module for the iio_buffer_access_funcs 87 * struct. It may overload some callbacks with custom variants if the hardware 88 * has special requirements that are not handled by the generic functions. If a 89 * driver chooses to overload a callback it has to ensure that the generic 90 * callback is called from within the custom callback. 91 */ 92 93 static void iio_buffer_block_release(struct kref *kref) 94 { 95 struct iio_dma_buffer_block *block = container_of(kref, 96 struct iio_dma_buffer_block, kref); 97 98 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); 99 100 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), 101 block->vaddr, block->phys_addr); 102 103 iio_buffer_put(&block->queue->buffer); 104 kfree(block); 105 } 106 107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block) 108 { 109 kref_get(&block->kref); 110 } 111 112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block) 113 { 114 kref_put(&block->kref, iio_buffer_block_release); 115 } 116 117 /* 118 * dma_free_coherent can sleep, hence we need to take some special care to be 119 * able to drop a reference from an atomic context. 120 */ 121 static LIST_HEAD(iio_dma_buffer_dead_blocks); 122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock); 123 124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work) 125 { 126 struct iio_dma_buffer_block *block, *_block; 127 LIST_HEAD(block_list); 128 129 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock); 130 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list); 131 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock); 132 133 list_for_each_entry_safe(block, _block, &block_list, head) 134 iio_buffer_block_release(&block->kref); 135 } 136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker); 137 138 static void iio_buffer_block_release_atomic(struct kref *kref) 139 { 140 struct iio_dma_buffer_block *block; 141 unsigned long flags; 142 143 block = container_of(kref, struct iio_dma_buffer_block, kref); 144 145 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags); 146 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); 147 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags); 148 149 schedule_work(&iio_dma_buffer_cleanup_work); 150 } 151 152 /* 153 * Version of iio_buffer_block_put() that can be called from atomic context 154 */ 155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) 156 { 157 kref_put(&block->kref, iio_buffer_block_release_atomic); 158 } 159 160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf) 161 { 162 return container_of(buf, struct iio_dma_buffer_queue, buffer); 163 } 164 165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block( 166 struct iio_dma_buffer_queue *queue, size_t size) 167 { 168 struct iio_dma_buffer_block *block; 169 170 block = kzalloc(sizeof(*block), GFP_KERNEL); 171 if (!block) 172 return NULL; 173 174 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), 175 &block->phys_addr, GFP_KERNEL); 176 if (!block->vaddr) { 177 kfree(block); 178 return NULL; 179 } 180 181 block->size = size; 182 block->state = IIO_BLOCK_STATE_DONE; 183 block->queue = queue; 184 INIT_LIST_HEAD(&block->head); 185 kref_init(&block->kref); 186 187 iio_buffer_get(&queue->buffer); 188 189 return block; 190 } 191 192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) 193 { 194 if (block->state != IIO_BLOCK_STATE_DEAD) 195 block->state = IIO_BLOCK_STATE_DONE; 196 } 197 198 static void iio_dma_buffer_queue_wake(struct iio_dma_buffer_queue *queue) 199 { 200 __poll_t flags; 201 202 if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN) 203 flags = EPOLLIN | EPOLLRDNORM; 204 else 205 flags = EPOLLOUT | EPOLLWRNORM; 206 207 wake_up_interruptible_poll(&queue->buffer.pollq, flags); 208 } 209 210 /** 211 * iio_dma_buffer_block_done() - Indicate that a block has been completed 212 * @block: The completed block 213 * 214 * Should be called when the DMA controller has finished handling the block to 215 * pass back ownership of the block to the queue. 216 */ 217 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) 218 { 219 struct iio_dma_buffer_queue *queue = block->queue; 220 unsigned long flags; 221 222 spin_lock_irqsave(&queue->list_lock, flags); 223 _iio_dma_buffer_block_done(block); 224 spin_unlock_irqrestore(&queue->list_lock, flags); 225 226 iio_buffer_block_put_atomic(block); 227 iio_dma_buffer_queue_wake(queue); 228 } 229 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done); 230 231 /** 232 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been 233 * aborted 234 * @queue: Queue for which to complete blocks. 235 * @list: List of aborted blocks. All blocks in this list must be from @queue. 236 * 237 * Typically called from the abort() callback after the DMA controller has been 238 * stopped. This will set bytes_used to 0 for each block in the list and then 239 * hand the blocks back to the queue. 240 */ 241 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue, 242 struct list_head *list) 243 { 244 struct iio_dma_buffer_block *block, *_block; 245 unsigned long flags; 246 247 spin_lock_irqsave(&queue->list_lock, flags); 248 list_for_each_entry_safe(block, _block, list, head) { 249 list_del(&block->head); 250 block->bytes_used = 0; 251 _iio_dma_buffer_block_done(block); 252 iio_buffer_block_put_atomic(block); 253 } 254 spin_unlock_irqrestore(&queue->list_lock, flags); 255 256 iio_dma_buffer_queue_wake(queue); 257 } 258 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort); 259 260 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) 261 { 262 /* 263 * If the core owns the block it can be re-used. This should be the 264 * default case when enabling the buffer, unless the DMA controller does 265 * not support abort and has not given back the block yet. 266 */ 267 switch (block->state) { 268 case IIO_BLOCK_STATE_QUEUED: 269 case IIO_BLOCK_STATE_DONE: 270 return true; 271 default: 272 return false; 273 } 274 } 275 276 /** 277 * iio_dma_buffer_request_update() - DMA buffer request_update callback 278 * @buffer: The buffer which to request an update 279 * 280 * Should be used as the iio_dma_buffer_request_update() callback for 281 * iio_buffer_access_ops struct for DMA buffers. 282 */ 283 int iio_dma_buffer_request_update(struct iio_buffer *buffer) 284 { 285 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 286 struct iio_dma_buffer_block *block; 287 bool try_reuse = false; 288 size_t size; 289 int ret = 0; 290 int i; 291 292 /* 293 * Split the buffer into two even parts. This is used as a double 294 * buffering scheme with usually one block at a time being used by the 295 * DMA and the other one by the application. 296 */ 297 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum * 298 queue->buffer.length, 2); 299 300 mutex_lock(&queue->lock); 301 302 /* Allocations are page aligned */ 303 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size)) 304 try_reuse = true; 305 306 queue->fileio.block_size = size; 307 queue->fileio.active_block = NULL; 308 309 spin_lock_irq(&queue->list_lock); 310 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 311 block = queue->fileio.blocks[i]; 312 313 /* If we can't re-use it free it */ 314 if (block && (!iio_dma_block_reusable(block) || !try_reuse)) 315 block->state = IIO_BLOCK_STATE_DEAD; 316 } 317 318 /* 319 * At this point all blocks are either owned by the core or marked as 320 * dead. This means we can reset the lists without having to fear 321 * corrution. 322 */ 323 spin_unlock_irq(&queue->list_lock); 324 325 INIT_LIST_HEAD(&queue->incoming); 326 327 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 328 if (queue->fileio.blocks[i]) { 329 block = queue->fileio.blocks[i]; 330 if (block->state == IIO_BLOCK_STATE_DEAD) { 331 /* Could not reuse it */ 332 iio_buffer_block_put(block); 333 block = NULL; 334 } else { 335 block->size = size; 336 } 337 } else { 338 block = NULL; 339 } 340 341 if (!block) { 342 block = iio_dma_buffer_alloc_block(queue, size); 343 if (!block) { 344 ret = -ENOMEM; 345 goto out_unlock; 346 } 347 queue->fileio.blocks[i] = block; 348 } 349 350 /* 351 * block->bytes_used may have been modified previously, e.g. by 352 * iio_dma_buffer_block_list_abort(). Reset it here to the 353 * block's so that iio_dma_buffer_io() will work. 354 */ 355 block->bytes_used = block->size; 356 357 /* 358 * If it's an input buffer, mark the block as queued, and 359 * iio_dma_buffer_enable() will submit it. Otherwise mark it as 360 * done, which means it's ready to be dequeued. 361 */ 362 if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN) { 363 block->state = IIO_BLOCK_STATE_QUEUED; 364 list_add_tail(&block->head, &queue->incoming); 365 } else { 366 block->state = IIO_BLOCK_STATE_DONE; 367 } 368 } 369 370 out_unlock: 371 mutex_unlock(&queue->lock); 372 373 return ret; 374 } 375 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update); 376 377 static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue) 378 { 379 unsigned int i; 380 381 spin_lock_irq(&queue->list_lock); 382 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 383 if (!queue->fileio.blocks[i]) 384 continue; 385 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD; 386 } 387 spin_unlock_irq(&queue->list_lock); 388 389 INIT_LIST_HEAD(&queue->incoming); 390 391 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 392 if (!queue->fileio.blocks[i]) 393 continue; 394 iio_buffer_block_put(queue->fileio.blocks[i]); 395 queue->fileio.blocks[i] = NULL; 396 } 397 queue->fileio.active_block = NULL; 398 } 399 400 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue, 401 struct iio_dma_buffer_block *block) 402 { 403 int ret; 404 405 /* 406 * If the hardware has already been removed we put the block into 407 * limbo. It will neither be on the incoming nor outgoing list, nor will 408 * it ever complete. It will just wait to be freed eventually. 409 */ 410 if (!queue->ops) 411 return; 412 413 block->state = IIO_BLOCK_STATE_ACTIVE; 414 iio_buffer_block_get(block); 415 ret = queue->ops->submit(queue, block); 416 if (ret) { 417 /* 418 * This is a bit of a problem and there is not much we can do 419 * other then wait for the buffer to be disabled and re-enabled 420 * and try again. But it should not really happen unless we run 421 * out of memory or something similar. 422 * 423 * TODO: Implement support in the IIO core to allow buffers to 424 * notify consumers that something went wrong and the buffer 425 * should be disabled. 426 */ 427 iio_buffer_block_put(block); 428 } 429 } 430 431 /** 432 * iio_dma_buffer_enable() - Enable DMA buffer 433 * @buffer: IIO buffer to enable 434 * @indio_dev: IIO device the buffer is attached to 435 * 436 * Needs to be called when the device that the buffer is attached to starts 437 * sampling. Typically should be the iio_buffer_access_ops enable callback. 438 * 439 * This will allocate the DMA buffers and start the DMA transfers. 440 */ 441 int iio_dma_buffer_enable(struct iio_buffer *buffer, 442 struct iio_dev *indio_dev) 443 { 444 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 445 struct iio_dma_buffer_block *block, *_block; 446 447 mutex_lock(&queue->lock); 448 queue->active = true; 449 list_for_each_entry_safe(block, _block, &queue->incoming, head) { 450 list_del(&block->head); 451 iio_dma_buffer_submit_block(queue, block); 452 } 453 mutex_unlock(&queue->lock); 454 455 return 0; 456 } 457 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable); 458 459 /** 460 * iio_dma_buffer_disable() - Disable DMA buffer 461 * @buffer: IIO DMA buffer to disable 462 * @indio_dev: IIO device the buffer is attached to 463 * 464 * Needs to be called when the device that the buffer is attached to stops 465 * sampling. Typically should be the iio_buffer_access_ops disable callback. 466 */ 467 int iio_dma_buffer_disable(struct iio_buffer *buffer, 468 struct iio_dev *indio_dev) 469 { 470 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 471 472 mutex_lock(&queue->lock); 473 queue->active = false; 474 475 if (queue->ops && queue->ops->abort) 476 queue->ops->abort(queue); 477 mutex_unlock(&queue->lock); 478 479 return 0; 480 } 481 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable); 482 483 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue, 484 struct iio_dma_buffer_block *block) 485 { 486 if (block->state == IIO_BLOCK_STATE_DEAD) { 487 iio_buffer_block_put(block); 488 } else if (queue->active) { 489 iio_dma_buffer_submit_block(queue, block); 490 } else { 491 block->state = IIO_BLOCK_STATE_QUEUED; 492 list_add_tail(&block->head, &queue->incoming); 493 } 494 } 495 496 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue( 497 struct iio_dma_buffer_queue *queue) 498 { 499 struct iio_dma_buffer_block *block; 500 unsigned int idx; 501 502 spin_lock_irq(&queue->list_lock); 503 504 idx = queue->fileio.next_dequeue; 505 block = queue->fileio.blocks[idx]; 506 507 if (block->state == IIO_BLOCK_STATE_DONE) { 508 idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks); 509 queue->fileio.next_dequeue = idx; 510 } else { 511 block = NULL; 512 } 513 514 spin_unlock_irq(&queue->list_lock); 515 516 return block; 517 } 518 519 static int iio_dma_buffer_io(struct iio_buffer *buffer, size_t n, 520 char __user *user_buffer, bool is_from_user) 521 { 522 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 523 struct iio_dma_buffer_block *block; 524 void *addr; 525 int ret; 526 527 if (n < buffer->bytes_per_datum) 528 return -EINVAL; 529 530 mutex_lock(&queue->lock); 531 532 if (!queue->fileio.active_block) { 533 block = iio_dma_buffer_dequeue(queue); 534 if (block == NULL) { 535 ret = 0; 536 goto out_unlock; 537 } 538 queue->fileio.pos = 0; 539 queue->fileio.active_block = block; 540 } else { 541 block = queue->fileio.active_block; 542 } 543 544 n = rounddown(n, buffer->bytes_per_datum); 545 if (n > block->bytes_used - queue->fileio.pos) 546 n = block->bytes_used - queue->fileio.pos; 547 addr = block->vaddr + queue->fileio.pos; 548 549 if (is_from_user) 550 ret = copy_from_user(addr, user_buffer, n); 551 else 552 ret = copy_to_user(user_buffer, addr, n); 553 if (ret) { 554 ret = -EFAULT; 555 goto out_unlock; 556 } 557 558 queue->fileio.pos += n; 559 560 if (queue->fileio.pos == block->bytes_used) { 561 queue->fileio.active_block = NULL; 562 iio_dma_buffer_enqueue(queue, block); 563 } 564 565 ret = n; 566 567 out_unlock: 568 mutex_unlock(&queue->lock); 569 570 return ret; 571 } 572 573 /** 574 * iio_dma_buffer_read() - DMA buffer read callback 575 * @buffer: Buffer to read form 576 * @n: Number of bytes to read 577 * @user_buffer: Userspace buffer to copy the data to 578 * 579 * Should be used as the read callback for iio_buffer_access_ops 580 * struct for DMA buffers. 581 */ 582 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n, 583 char __user *user_buffer) 584 { 585 return iio_dma_buffer_io(buffer, n, user_buffer, false); 586 } 587 EXPORT_SYMBOL_GPL(iio_dma_buffer_read); 588 589 /** 590 * iio_dma_buffer_write() - DMA buffer write callback 591 * @buffer: Buffer to read form 592 * @n: Number of bytes to read 593 * @user_buffer: Userspace buffer to copy the data from 594 * 595 * Should be used as the write callback for iio_buffer_access_ops 596 * struct for DMA buffers. 597 */ 598 int iio_dma_buffer_write(struct iio_buffer *buffer, size_t n, 599 const char __user *user_buffer) 600 { 601 return iio_dma_buffer_io(buffer, n, 602 (__force __user char *)user_buffer, true); 603 } 604 EXPORT_SYMBOL_GPL(iio_dma_buffer_write); 605 606 /** 607 * iio_dma_buffer_usage() - DMA buffer data_available and 608 * space_available callback 609 * @buf: Buffer to check for data availability 610 * 611 * Should be used as the data_available and space_available callbacks for 612 * iio_buffer_access_ops struct for DMA buffers. 613 */ 614 size_t iio_dma_buffer_usage(struct iio_buffer *buf) 615 { 616 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf); 617 struct iio_dma_buffer_block *block; 618 size_t data_available = 0; 619 unsigned int i; 620 621 /* 622 * For counting the available bytes we'll use the size of the block not 623 * the number of actual bytes available in the block. Otherwise it is 624 * possible that we end up with a value that is lower than the watermark 625 * but won't increase since all blocks are in use. 626 */ 627 628 mutex_lock(&queue->lock); 629 if (queue->fileio.active_block) 630 data_available += queue->fileio.active_block->size; 631 632 spin_lock_irq(&queue->list_lock); 633 634 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 635 block = queue->fileio.blocks[i]; 636 637 if (block != queue->fileio.active_block 638 && block->state == IIO_BLOCK_STATE_DONE) 639 data_available += block->size; 640 } 641 642 spin_unlock_irq(&queue->list_lock); 643 mutex_unlock(&queue->lock); 644 645 return data_available; 646 } 647 EXPORT_SYMBOL_GPL(iio_dma_buffer_usage); 648 649 /** 650 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback 651 * @buffer: Buffer to set the bytes-per-datum for 652 * @bpd: The new bytes-per-datum value 653 * 654 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops 655 * struct for DMA buffers. 656 */ 657 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd) 658 { 659 buffer->bytes_per_datum = bpd; 660 661 return 0; 662 } 663 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum); 664 665 /** 666 * iio_dma_buffer_set_length - DMA buffer set_length callback 667 * @buffer: Buffer to set the length for 668 * @length: The new buffer length 669 * 670 * Should be used as the set_length callback for iio_buffer_access_ops 671 * struct for DMA buffers. 672 */ 673 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length) 674 { 675 /* Avoid an invalid state */ 676 if (length < 2) 677 length = 2; 678 buffer->length = length; 679 buffer->watermark = length / 2; 680 681 return 0; 682 } 683 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length); 684 685 /** 686 * iio_dma_buffer_init() - Initialize DMA buffer queue 687 * @queue: Buffer to initialize 688 * @dev: DMA device 689 * @ops: DMA buffer queue callback operations 690 * 691 * The DMA device will be used by the queue to do DMA memory allocations. So it 692 * should refer to the device that will perform the DMA to ensure that 693 * allocations are done from a memory region that can be accessed by the device. 694 */ 695 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue, 696 struct device *dev, const struct iio_dma_buffer_ops *ops) 697 { 698 iio_buffer_init(&queue->buffer); 699 queue->buffer.length = PAGE_SIZE; 700 queue->buffer.watermark = queue->buffer.length / 2; 701 queue->dev = dev; 702 queue->ops = ops; 703 704 INIT_LIST_HEAD(&queue->incoming); 705 706 mutex_init(&queue->lock); 707 spin_lock_init(&queue->list_lock); 708 709 return 0; 710 } 711 EXPORT_SYMBOL_GPL(iio_dma_buffer_init); 712 713 /** 714 * iio_dma_buffer_exit() - Cleanup DMA buffer queue 715 * @queue: Buffer to cleanup 716 * 717 * After this function has completed it is safe to free any resources that are 718 * associated with the buffer and are accessed inside the callback operations. 719 */ 720 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue) 721 { 722 mutex_lock(&queue->lock); 723 724 iio_dma_buffer_fileio_free(queue); 725 queue->ops = NULL; 726 727 mutex_unlock(&queue->lock); 728 } 729 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit); 730 731 /** 732 * iio_dma_buffer_release() - Release final buffer resources 733 * @queue: Buffer to release 734 * 735 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be 736 * called in the buffers release callback implementation right before freeing 737 * the memory associated with the buffer. 738 */ 739 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue) 740 { 741 mutex_destroy(&queue->lock); 742 } 743 EXPORT_SYMBOL_GPL(iio_dma_buffer_release); 744 745 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); 746 MODULE_DESCRIPTION("DMA buffer for the IIO framework"); 747 MODULE_LICENSE("GPL v2"); 748