xref: /linux/drivers/iio/buffer/industrialio-buffer-dma.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2013-2015 Analog Devices Inc.
4  *  Author: Lars-Peter Clausen <lars@metafoo.de>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/workqueue.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>
14 #include <linux/poll.h>
15 #include <linux/iio/buffer_impl.h>
16 #include <linux/iio/buffer-dma.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sizes.h>
19 
20 /*
21  * For DMA buffers the storage is sub-divided into so called blocks. Each block
22  * has its own memory buffer. The size of the block is the granularity at which
23  * memory is exchanged between the hardware and the application. Increasing the
24  * basic unit of data exchange from one sample to one block decreases the
25  * management overhead that is associated with each sample. E.g. if we say the
26  * management overhead for one exchange is x and the unit of exchange is one
27  * sample the overhead will be x for each sample. Whereas when using a block
28  * which contains n samples the overhead per sample is reduced to x/n. This
29  * allows to achieve much higher samplerates than what can be sustained with
30  * the one sample approach.
31  *
32  * Blocks are exchanged between the DMA controller and the application via the
33  * means of two queues. The incoming queue and the outgoing queue. Blocks on the
34  * incoming queue are waiting for the DMA controller to pick them up and fill
35  * them with data. Block on the outgoing queue have been filled with data and
36  * are waiting for the application to dequeue them and read the data.
37  *
38  * A block can be in one of the following states:
39  *  * Owned by the application. In this state the application can read data from
40  *    the block.
41  *  * On the incoming list: Blocks on the incoming list are queued up to be
42  *    processed by the DMA controller.
43  *  * Owned by the DMA controller: The DMA controller is processing the block
44  *    and filling it with data.
45  *  * On the outgoing list: Blocks on the outgoing list have been successfully
46  *    processed by the DMA controller and contain data. They can be dequeued by
47  *    the application.
48  *  * Dead: A block that is dead has been marked as to be freed. It might still
49  *    be owned by either the application or the DMA controller at the moment.
50  *    But once they are done processing it instead of going to either the
51  *    incoming or outgoing queue the block will be freed.
52  *
53  * In addition to this blocks are reference counted and the memory associated
54  * with both the block structure as well as the storage memory for the block
55  * will be freed when the last reference to the block is dropped. This means a
56  * block must not be accessed without holding a reference.
57  *
58  * The iio_dma_buffer implementation provides a generic infrastructure for
59  * managing the blocks.
60  *
61  * A driver for a specific piece of hardware that has DMA capabilities need to
62  * implement the submit() callback from the iio_dma_buffer_ops structure. This
63  * callback is supposed to initiate the DMA transfer copying data from the
64  * converter to the memory region of the block. Once the DMA transfer has been
65  * completed the driver must call iio_dma_buffer_block_done() for the completed
66  * block.
67  *
68  * Prior to this it must set the bytes_used field of the block contains
69  * the actual number of bytes in the buffer. Typically this will be equal to the
70  * size of the block, but if the DMA hardware has certain alignment requirements
71  * for the transfer length it might choose to use less than the full size. In
72  * either case it is expected that bytes_used is a multiple of the bytes per
73  * datum, i.e. the block must not contain partial samples.
74  *
75  * The driver must call iio_dma_buffer_block_done() for each block it has
76  * received through its submit_block() callback, even if it does not actually
77  * perform a DMA transfer for the block, e.g. because the buffer was disabled
78  * before the block transfer was started. In this case it should set bytes_used
79  * to 0.
80  *
81  * In addition it is recommended that a driver implements the abort() callback.
82  * It will be called when the buffer is disabled and can be used to cancel
83  * pending and stop active transfers.
84  *
85  * The specific driver implementation should use the default callback
86  * implementations provided by this module for the iio_buffer_access_funcs
87  * struct. It may overload some callbacks with custom variants if the hardware
88  * has special requirements that are not handled by the generic functions. If a
89  * driver chooses to overload a callback it has to ensure that the generic
90  * callback is called from within the custom callback.
91  */
92 
93 static void iio_buffer_block_release(struct kref *kref)
94 {
95 	struct iio_dma_buffer_block *block = container_of(kref,
96 		struct iio_dma_buffer_block, kref);
97 
98 	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
99 
100 	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101 					block->vaddr, block->phys_addr);
102 
103 	iio_buffer_put(&block->queue->buffer);
104 	kfree(block);
105 }
106 
107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108 {
109 	kref_get(&block->kref);
110 }
111 
112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113 {
114 	kref_put(&block->kref, iio_buffer_block_release);
115 }
116 
117 /*
118  * dma_free_coherent can sleep, hence we need to take some special care to be
119  * able to drop a reference from an atomic context.
120  */
121 static LIST_HEAD(iio_dma_buffer_dead_blocks);
122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123 
124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125 {
126 	struct iio_dma_buffer_block *block, *_block;
127 	LIST_HEAD(block_list);
128 
129 	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130 	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131 	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132 
133 	list_for_each_entry_safe(block, _block, &block_list, head)
134 		iio_buffer_block_release(&block->kref);
135 }
136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137 
138 static void iio_buffer_block_release_atomic(struct kref *kref)
139 {
140 	struct iio_dma_buffer_block *block;
141 	unsigned long flags;
142 
143 	block = container_of(kref, struct iio_dma_buffer_block, kref);
144 
145 	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146 	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147 	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148 
149 	schedule_work(&iio_dma_buffer_cleanup_work);
150 }
151 
152 /*
153  * Version of iio_buffer_block_put() that can be called from atomic context
154  */
155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156 {
157 	kref_put(&block->kref, iio_buffer_block_release_atomic);
158 }
159 
160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161 {
162 	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163 }
164 
165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166 	struct iio_dma_buffer_queue *queue, size_t size)
167 {
168 	struct iio_dma_buffer_block *block;
169 
170 	block = kzalloc(sizeof(*block), GFP_KERNEL);
171 	if (!block)
172 		return NULL;
173 
174 	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175 		&block->phys_addr, GFP_KERNEL);
176 	if (!block->vaddr) {
177 		kfree(block);
178 		return NULL;
179 	}
180 
181 	block->size = size;
182 	block->state = IIO_BLOCK_STATE_DONE;
183 	block->queue = queue;
184 	INIT_LIST_HEAD(&block->head);
185 	kref_init(&block->kref);
186 
187 	iio_buffer_get(&queue->buffer);
188 
189 	return block;
190 }
191 
192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193 {
194 	if (block->state != IIO_BLOCK_STATE_DEAD)
195 		block->state = IIO_BLOCK_STATE_DONE;
196 }
197 
198 static void iio_dma_buffer_queue_wake(struct iio_dma_buffer_queue *queue)
199 {
200 	__poll_t flags;
201 
202 	if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN)
203 		flags = EPOLLIN | EPOLLRDNORM;
204 	else
205 		flags = EPOLLOUT | EPOLLWRNORM;
206 
207 	wake_up_interruptible_poll(&queue->buffer.pollq, flags);
208 }
209 
210 /**
211  * iio_dma_buffer_block_done() - Indicate that a block has been completed
212  * @block: The completed block
213  *
214  * Should be called when the DMA controller has finished handling the block to
215  * pass back ownership of the block to the queue.
216  */
217 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
218 {
219 	struct iio_dma_buffer_queue *queue = block->queue;
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&queue->list_lock, flags);
223 	_iio_dma_buffer_block_done(block);
224 	spin_unlock_irqrestore(&queue->list_lock, flags);
225 
226 	iio_buffer_block_put_atomic(block);
227 	iio_dma_buffer_queue_wake(queue);
228 }
229 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
230 
231 /**
232  * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
233  *   aborted
234  * @queue: Queue for which to complete blocks.
235  * @list: List of aborted blocks. All blocks in this list must be from @queue.
236  *
237  * Typically called from the abort() callback after the DMA controller has been
238  * stopped. This will set bytes_used to 0 for each block in the list and then
239  * hand the blocks back to the queue.
240  */
241 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
242 	struct list_head *list)
243 {
244 	struct iio_dma_buffer_block *block, *_block;
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&queue->list_lock, flags);
248 	list_for_each_entry_safe(block, _block, list, head) {
249 		list_del(&block->head);
250 		block->bytes_used = 0;
251 		_iio_dma_buffer_block_done(block);
252 		iio_buffer_block_put_atomic(block);
253 	}
254 	spin_unlock_irqrestore(&queue->list_lock, flags);
255 
256 	iio_dma_buffer_queue_wake(queue);
257 }
258 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
259 
260 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
261 {
262 	/*
263 	 * If the core owns the block it can be re-used. This should be the
264 	 * default case when enabling the buffer, unless the DMA controller does
265 	 * not support abort and has not given back the block yet.
266 	 */
267 	switch (block->state) {
268 	case IIO_BLOCK_STATE_QUEUED:
269 	case IIO_BLOCK_STATE_DONE:
270 		return true;
271 	default:
272 		return false;
273 	}
274 }
275 
276 /**
277  * iio_dma_buffer_request_update() - DMA buffer request_update callback
278  * @buffer: The buffer which to request an update
279  *
280  * Should be used as the iio_dma_buffer_request_update() callback for
281  * iio_buffer_access_ops struct for DMA buffers.
282  */
283 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
284 {
285 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
286 	struct iio_dma_buffer_block *block;
287 	bool try_reuse = false;
288 	size_t size;
289 	int ret = 0;
290 	int i;
291 
292 	/*
293 	 * Split the buffer into two even parts. This is used as a double
294 	 * buffering scheme with usually one block at a time being used by the
295 	 * DMA and the other one by the application.
296 	 */
297 	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
298 		queue->buffer.length, 2);
299 
300 	mutex_lock(&queue->lock);
301 
302 	/* Allocations are page aligned */
303 	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
304 		try_reuse = true;
305 
306 	queue->fileio.block_size = size;
307 	queue->fileio.active_block = NULL;
308 
309 	spin_lock_irq(&queue->list_lock);
310 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
311 		block = queue->fileio.blocks[i];
312 
313 		/* If we can't re-use it free it */
314 		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
315 			block->state = IIO_BLOCK_STATE_DEAD;
316 	}
317 
318 	/*
319 	 * At this point all blocks are either owned by the core or marked as
320 	 * dead. This means we can reset the lists without having to fear
321 	 * corrution.
322 	 */
323 	spin_unlock_irq(&queue->list_lock);
324 
325 	INIT_LIST_HEAD(&queue->incoming);
326 
327 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
328 		if (queue->fileio.blocks[i]) {
329 			block = queue->fileio.blocks[i];
330 			if (block->state == IIO_BLOCK_STATE_DEAD) {
331 				/* Could not reuse it */
332 				iio_buffer_block_put(block);
333 				block = NULL;
334 			} else {
335 				block->size = size;
336 			}
337 		} else {
338 			block = NULL;
339 		}
340 
341 		if (!block) {
342 			block = iio_dma_buffer_alloc_block(queue, size);
343 			if (!block) {
344 				ret = -ENOMEM;
345 				goto out_unlock;
346 			}
347 			queue->fileio.blocks[i] = block;
348 		}
349 
350 		/*
351 		 * block->bytes_used may have been modified previously, e.g. by
352 		 * iio_dma_buffer_block_list_abort(). Reset it here to the
353 		 * block's so that iio_dma_buffer_io() will work.
354 		 */
355 		block->bytes_used = block->size;
356 
357 		/*
358 		 * If it's an input buffer, mark the block as queued, and
359 		 * iio_dma_buffer_enable() will submit it. Otherwise mark it as
360 		 * done, which means it's ready to be dequeued.
361 		 */
362 		if (queue->buffer.direction == IIO_BUFFER_DIRECTION_IN) {
363 			block->state = IIO_BLOCK_STATE_QUEUED;
364 			list_add_tail(&block->head, &queue->incoming);
365 		} else {
366 			block->state = IIO_BLOCK_STATE_DONE;
367 		}
368 	}
369 
370 out_unlock:
371 	mutex_unlock(&queue->lock);
372 
373 	return ret;
374 }
375 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
376 
377 static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue)
378 {
379 	unsigned int i;
380 
381 	spin_lock_irq(&queue->list_lock);
382 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
383 		if (!queue->fileio.blocks[i])
384 			continue;
385 		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
386 	}
387 	spin_unlock_irq(&queue->list_lock);
388 
389 	INIT_LIST_HEAD(&queue->incoming);
390 
391 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
392 		if (!queue->fileio.blocks[i])
393 			continue;
394 		iio_buffer_block_put(queue->fileio.blocks[i]);
395 		queue->fileio.blocks[i] = NULL;
396 	}
397 	queue->fileio.active_block = NULL;
398 }
399 
400 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
401 	struct iio_dma_buffer_block *block)
402 {
403 	int ret;
404 
405 	/*
406 	 * If the hardware has already been removed we put the block into
407 	 * limbo. It will neither be on the incoming nor outgoing list, nor will
408 	 * it ever complete. It will just wait to be freed eventually.
409 	 */
410 	if (!queue->ops)
411 		return;
412 
413 	block->state = IIO_BLOCK_STATE_ACTIVE;
414 	iio_buffer_block_get(block);
415 	ret = queue->ops->submit(queue, block);
416 	if (ret) {
417 		/*
418 		 * This is a bit of a problem and there is not much we can do
419 		 * other then wait for the buffer to be disabled and re-enabled
420 		 * and try again. But it should not really happen unless we run
421 		 * out of memory or something similar.
422 		 *
423 		 * TODO: Implement support in the IIO core to allow buffers to
424 		 * notify consumers that something went wrong and the buffer
425 		 * should be disabled.
426 		 */
427 		iio_buffer_block_put(block);
428 	}
429 }
430 
431 /**
432  * iio_dma_buffer_enable() - Enable DMA buffer
433  * @buffer: IIO buffer to enable
434  * @indio_dev: IIO device the buffer is attached to
435  *
436  * Needs to be called when the device that the buffer is attached to starts
437  * sampling. Typically should be the iio_buffer_access_ops enable callback.
438  *
439  * This will allocate the DMA buffers and start the DMA transfers.
440  */
441 int iio_dma_buffer_enable(struct iio_buffer *buffer,
442 	struct iio_dev *indio_dev)
443 {
444 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
445 	struct iio_dma_buffer_block *block, *_block;
446 
447 	mutex_lock(&queue->lock);
448 	queue->active = true;
449 	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
450 		list_del(&block->head);
451 		iio_dma_buffer_submit_block(queue, block);
452 	}
453 	mutex_unlock(&queue->lock);
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
458 
459 /**
460  * iio_dma_buffer_disable() - Disable DMA buffer
461  * @buffer: IIO DMA buffer to disable
462  * @indio_dev: IIO device the buffer is attached to
463  *
464  * Needs to be called when the device that the buffer is attached to stops
465  * sampling. Typically should be the iio_buffer_access_ops disable callback.
466  */
467 int iio_dma_buffer_disable(struct iio_buffer *buffer,
468 	struct iio_dev *indio_dev)
469 {
470 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
471 
472 	mutex_lock(&queue->lock);
473 	queue->active = false;
474 
475 	if (queue->ops && queue->ops->abort)
476 		queue->ops->abort(queue);
477 	mutex_unlock(&queue->lock);
478 
479 	return 0;
480 }
481 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
482 
483 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
484 	struct iio_dma_buffer_block *block)
485 {
486 	if (block->state == IIO_BLOCK_STATE_DEAD) {
487 		iio_buffer_block_put(block);
488 	} else if (queue->active) {
489 		iio_dma_buffer_submit_block(queue, block);
490 	} else {
491 		block->state = IIO_BLOCK_STATE_QUEUED;
492 		list_add_tail(&block->head, &queue->incoming);
493 	}
494 }
495 
496 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
497 	struct iio_dma_buffer_queue *queue)
498 {
499 	struct iio_dma_buffer_block *block;
500 	unsigned int idx;
501 
502 	spin_lock_irq(&queue->list_lock);
503 
504 	idx = queue->fileio.next_dequeue;
505 	block = queue->fileio.blocks[idx];
506 
507 	if (block->state == IIO_BLOCK_STATE_DONE) {
508 		idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks);
509 		queue->fileio.next_dequeue = idx;
510 	} else {
511 		block = NULL;
512 	}
513 
514 	spin_unlock_irq(&queue->list_lock);
515 
516 	return block;
517 }
518 
519 static int iio_dma_buffer_io(struct iio_buffer *buffer, size_t n,
520 			     char __user *user_buffer, bool is_from_user)
521 {
522 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
523 	struct iio_dma_buffer_block *block;
524 	void *addr;
525 	int ret;
526 
527 	if (n < buffer->bytes_per_datum)
528 		return -EINVAL;
529 
530 	mutex_lock(&queue->lock);
531 
532 	if (!queue->fileio.active_block) {
533 		block = iio_dma_buffer_dequeue(queue);
534 		if (block == NULL) {
535 			ret = 0;
536 			goto out_unlock;
537 		}
538 		queue->fileio.pos = 0;
539 		queue->fileio.active_block = block;
540 	} else {
541 		block = queue->fileio.active_block;
542 	}
543 
544 	n = rounddown(n, buffer->bytes_per_datum);
545 	if (n > block->bytes_used - queue->fileio.pos)
546 		n = block->bytes_used - queue->fileio.pos;
547 	addr = block->vaddr + queue->fileio.pos;
548 
549 	if (is_from_user)
550 		ret = copy_from_user(addr, user_buffer, n);
551 	else
552 		ret = copy_to_user(user_buffer, addr, n);
553 	if (ret) {
554 		ret = -EFAULT;
555 		goto out_unlock;
556 	}
557 
558 	queue->fileio.pos += n;
559 
560 	if (queue->fileio.pos == block->bytes_used) {
561 		queue->fileio.active_block = NULL;
562 		iio_dma_buffer_enqueue(queue, block);
563 	}
564 
565 	ret = n;
566 
567 out_unlock:
568 	mutex_unlock(&queue->lock);
569 
570 	return ret;
571 }
572 
573 /**
574  * iio_dma_buffer_read() - DMA buffer read callback
575  * @buffer: Buffer to read form
576  * @n: Number of bytes to read
577  * @user_buffer: Userspace buffer to copy the data to
578  *
579  * Should be used as the read callback for iio_buffer_access_ops
580  * struct for DMA buffers.
581  */
582 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
583 			char __user *user_buffer)
584 {
585 	return iio_dma_buffer_io(buffer, n, user_buffer, false);
586 }
587 EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
588 
589 /**
590  * iio_dma_buffer_write() - DMA buffer write callback
591  * @buffer: Buffer to read form
592  * @n: Number of bytes to read
593  * @user_buffer: Userspace buffer to copy the data from
594  *
595  * Should be used as the write callback for iio_buffer_access_ops
596  * struct for DMA buffers.
597  */
598 int iio_dma_buffer_write(struct iio_buffer *buffer, size_t n,
599 			 const char __user *user_buffer)
600 {
601 	return iio_dma_buffer_io(buffer, n,
602 				 (__force __user char *)user_buffer, true);
603 }
604 EXPORT_SYMBOL_GPL(iio_dma_buffer_write);
605 
606 /**
607  * iio_dma_buffer_usage() - DMA buffer data_available and
608  * space_available callback
609  * @buf: Buffer to check for data availability
610  *
611  * Should be used as the data_available and space_available callbacks for
612  * iio_buffer_access_ops struct for DMA buffers.
613  */
614 size_t iio_dma_buffer_usage(struct iio_buffer *buf)
615 {
616 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
617 	struct iio_dma_buffer_block *block;
618 	size_t data_available = 0;
619 	unsigned int i;
620 
621 	/*
622 	 * For counting the available bytes we'll use the size of the block not
623 	 * the number of actual bytes available in the block. Otherwise it is
624 	 * possible that we end up with a value that is lower than the watermark
625 	 * but won't increase since all blocks are in use.
626 	 */
627 
628 	mutex_lock(&queue->lock);
629 	if (queue->fileio.active_block)
630 		data_available += queue->fileio.active_block->size;
631 
632 	spin_lock_irq(&queue->list_lock);
633 
634 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
635 		block = queue->fileio.blocks[i];
636 
637 		if (block != queue->fileio.active_block
638 		    && block->state == IIO_BLOCK_STATE_DONE)
639 			data_available += block->size;
640 	}
641 
642 	spin_unlock_irq(&queue->list_lock);
643 	mutex_unlock(&queue->lock);
644 
645 	return data_available;
646 }
647 EXPORT_SYMBOL_GPL(iio_dma_buffer_usage);
648 
649 /**
650  * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
651  * @buffer: Buffer to set the bytes-per-datum for
652  * @bpd: The new bytes-per-datum value
653  *
654  * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
655  * struct for DMA buffers.
656  */
657 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
658 {
659 	buffer->bytes_per_datum = bpd;
660 
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
664 
665 /**
666  * iio_dma_buffer_set_length - DMA buffer set_length callback
667  * @buffer: Buffer to set the length for
668  * @length: The new buffer length
669  *
670  * Should be used as the set_length callback for iio_buffer_access_ops
671  * struct for DMA buffers.
672  */
673 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
674 {
675 	/* Avoid an invalid state */
676 	if (length < 2)
677 		length = 2;
678 	buffer->length = length;
679 	buffer->watermark = length / 2;
680 
681 	return 0;
682 }
683 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
684 
685 /**
686  * iio_dma_buffer_init() - Initialize DMA buffer queue
687  * @queue: Buffer to initialize
688  * @dev: DMA device
689  * @ops: DMA buffer queue callback operations
690  *
691  * The DMA device will be used by the queue to do DMA memory allocations. So it
692  * should refer to the device that will perform the DMA to ensure that
693  * allocations are done from a memory region that can be accessed by the device.
694  */
695 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
696 	struct device *dev, const struct iio_dma_buffer_ops *ops)
697 {
698 	iio_buffer_init(&queue->buffer);
699 	queue->buffer.length = PAGE_SIZE;
700 	queue->buffer.watermark = queue->buffer.length / 2;
701 	queue->dev = dev;
702 	queue->ops = ops;
703 
704 	INIT_LIST_HEAD(&queue->incoming);
705 
706 	mutex_init(&queue->lock);
707 	spin_lock_init(&queue->list_lock);
708 
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
712 
713 /**
714  * iio_dma_buffer_exit() - Cleanup DMA buffer queue
715  * @queue: Buffer to cleanup
716  *
717  * After this function has completed it is safe to free any resources that are
718  * associated with the buffer and are accessed inside the callback operations.
719  */
720 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
721 {
722 	mutex_lock(&queue->lock);
723 
724 	iio_dma_buffer_fileio_free(queue);
725 	queue->ops = NULL;
726 
727 	mutex_unlock(&queue->lock);
728 }
729 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
730 
731 /**
732  * iio_dma_buffer_release() - Release final buffer resources
733  * @queue: Buffer to release
734  *
735  * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
736  * called in the buffers release callback implementation right before freeing
737  * the memory associated with the buffer.
738  */
739 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
740 {
741 	mutex_destroy(&queue->lock);
742 }
743 EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
744 
745 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
746 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
747 MODULE_LICENSE("GPL v2");
748