xref: /linux/drivers/iio/buffer/industrialio-buffer-dma.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2013-2015 Analog Devices Inc.
4  *  Author: Lars-Peter Clausen <lars@metafoo.de>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/workqueue.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>
14 #include <linux/poll.h>
15 #include <linux/iio/buffer_impl.h>
16 #include <linux/iio/buffer-dma.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sizes.h>
19 
20 /*
21  * For DMA buffers the storage is sub-divided into so called blocks. Each block
22  * has its own memory buffer. The size of the block is the granularity at which
23  * memory is exchanged between the hardware and the application. Increasing the
24  * basic unit of data exchange from one sample to one block decreases the
25  * management overhead that is associated with each sample. E.g. if we say the
26  * management overhead for one exchange is x and the unit of exchange is one
27  * sample the overhead will be x for each sample. Whereas when using a block
28  * which contains n samples the overhead per sample is reduced to x/n. This
29  * allows to achieve much higher samplerates than what can be sustained with
30  * the one sample approach.
31  *
32  * Blocks are exchanged between the DMA controller and the application via the
33  * means of two queues. The incoming queue and the outgoing queue. Blocks on the
34  * incoming queue are waiting for the DMA controller to pick them up and fill
35  * them with data. Block on the outgoing queue have been filled with data and
36  * are waiting for the application to dequeue them and read the data.
37  *
38  * A block can be in one of the following states:
39  *  * Owned by the application. In this state the application can read data from
40  *    the block.
41  *  * On the incoming list: Blocks on the incoming list are queued up to be
42  *    processed by the DMA controller.
43  *  * Owned by the DMA controller: The DMA controller is processing the block
44  *    and filling it with data.
45  *  * On the outgoing list: Blocks on the outgoing list have been successfully
46  *    processed by the DMA controller and contain data. They can be dequeued by
47  *    the application.
48  *  * Dead: A block that is dead has been marked as to be freed. It might still
49  *    be owned by either the application or the DMA controller at the moment.
50  *    But once they are done processing it instead of going to either the
51  *    incoming or outgoing queue the block will be freed.
52  *
53  * In addition to this blocks are reference counted and the memory associated
54  * with both the block structure as well as the storage memory for the block
55  * will be freed when the last reference to the block is dropped. This means a
56  * block must not be accessed without holding a reference.
57  *
58  * The iio_dma_buffer implementation provides a generic infrastructure for
59  * managing the blocks.
60  *
61  * A driver for a specific piece of hardware that has DMA capabilities need to
62  * implement the submit() callback from the iio_dma_buffer_ops structure. This
63  * callback is supposed to initiate the DMA transfer copying data from the
64  * converter to the memory region of the block. Once the DMA transfer has been
65  * completed the driver must call iio_dma_buffer_block_done() for the completed
66  * block.
67  *
68  * Prior to this it must set the bytes_used field of the block contains
69  * the actual number of bytes in the buffer. Typically this will be equal to the
70  * size of the block, but if the DMA hardware has certain alignment requirements
71  * for the transfer length it might choose to use less than the full size. In
72  * either case it is expected that bytes_used is a multiple of the bytes per
73  * datum, i.e. the block must not contain partial samples.
74  *
75  * The driver must call iio_dma_buffer_block_done() for each block it has
76  * received through its submit_block() callback, even if it does not actually
77  * perform a DMA transfer for the block, e.g. because the buffer was disabled
78  * before the block transfer was started. In this case it should set bytes_used
79  * to 0.
80  *
81  * In addition it is recommended that a driver implements the abort() callback.
82  * It will be called when the buffer is disabled and can be used to cancel
83  * pending and stop active transfers.
84  *
85  * The specific driver implementation should use the default callback
86  * implementations provided by this module for the iio_buffer_access_funcs
87  * struct. It may overload some callbacks with custom variants if the hardware
88  * has special requirements that are not handled by the generic functions. If a
89  * driver chooses to overload a callback it has to ensure that the generic
90  * callback is called from within the custom callback.
91  */
92 
93 static void iio_buffer_block_release(struct kref *kref)
94 {
95 	struct iio_dma_buffer_block *block = container_of(kref,
96 		struct iio_dma_buffer_block, kref);
97 
98 	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
99 
100 	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101 					block->vaddr, block->phys_addr);
102 
103 	iio_buffer_put(&block->queue->buffer);
104 	kfree(block);
105 }
106 
107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108 {
109 	kref_get(&block->kref);
110 }
111 
112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113 {
114 	kref_put(&block->kref, iio_buffer_block_release);
115 }
116 
117 /*
118  * dma_free_coherent can sleep, hence we need to take some special care to be
119  * able to drop a reference from an atomic context.
120  */
121 static LIST_HEAD(iio_dma_buffer_dead_blocks);
122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123 
124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125 {
126 	struct iio_dma_buffer_block *block, *_block;
127 	LIST_HEAD(block_list);
128 
129 	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130 	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131 	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132 
133 	list_for_each_entry_safe(block, _block, &block_list, head)
134 		iio_buffer_block_release(&block->kref);
135 }
136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137 
138 static void iio_buffer_block_release_atomic(struct kref *kref)
139 {
140 	struct iio_dma_buffer_block *block;
141 	unsigned long flags;
142 
143 	block = container_of(kref, struct iio_dma_buffer_block, kref);
144 
145 	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146 	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147 	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148 
149 	schedule_work(&iio_dma_buffer_cleanup_work);
150 }
151 
152 /*
153  * Version of iio_buffer_block_put() that can be called from atomic context
154  */
155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156 {
157 	kref_put(&block->kref, iio_buffer_block_release_atomic);
158 }
159 
160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161 {
162 	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163 }
164 
165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166 	struct iio_dma_buffer_queue *queue, size_t size)
167 {
168 	struct iio_dma_buffer_block *block;
169 
170 	block = kzalloc(sizeof(*block), GFP_KERNEL);
171 	if (!block)
172 		return NULL;
173 
174 	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175 		&block->phys_addr, GFP_KERNEL);
176 	if (!block->vaddr) {
177 		kfree(block);
178 		return NULL;
179 	}
180 
181 	block->size = size;
182 	block->state = IIO_BLOCK_STATE_DEQUEUED;
183 	block->queue = queue;
184 	INIT_LIST_HEAD(&block->head);
185 	kref_init(&block->kref);
186 
187 	iio_buffer_get(&queue->buffer);
188 
189 	return block;
190 }
191 
192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193 {
194 	struct iio_dma_buffer_queue *queue = block->queue;
195 
196 	/*
197 	 * The buffer has already been freed by the application, just drop the
198 	 * reference.
199 	 */
200 	if (block->state != IIO_BLOCK_STATE_DEAD) {
201 		block->state = IIO_BLOCK_STATE_DONE;
202 		list_add_tail(&block->head, &queue->outgoing);
203 	}
204 }
205 
206 /**
207  * iio_dma_buffer_block_done() - Indicate that a block has been completed
208  * @block: The completed block
209  *
210  * Should be called when the DMA controller has finished handling the block to
211  * pass back ownership of the block to the queue.
212  */
213 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
214 {
215 	struct iio_dma_buffer_queue *queue = block->queue;
216 	unsigned long flags;
217 
218 	spin_lock_irqsave(&queue->list_lock, flags);
219 	_iio_dma_buffer_block_done(block);
220 	spin_unlock_irqrestore(&queue->list_lock, flags);
221 
222 	iio_buffer_block_put_atomic(block);
223 	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
224 }
225 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
226 
227 /**
228  * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
229  *   aborted
230  * @queue: Queue for which to complete blocks.
231  * @list: List of aborted blocks. All blocks in this list must be from @queue.
232  *
233  * Typically called from the abort() callback after the DMA controller has been
234  * stopped. This will set bytes_used to 0 for each block in the list and then
235  * hand the blocks back to the queue.
236  */
237 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
238 	struct list_head *list)
239 {
240 	struct iio_dma_buffer_block *block, *_block;
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&queue->list_lock, flags);
244 	list_for_each_entry_safe(block, _block, list, head) {
245 		list_del(&block->head);
246 		block->bytes_used = 0;
247 		_iio_dma_buffer_block_done(block);
248 		iio_buffer_block_put_atomic(block);
249 	}
250 	spin_unlock_irqrestore(&queue->list_lock, flags);
251 
252 	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
253 }
254 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
255 
256 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
257 {
258 	/*
259 	 * If the core owns the block it can be re-used. This should be the
260 	 * default case when enabling the buffer, unless the DMA controller does
261 	 * not support abort and has not given back the block yet.
262 	 */
263 	switch (block->state) {
264 	case IIO_BLOCK_STATE_DEQUEUED:
265 	case IIO_BLOCK_STATE_QUEUED:
266 	case IIO_BLOCK_STATE_DONE:
267 		return true;
268 	default:
269 		return false;
270 	}
271 }
272 
273 /**
274  * iio_dma_buffer_request_update() - DMA buffer request_update callback
275  * @buffer: The buffer which to request an update
276  *
277  * Should be used as the iio_dma_buffer_request_update() callback for
278  * iio_buffer_access_ops struct for DMA buffers.
279  */
280 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
281 {
282 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
283 	struct iio_dma_buffer_block *block;
284 	bool try_reuse = false;
285 	size_t size;
286 	int ret = 0;
287 	int i;
288 
289 	/*
290 	 * Split the buffer into two even parts. This is used as a double
291 	 * buffering scheme with usually one block at a time being used by the
292 	 * DMA and the other one by the application.
293 	 */
294 	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
295 		queue->buffer.length, 2);
296 
297 	mutex_lock(&queue->lock);
298 
299 	/* Allocations are page aligned */
300 	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
301 		try_reuse = true;
302 
303 	queue->fileio.block_size = size;
304 	queue->fileio.active_block = NULL;
305 
306 	spin_lock_irq(&queue->list_lock);
307 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
308 		block = queue->fileio.blocks[i];
309 
310 		/* If we can't re-use it free it */
311 		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
312 			block->state = IIO_BLOCK_STATE_DEAD;
313 	}
314 
315 	/*
316 	 * At this point all blocks are either owned by the core or marked as
317 	 * dead. This means we can reset the lists without having to fear
318 	 * corrution.
319 	 */
320 	INIT_LIST_HEAD(&queue->outgoing);
321 	spin_unlock_irq(&queue->list_lock);
322 
323 	INIT_LIST_HEAD(&queue->incoming);
324 
325 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
326 		if (queue->fileio.blocks[i]) {
327 			block = queue->fileio.blocks[i];
328 			if (block->state == IIO_BLOCK_STATE_DEAD) {
329 				/* Could not reuse it */
330 				iio_buffer_block_put(block);
331 				block = NULL;
332 			} else {
333 				block->size = size;
334 			}
335 		} else {
336 			block = NULL;
337 		}
338 
339 		if (!block) {
340 			block = iio_dma_buffer_alloc_block(queue, size);
341 			if (!block) {
342 				ret = -ENOMEM;
343 				goto out_unlock;
344 			}
345 			queue->fileio.blocks[i] = block;
346 		}
347 
348 		block->state = IIO_BLOCK_STATE_QUEUED;
349 		list_add_tail(&block->head, &queue->incoming);
350 	}
351 
352 out_unlock:
353 	mutex_unlock(&queue->lock);
354 
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
358 
359 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
360 	struct iio_dma_buffer_block *block)
361 {
362 	int ret;
363 
364 	/*
365 	 * If the hardware has already been removed we put the block into
366 	 * limbo. It will neither be on the incoming nor outgoing list, nor will
367 	 * it ever complete. It will just wait to be freed eventually.
368 	 */
369 	if (!queue->ops)
370 		return;
371 
372 	block->state = IIO_BLOCK_STATE_ACTIVE;
373 	iio_buffer_block_get(block);
374 	ret = queue->ops->submit(queue, block);
375 	if (ret) {
376 		/*
377 		 * This is a bit of a problem and there is not much we can do
378 		 * other then wait for the buffer to be disabled and re-enabled
379 		 * and try again. But it should not really happen unless we run
380 		 * out of memory or something similar.
381 		 *
382 		 * TODO: Implement support in the IIO core to allow buffers to
383 		 * notify consumers that something went wrong and the buffer
384 		 * should be disabled.
385 		 */
386 		iio_buffer_block_put(block);
387 	}
388 }
389 
390 /**
391  * iio_dma_buffer_enable() - Enable DMA buffer
392  * @buffer: IIO buffer to enable
393  * @indio_dev: IIO device the buffer is attached to
394  *
395  * Needs to be called when the device that the buffer is attached to starts
396  * sampling. Typically should be the iio_buffer_access_ops enable callback.
397  *
398  * This will allocate the DMA buffers and start the DMA transfers.
399  */
400 int iio_dma_buffer_enable(struct iio_buffer *buffer,
401 	struct iio_dev *indio_dev)
402 {
403 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
404 	struct iio_dma_buffer_block *block, *_block;
405 
406 	mutex_lock(&queue->lock);
407 	queue->active = true;
408 	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
409 		list_del(&block->head);
410 		iio_dma_buffer_submit_block(queue, block);
411 	}
412 	mutex_unlock(&queue->lock);
413 
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
417 
418 /**
419  * iio_dma_buffer_disable() - Disable DMA buffer
420  * @buffer: IIO DMA buffer to disable
421  * @indio_dev: IIO device the buffer is attached to
422  *
423  * Needs to be called when the device that the buffer is attached to stops
424  * sampling. Typically should be the iio_buffer_access_ops disable callback.
425  */
426 int iio_dma_buffer_disable(struct iio_buffer *buffer,
427 	struct iio_dev *indio_dev)
428 {
429 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
430 
431 	mutex_lock(&queue->lock);
432 	queue->active = false;
433 
434 	if (queue->ops && queue->ops->abort)
435 		queue->ops->abort(queue);
436 	mutex_unlock(&queue->lock);
437 
438 	return 0;
439 }
440 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
441 
442 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
443 	struct iio_dma_buffer_block *block)
444 {
445 	if (block->state == IIO_BLOCK_STATE_DEAD) {
446 		iio_buffer_block_put(block);
447 	} else if (queue->active) {
448 		iio_dma_buffer_submit_block(queue, block);
449 	} else {
450 		block->state = IIO_BLOCK_STATE_QUEUED;
451 		list_add_tail(&block->head, &queue->incoming);
452 	}
453 }
454 
455 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
456 	struct iio_dma_buffer_queue *queue)
457 {
458 	struct iio_dma_buffer_block *block;
459 
460 	spin_lock_irq(&queue->list_lock);
461 	block = list_first_entry_or_null(&queue->outgoing, struct
462 		iio_dma_buffer_block, head);
463 	if (block != NULL) {
464 		list_del(&block->head);
465 		block->state = IIO_BLOCK_STATE_DEQUEUED;
466 	}
467 	spin_unlock_irq(&queue->list_lock);
468 
469 	return block;
470 }
471 
472 /**
473  * iio_dma_buffer_read() - DMA buffer read callback
474  * @buffer: Buffer to read form
475  * @n: Number of bytes to read
476  * @user_buffer: Userspace buffer to copy the data to
477  *
478  * Should be used as the read callback for iio_buffer_access_ops
479  * struct for DMA buffers.
480  */
481 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
482 	char __user *user_buffer)
483 {
484 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
485 	struct iio_dma_buffer_block *block;
486 	int ret;
487 
488 	if (n < buffer->bytes_per_datum)
489 		return -EINVAL;
490 
491 	mutex_lock(&queue->lock);
492 
493 	if (!queue->fileio.active_block) {
494 		block = iio_dma_buffer_dequeue(queue);
495 		if (block == NULL) {
496 			ret = 0;
497 			goto out_unlock;
498 		}
499 		queue->fileio.pos = 0;
500 		queue->fileio.active_block = block;
501 	} else {
502 		block = queue->fileio.active_block;
503 	}
504 
505 	n = rounddown(n, buffer->bytes_per_datum);
506 	if (n > block->bytes_used - queue->fileio.pos)
507 		n = block->bytes_used - queue->fileio.pos;
508 
509 	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
510 		ret = -EFAULT;
511 		goto out_unlock;
512 	}
513 
514 	queue->fileio.pos += n;
515 
516 	if (queue->fileio.pos == block->bytes_used) {
517 		queue->fileio.active_block = NULL;
518 		iio_dma_buffer_enqueue(queue, block);
519 	}
520 
521 	ret = n;
522 
523 out_unlock:
524 	mutex_unlock(&queue->lock);
525 
526 	return ret;
527 }
528 EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
529 
530 /**
531  * iio_dma_buffer_data_available() - DMA buffer data_available callback
532  * @buf: Buffer to check for data availability
533  *
534  * Should be used as the data_available callback for iio_buffer_access_ops
535  * struct for DMA buffers.
536  */
537 size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
538 {
539 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
540 	struct iio_dma_buffer_block *block;
541 	size_t data_available = 0;
542 
543 	/*
544 	 * For counting the available bytes we'll use the size of the block not
545 	 * the number of actual bytes available in the block. Otherwise it is
546 	 * possible that we end up with a value that is lower than the watermark
547 	 * but won't increase since all blocks are in use.
548 	 */
549 
550 	mutex_lock(&queue->lock);
551 	if (queue->fileio.active_block)
552 		data_available += queue->fileio.active_block->size;
553 
554 	spin_lock_irq(&queue->list_lock);
555 	list_for_each_entry(block, &queue->outgoing, head)
556 		data_available += block->size;
557 	spin_unlock_irq(&queue->list_lock);
558 	mutex_unlock(&queue->lock);
559 
560 	return data_available;
561 }
562 EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
563 
564 /**
565  * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
566  * @buffer: Buffer to set the bytes-per-datum for
567  * @bpd: The new bytes-per-datum value
568  *
569  * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
570  * struct for DMA buffers.
571  */
572 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
573 {
574 	buffer->bytes_per_datum = bpd;
575 
576 	return 0;
577 }
578 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
579 
580 /**
581  * iio_dma_buffer_set_length - DMA buffer set_length callback
582  * @buffer: Buffer to set the length for
583  * @length: The new buffer length
584  *
585  * Should be used as the set_length callback for iio_buffer_access_ops
586  * struct for DMA buffers.
587  */
588 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
589 {
590 	/* Avoid an invalid state */
591 	if (length < 2)
592 		length = 2;
593 	buffer->length = length;
594 	buffer->watermark = length / 2;
595 
596 	return 0;
597 }
598 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
599 
600 /**
601  * iio_dma_buffer_init() - Initialize DMA buffer queue
602  * @queue: Buffer to initialize
603  * @dev: DMA device
604  * @ops: DMA buffer queue callback operations
605  *
606  * The DMA device will be used by the queue to do DMA memory allocations. So it
607  * should refer to the device that will perform the DMA to ensure that
608  * allocations are done from a memory region that can be accessed by the device.
609  */
610 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
611 	struct device *dev, const struct iio_dma_buffer_ops *ops)
612 {
613 	iio_buffer_init(&queue->buffer);
614 	queue->buffer.length = PAGE_SIZE;
615 	queue->buffer.watermark = queue->buffer.length / 2;
616 	queue->dev = dev;
617 	queue->ops = ops;
618 
619 	INIT_LIST_HEAD(&queue->incoming);
620 	INIT_LIST_HEAD(&queue->outgoing);
621 
622 	mutex_init(&queue->lock);
623 	spin_lock_init(&queue->list_lock);
624 
625 	return 0;
626 }
627 EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
628 
629 /**
630  * iio_dma_buffer_exit() - Cleanup DMA buffer queue
631  * @queue: Buffer to cleanup
632  *
633  * After this function has completed it is safe to free any resources that are
634  * associated with the buffer and are accessed inside the callback operations.
635  */
636 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
637 {
638 	unsigned int i;
639 
640 	mutex_lock(&queue->lock);
641 
642 	spin_lock_irq(&queue->list_lock);
643 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
644 		if (!queue->fileio.blocks[i])
645 			continue;
646 		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
647 	}
648 	INIT_LIST_HEAD(&queue->outgoing);
649 	spin_unlock_irq(&queue->list_lock);
650 
651 	INIT_LIST_HEAD(&queue->incoming);
652 
653 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
654 		if (!queue->fileio.blocks[i])
655 			continue;
656 		iio_buffer_block_put(queue->fileio.blocks[i]);
657 		queue->fileio.blocks[i] = NULL;
658 	}
659 	queue->fileio.active_block = NULL;
660 	queue->ops = NULL;
661 
662 	mutex_unlock(&queue->lock);
663 }
664 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
665 
666 /**
667  * iio_dma_buffer_release() - Release final buffer resources
668  * @queue: Buffer to release
669  *
670  * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
671  * called in the buffers release callback implementation right before freeing
672  * the memory associated with the buffer.
673  */
674 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
675 {
676 	mutex_destroy(&queue->lock);
677 }
678 EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
679 
680 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
681 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
682 MODULE_LICENSE("GPL v2");
683