xref: /linux/drivers/iio/buffer/industrialio-buffer-dma.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2013-2015 Analog Devices Inc.
4  *  Author: Lars-Peter Clausen <lars@metafoo.de>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/workqueue.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>
14 #include <linux/poll.h>
15 #include <linux/iio/buffer_impl.h>
16 #include <linux/iio/buffer-dma.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sizes.h>
19 
20 /*
21  * For DMA buffers the storage is sub-divided into so called blocks. Each block
22  * has its own memory buffer. The size of the block is the granularity at which
23  * memory is exchanged between the hardware and the application. Increasing the
24  * basic unit of data exchange from one sample to one block decreases the
25  * management overhead that is associated with each sample. E.g. if we say the
26  * management overhead for one exchange is x and the unit of exchange is one
27  * sample the overhead will be x for each sample. Whereas when using a block
28  * which contains n samples the overhead per sample is reduced to x/n. This
29  * allows to achieve much higher samplerates than what can be sustained with
30  * the one sample approach.
31  *
32  * Blocks are exchanged between the DMA controller and the application via the
33  * means of two queues. The incoming queue and the outgoing queue. Blocks on the
34  * incoming queue are waiting for the DMA controller to pick them up and fill
35  * them with data. Block on the outgoing queue have been filled with data and
36  * are waiting for the application to dequeue them and read the data.
37  *
38  * A block can be in one of the following states:
39  *  * Owned by the application. In this state the application can read data from
40  *    the block.
41  *  * On the incoming list: Blocks on the incoming list are queued up to be
42  *    processed by the DMA controller.
43  *  * Owned by the DMA controller: The DMA controller is processing the block
44  *    and filling it with data.
45  *  * On the outgoing list: Blocks on the outgoing list have been successfully
46  *    processed by the DMA controller and contain data. They can be dequeued by
47  *    the application.
48  *  * Dead: A block that is dead has been marked as to be freed. It might still
49  *    be owned by either the application or the DMA controller at the moment.
50  *    But once they are done processing it instead of going to either the
51  *    incoming or outgoing queue the block will be freed.
52  *
53  * In addition to this blocks are reference counted and the memory associated
54  * with both the block structure as well as the storage memory for the block
55  * will be freed when the last reference to the block is dropped. This means a
56  * block must not be accessed without holding a reference.
57  *
58  * The iio_dma_buffer implementation provides a generic infrastructure for
59  * managing the blocks.
60  *
61  * A driver for a specific piece of hardware that has DMA capabilities need to
62  * implement the submit() callback from the iio_dma_buffer_ops structure. This
63  * callback is supposed to initiate the DMA transfer copying data from the
64  * converter to the memory region of the block. Once the DMA transfer has been
65  * completed the driver must call iio_dma_buffer_block_done() for the completed
66  * block.
67  *
68  * Prior to this it must set the bytes_used field of the block contains
69  * the actual number of bytes in the buffer. Typically this will be equal to the
70  * size of the block, but if the DMA hardware has certain alignment requirements
71  * for the transfer length it might choose to use less than the full size. In
72  * either case it is expected that bytes_used is a multiple of the bytes per
73  * datum, i.e. the block must not contain partial samples.
74  *
75  * The driver must call iio_dma_buffer_block_done() for each block it has
76  * received through its submit_block() callback, even if it does not actually
77  * perform a DMA transfer for the block, e.g. because the buffer was disabled
78  * before the block transfer was started. In this case it should set bytes_used
79  * to 0.
80  *
81  * In addition it is recommended that a driver implements the abort() callback.
82  * It will be called when the buffer is disabled and can be used to cancel
83  * pending and stop active transfers.
84  *
85  * The specific driver implementation should use the default callback
86  * implementations provided by this module for the iio_buffer_access_funcs
87  * struct. It may overload some callbacks with custom variants if the hardware
88  * has special requirements that are not handled by the generic functions. If a
89  * driver chooses to overload a callback it has to ensure that the generic
90  * callback is called from within the custom callback.
91  */
92 
93 static void iio_buffer_block_release(struct kref *kref)
94 {
95 	struct iio_dma_buffer_block *block = container_of(kref,
96 		struct iio_dma_buffer_block, kref);
97 
98 	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
99 
100 	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101 					block->vaddr, block->phys_addr);
102 
103 	iio_buffer_put(&block->queue->buffer);
104 	kfree(block);
105 }
106 
107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108 {
109 	kref_get(&block->kref);
110 }
111 
112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113 {
114 	kref_put(&block->kref, iio_buffer_block_release);
115 }
116 
117 /*
118  * dma_free_coherent can sleep, hence we need to take some special care to be
119  * able to drop a reference from an atomic context.
120  */
121 static LIST_HEAD(iio_dma_buffer_dead_blocks);
122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123 
124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125 {
126 	struct iio_dma_buffer_block *block, *_block;
127 	LIST_HEAD(block_list);
128 
129 	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130 	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131 	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132 
133 	list_for_each_entry_safe(block, _block, &block_list, head)
134 		iio_buffer_block_release(&block->kref);
135 }
136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137 
138 static void iio_buffer_block_release_atomic(struct kref *kref)
139 {
140 	struct iio_dma_buffer_block *block;
141 	unsigned long flags;
142 
143 	block = container_of(kref, struct iio_dma_buffer_block, kref);
144 
145 	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146 	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147 	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148 
149 	schedule_work(&iio_dma_buffer_cleanup_work);
150 }
151 
152 /*
153  * Version of iio_buffer_block_put() that can be called from atomic context
154  */
155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156 {
157 	kref_put(&block->kref, iio_buffer_block_release_atomic);
158 }
159 
160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161 {
162 	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163 }
164 
165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166 	struct iio_dma_buffer_queue *queue, size_t size)
167 {
168 	struct iio_dma_buffer_block *block;
169 
170 	block = kzalloc(sizeof(*block), GFP_KERNEL);
171 	if (!block)
172 		return NULL;
173 
174 	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175 		&block->phys_addr, GFP_KERNEL);
176 	if (!block->vaddr) {
177 		kfree(block);
178 		return NULL;
179 	}
180 
181 	block->size = size;
182 	block->state = IIO_BLOCK_STATE_DONE;
183 	block->queue = queue;
184 	INIT_LIST_HEAD(&block->head);
185 	kref_init(&block->kref);
186 
187 	iio_buffer_get(&queue->buffer);
188 
189 	return block;
190 }
191 
192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193 {
194 	if (block->state != IIO_BLOCK_STATE_DEAD)
195 		block->state = IIO_BLOCK_STATE_DONE;
196 }
197 
198 /**
199  * iio_dma_buffer_block_done() - Indicate that a block has been completed
200  * @block: The completed block
201  *
202  * Should be called when the DMA controller has finished handling the block to
203  * pass back ownership of the block to the queue.
204  */
205 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
206 {
207 	struct iio_dma_buffer_queue *queue = block->queue;
208 	unsigned long flags;
209 
210 	spin_lock_irqsave(&queue->list_lock, flags);
211 	_iio_dma_buffer_block_done(block);
212 	spin_unlock_irqrestore(&queue->list_lock, flags);
213 
214 	iio_buffer_block_put_atomic(block);
215 	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
216 }
217 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
218 
219 /**
220  * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
221  *   aborted
222  * @queue: Queue for which to complete blocks.
223  * @list: List of aborted blocks. All blocks in this list must be from @queue.
224  *
225  * Typically called from the abort() callback after the DMA controller has been
226  * stopped. This will set bytes_used to 0 for each block in the list and then
227  * hand the blocks back to the queue.
228  */
229 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
230 	struct list_head *list)
231 {
232 	struct iio_dma_buffer_block *block, *_block;
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&queue->list_lock, flags);
236 	list_for_each_entry_safe(block, _block, list, head) {
237 		list_del(&block->head);
238 		block->bytes_used = 0;
239 		_iio_dma_buffer_block_done(block);
240 		iio_buffer_block_put_atomic(block);
241 	}
242 	spin_unlock_irqrestore(&queue->list_lock, flags);
243 
244 	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
245 }
246 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
247 
248 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
249 {
250 	/*
251 	 * If the core owns the block it can be re-used. This should be the
252 	 * default case when enabling the buffer, unless the DMA controller does
253 	 * not support abort and has not given back the block yet.
254 	 */
255 	switch (block->state) {
256 	case IIO_BLOCK_STATE_QUEUED:
257 	case IIO_BLOCK_STATE_DONE:
258 		return true;
259 	default:
260 		return false;
261 	}
262 }
263 
264 /**
265  * iio_dma_buffer_request_update() - DMA buffer request_update callback
266  * @buffer: The buffer which to request an update
267  *
268  * Should be used as the iio_dma_buffer_request_update() callback for
269  * iio_buffer_access_ops struct for DMA buffers.
270  */
271 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
272 {
273 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
274 	struct iio_dma_buffer_block *block;
275 	bool try_reuse = false;
276 	size_t size;
277 	int ret = 0;
278 	int i;
279 
280 	/*
281 	 * Split the buffer into two even parts. This is used as a double
282 	 * buffering scheme with usually one block at a time being used by the
283 	 * DMA and the other one by the application.
284 	 */
285 	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
286 		queue->buffer.length, 2);
287 
288 	mutex_lock(&queue->lock);
289 
290 	/* Allocations are page aligned */
291 	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
292 		try_reuse = true;
293 
294 	queue->fileio.block_size = size;
295 	queue->fileio.active_block = NULL;
296 
297 	spin_lock_irq(&queue->list_lock);
298 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
299 		block = queue->fileio.blocks[i];
300 
301 		/* If we can't re-use it free it */
302 		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
303 			block->state = IIO_BLOCK_STATE_DEAD;
304 	}
305 
306 	/*
307 	 * At this point all blocks are either owned by the core or marked as
308 	 * dead. This means we can reset the lists without having to fear
309 	 * corrution.
310 	 */
311 	spin_unlock_irq(&queue->list_lock);
312 
313 	INIT_LIST_HEAD(&queue->incoming);
314 
315 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
316 		if (queue->fileio.blocks[i]) {
317 			block = queue->fileio.blocks[i];
318 			if (block->state == IIO_BLOCK_STATE_DEAD) {
319 				/* Could not reuse it */
320 				iio_buffer_block_put(block);
321 				block = NULL;
322 			} else {
323 				block->size = size;
324 			}
325 		} else {
326 			block = NULL;
327 		}
328 
329 		if (!block) {
330 			block = iio_dma_buffer_alloc_block(queue, size);
331 			if (!block) {
332 				ret = -ENOMEM;
333 				goto out_unlock;
334 			}
335 			queue->fileio.blocks[i] = block;
336 		}
337 
338 		block->state = IIO_BLOCK_STATE_QUEUED;
339 		list_add_tail(&block->head, &queue->incoming);
340 	}
341 
342 out_unlock:
343 	mutex_unlock(&queue->lock);
344 
345 	return ret;
346 }
347 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
348 
349 static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue)
350 {
351 	unsigned int i;
352 
353 	spin_lock_irq(&queue->list_lock);
354 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
355 		if (!queue->fileio.blocks[i])
356 			continue;
357 		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
358 	}
359 	spin_unlock_irq(&queue->list_lock);
360 
361 	INIT_LIST_HEAD(&queue->incoming);
362 
363 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
364 		if (!queue->fileio.blocks[i])
365 			continue;
366 		iio_buffer_block_put(queue->fileio.blocks[i]);
367 		queue->fileio.blocks[i] = NULL;
368 	}
369 	queue->fileio.active_block = NULL;
370 }
371 
372 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
373 	struct iio_dma_buffer_block *block)
374 {
375 	int ret;
376 
377 	/*
378 	 * If the hardware has already been removed we put the block into
379 	 * limbo. It will neither be on the incoming nor outgoing list, nor will
380 	 * it ever complete. It will just wait to be freed eventually.
381 	 */
382 	if (!queue->ops)
383 		return;
384 
385 	block->state = IIO_BLOCK_STATE_ACTIVE;
386 	iio_buffer_block_get(block);
387 	ret = queue->ops->submit(queue, block);
388 	if (ret) {
389 		/*
390 		 * This is a bit of a problem and there is not much we can do
391 		 * other then wait for the buffer to be disabled and re-enabled
392 		 * and try again. But it should not really happen unless we run
393 		 * out of memory or something similar.
394 		 *
395 		 * TODO: Implement support in the IIO core to allow buffers to
396 		 * notify consumers that something went wrong and the buffer
397 		 * should be disabled.
398 		 */
399 		iio_buffer_block_put(block);
400 	}
401 }
402 
403 /**
404  * iio_dma_buffer_enable() - Enable DMA buffer
405  * @buffer: IIO buffer to enable
406  * @indio_dev: IIO device the buffer is attached to
407  *
408  * Needs to be called when the device that the buffer is attached to starts
409  * sampling. Typically should be the iio_buffer_access_ops enable callback.
410  *
411  * This will allocate the DMA buffers and start the DMA transfers.
412  */
413 int iio_dma_buffer_enable(struct iio_buffer *buffer,
414 	struct iio_dev *indio_dev)
415 {
416 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
417 	struct iio_dma_buffer_block *block, *_block;
418 
419 	mutex_lock(&queue->lock);
420 	queue->active = true;
421 	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
422 		list_del(&block->head);
423 		iio_dma_buffer_submit_block(queue, block);
424 	}
425 	mutex_unlock(&queue->lock);
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
430 
431 /**
432  * iio_dma_buffer_disable() - Disable DMA buffer
433  * @buffer: IIO DMA buffer to disable
434  * @indio_dev: IIO device the buffer is attached to
435  *
436  * Needs to be called when the device that the buffer is attached to stops
437  * sampling. Typically should be the iio_buffer_access_ops disable callback.
438  */
439 int iio_dma_buffer_disable(struct iio_buffer *buffer,
440 	struct iio_dev *indio_dev)
441 {
442 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
443 
444 	mutex_lock(&queue->lock);
445 	queue->active = false;
446 
447 	if (queue->ops && queue->ops->abort)
448 		queue->ops->abort(queue);
449 	mutex_unlock(&queue->lock);
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
454 
455 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
456 	struct iio_dma_buffer_block *block)
457 {
458 	if (block->state == IIO_BLOCK_STATE_DEAD) {
459 		iio_buffer_block_put(block);
460 	} else if (queue->active) {
461 		iio_dma_buffer_submit_block(queue, block);
462 	} else {
463 		block->state = IIO_BLOCK_STATE_QUEUED;
464 		list_add_tail(&block->head, &queue->incoming);
465 	}
466 }
467 
468 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
469 	struct iio_dma_buffer_queue *queue)
470 {
471 	struct iio_dma_buffer_block *block;
472 	unsigned int idx;
473 
474 	spin_lock_irq(&queue->list_lock);
475 
476 	idx = queue->fileio.next_dequeue;
477 	block = queue->fileio.blocks[idx];
478 
479 	if (block->state == IIO_BLOCK_STATE_DONE) {
480 		idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks);
481 		queue->fileio.next_dequeue = idx;
482 	} else {
483 		block = NULL;
484 	}
485 
486 	spin_unlock_irq(&queue->list_lock);
487 
488 	return block;
489 }
490 
491 /**
492  * iio_dma_buffer_read() - DMA buffer read callback
493  * @buffer: Buffer to read form
494  * @n: Number of bytes to read
495  * @user_buffer: Userspace buffer to copy the data to
496  *
497  * Should be used as the read callback for iio_buffer_access_ops
498  * struct for DMA buffers.
499  */
500 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
501 	char __user *user_buffer)
502 {
503 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
504 	struct iio_dma_buffer_block *block;
505 	int ret;
506 
507 	if (n < buffer->bytes_per_datum)
508 		return -EINVAL;
509 
510 	mutex_lock(&queue->lock);
511 
512 	if (!queue->fileio.active_block) {
513 		block = iio_dma_buffer_dequeue(queue);
514 		if (block == NULL) {
515 			ret = 0;
516 			goto out_unlock;
517 		}
518 		queue->fileio.pos = 0;
519 		queue->fileio.active_block = block;
520 	} else {
521 		block = queue->fileio.active_block;
522 	}
523 
524 	n = rounddown(n, buffer->bytes_per_datum);
525 	if (n > block->bytes_used - queue->fileio.pos)
526 		n = block->bytes_used - queue->fileio.pos;
527 
528 	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
529 		ret = -EFAULT;
530 		goto out_unlock;
531 	}
532 
533 	queue->fileio.pos += n;
534 
535 	if (queue->fileio.pos == block->bytes_used) {
536 		queue->fileio.active_block = NULL;
537 		iio_dma_buffer_enqueue(queue, block);
538 	}
539 
540 	ret = n;
541 
542 out_unlock:
543 	mutex_unlock(&queue->lock);
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
548 
549 /**
550  * iio_dma_buffer_data_available() - DMA buffer data_available callback
551  * @buf: Buffer to check for data availability
552  *
553  * Should be used as the data_available callback for iio_buffer_access_ops
554  * struct for DMA buffers.
555  */
556 size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
557 {
558 	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
559 	struct iio_dma_buffer_block *block;
560 	size_t data_available = 0;
561 	unsigned int i;
562 
563 	/*
564 	 * For counting the available bytes we'll use the size of the block not
565 	 * the number of actual bytes available in the block. Otherwise it is
566 	 * possible that we end up with a value that is lower than the watermark
567 	 * but won't increase since all blocks are in use.
568 	 */
569 
570 	mutex_lock(&queue->lock);
571 	if (queue->fileio.active_block)
572 		data_available += queue->fileio.active_block->size;
573 
574 	spin_lock_irq(&queue->list_lock);
575 
576 	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
577 		block = queue->fileio.blocks[i];
578 
579 		if (block != queue->fileio.active_block
580 		    && block->state == IIO_BLOCK_STATE_DONE)
581 			data_available += block->size;
582 	}
583 
584 	spin_unlock_irq(&queue->list_lock);
585 	mutex_unlock(&queue->lock);
586 
587 	return data_available;
588 }
589 EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
590 
591 /**
592  * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
593  * @buffer: Buffer to set the bytes-per-datum for
594  * @bpd: The new bytes-per-datum value
595  *
596  * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
597  * struct for DMA buffers.
598  */
599 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
600 {
601 	buffer->bytes_per_datum = bpd;
602 
603 	return 0;
604 }
605 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
606 
607 /**
608  * iio_dma_buffer_set_length - DMA buffer set_length callback
609  * @buffer: Buffer to set the length for
610  * @length: The new buffer length
611  *
612  * Should be used as the set_length callback for iio_buffer_access_ops
613  * struct for DMA buffers.
614  */
615 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
616 {
617 	/* Avoid an invalid state */
618 	if (length < 2)
619 		length = 2;
620 	buffer->length = length;
621 	buffer->watermark = length / 2;
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
626 
627 /**
628  * iio_dma_buffer_init() - Initialize DMA buffer queue
629  * @queue: Buffer to initialize
630  * @dev: DMA device
631  * @ops: DMA buffer queue callback operations
632  *
633  * The DMA device will be used by the queue to do DMA memory allocations. So it
634  * should refer to the device that will perform the DMA to ensure that
635  * allocations are done from a memory region that can be accessed by the device.
636  */
637 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
638 	struct device *dev, const struct iio_dma_buffer_ops *ops)
639 {
640 	iio_buffer_init(&queue->buffer);
641 	queue->buffer.length = PAGE_SIZE;
642 	queue->buffer.watermark = queue->buffer.length / 2;
643 	queue->dev = dev;
644 	queue->ops = ops;
645 
646 	INIT_LIST_HEAD(&queue->incoming);
647 
648 	mutex_init(&queue->lock);
649 	spin_lock_init(&queue->list_lock);
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
654 
655 /**
656  * iio_dma_buffer_exit() - Cleanup DMA buffer queue
657  * @queue: Buffer to cleanup
658  *
659  * After this function has completed it is safe to free any resources that are
660  * associated with the buffer and are accessed inside the callback operations.
661  */
662 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
663 {
664 	mutex_lock(&queue->lock);
665 
666 	iio_dma_buffer_fileio_free(queue);
667 	queue->ops = NULL;
668 
669 	mutex_unlock(&queue->lock);
670 }
671 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
672 
673 /**
674  * iio_dma_buffer_release() - Release final buffer resources
675  * @queue: Buffer to release
676  *
677  * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
678  * called in the buffers release callback implementation right before freeing
679  * the memory associated with the buffer.
680  */
681 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
682 {
683 	mutex_destroy(&queue->lock);
684 }
685 EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
686 
687 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
688 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
689 MODULE_LICENSE("GPL v2");
690