1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2013-2015 Analog Devices Inc. 4 * Author: Lars-Peter Clausen <lars@metafoo.de> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/device.h> 11 #include <linux/workqueue.h> 12 #include <linux/mutex.h> 13 #include <linux/sched.h> 14 #include <linux/poll.h> 15 #include <linux/iio/buffer_impl.h> 16 #include <linux/iio/buffer-dma.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sizes.h> 19 20 /* 21 * For DMA buffers the storage is sub-divided into so called blocks. Each block 22 * has its own memory buffer. The size of the block is the granularity at which 23 * memory is exchanged between the hardware and the application. Increasing the 24 * basic unit of data exchange from one sample to one block decreases the 25 * management overhead that is associated with each sample. E.g. if we say the 26 * management overhead for one exchange is x and the unit of exchange is one 27 * sample the overhead will be x for each sample. Whereas when using a block 28 * which contains n samples the overhead per sample is reduced to x/n. This 29 * allows to achieve much higher samplerates than what can be sustained with 30 * the one sample approach. 31 * 32 * Blocks are exchanged between the DMA controller and the application via the 33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the 34 * incoming queue are waiting for the DMA controller to pick them up and fill 35 * them with data. Block on the outgoing queue have been filled with data and 36 * are waiting for the application to dequeue them and read the data. 37 * 38 * A block can be in one of the following states: 39 * * Owned by the application. In this state the application can read data from 40 * the block. 41 * * On the incoming list: Blocks on the incoming list are queued up to be 42 * processed by the DMA controller. 43 * * Owned by the DMA controller: The DMA controller is processing the block 44 * and filling it with data. 45 * * On the outgoing list: Blocks on the outgoing list have been successfully 46 * processed by the DMA controller and contain data. They can be dequeued by 47 * the application. 48 * * Dead: A block that is dead has been marked as to be freed. It might still 49 * be owned by either the application or the DMA controller at the moment. 50 * But once they are done processing it instead of going to either the 51 * incoming or outgoing queue the block will be freed. 52 * 53 * In addition to this blocks are reference counted and the memory associated 54 * with both the block structure as well as the storage memory for the block 55 * will be freed when the last reference to the block is dropped. This means a 56 * block must not be accessed without holding a reference. 57 * 58 * The iio_dma_buffer implementation provides a generic infrastructure for 59 * managing the blocks. 60 * 61 * A driver for a specific piece of hardware that has DMA capabilities need to 62 * implement the submit() callback from the iio_dma_buffer_ops structure. This 63 * callback is supposed to initiate the DMA transfer copying data from the 64 * converter to the memory region of the block. Once the DMA transfer has been 65 * completed the driver must call iio_dma_buffer_block_done() for the completed 66 * block. 67 * 68 * Prior to this it must set the bytes_used field of the block contains 69 * the actual number of bytes in the buffer. Typically this will be equal to the 70 * size of the block, but if the DMA hardware has certain alignment requirements 71 * for the transfer length it might choose to use less than the full size. In 72 * either case it is expected that bytes_used is a multiple of the bytes per 73 * datum, i.e. the block must not contain partial samples. 74 * 75 * The driver must call iio_dma_buffer_block_done() for each block it has 76 * received through its submit_block() callback, even if it does not actually 77 * perform a DMA transfer for the block, e.g. because the buffer was disabled 78 * before the block transfer was started. In this case it should set bytes_used 79 * to 0. 80 * 81 * In addition it is recommended that a driver implements the abort() callback. 82 * It will be called when the buffer is disabled and can be used to cancel 83 * pending and stop active transfers. 84 * 85 * The specific driver implementation should use the default callback 86 * implementations provided by this module for the iio_buffer_access_funcs 87 * struct. It may overload some callbacks with custom variants if the hardware 88 * has special requirements that are not handled by the generic functions. If a 89 * driver chooses to overload a callback it has to ensure that the generic 90 * callback is called from within the custom callback. 91 */ 92 93 static void iio_buffer_block_release(struct kref *kref) 94 { 95 struct iio_dma_buffer_block *block = container_of(kref, 96 struct iio_dma_buffer_block, kref); 97 98 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); 99 100 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), 101 block->vaddr, block->phys_addr); 102 103 iio_buffer_put(&block->queue->buffer); 104 kfree(block); 105 } 106 107 static void iio_buffer_block_get(struct iio_dma_buffer_block *block) 108 { 109 kref_get(&block->kref); 110 } 111 112 static void iio_buffer_block_put(struct iio_dma_buffer_block *block) 113 { 114 kref_put(&block->kref, iio_buffer_block_release); 115 } 116 117 /* 118 * dma_free_coherent can sleep, hence we need to take some special care to be 119 * able to drop a reference from an atomic context. 120 */ 121 static LIST_HEAD(iio_dma_buffer_dead_blocks); 122 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock); 123 124 static void iio_dma_buffer_cleanup_worker(struct work_struct *work) 125 { 126 struct iio_dma_buffer_block *block, *_block; 127 LIST_HEAD(block_list); 128 129 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock); 130 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list); 131 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock); 132 133 list_for_each_entry_safe(block, _block, &block_list, head) 134 iio_buffer_block_release(&block->kref); 135 } 136 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker); 137 138 static void iio_buffer_block_release_atomic(struct kref *kref) 139 { 140 struct iio_dma_buffer_block *block; 141 unsigned long flags; 142 143 block = container_of(kref, struct iio_dma_buffer_block, kref); 144 145 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags); 146 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); 147 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags); 148 149 schedule_work(&iio_dma_buffer_cleanup_work); 150 } 151 152 /* 153 * Version of iio_buffer_block_put() that can be called from atomic context 154 */ 155 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) 156 { 157 kref_put(&block->kref, iio_buffer_block_release_atomic); 158 } 159 160 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf) 161 { 162 return container_of(buf, struct iio_dma_buffer_queue, buffer); 163 } 164 165 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block( 166 struct iio_dma_buffer_queue *queue, size_t size) 167 { 168 struct iio_dma_buffer_block *block; 169 170 block = kzalloc(sizeof(*block), GFP_KERNEL); 171 if (!block) 172 return NULL; 173 174 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), 175 &block->phys_addr, GFP_KERNEL); 176 if (!block->vaddr) { 177 kfree(block); 178 return NULL; 179 } 180 181 block->size = size; 182 block->state = IIO_BLOCK_STATE_DONE; 183 block->queue = queue; 184 INIT_LIST_HEAD(&block->head); 185 kref_init(&block->kref); 186 187 iio_buffer_get(&queue->buffer); 188 189 return block; 190 } 191 192 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) 193 { 194 if (block->state != IIO_BLOCK_STATE_DEAD) 195 block->state = IIO_BLOCK_STATE_DONE; 196 } 197 198 /** 199 * iio_dma_buffer_block_done() - Indicate that a block has been completed 200 * @block: The completed block 201 * 202 * Should be called when the DMA controller has finished handling the block to 203 * pass back ownership of the block to the queue. 204 */ 205 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) 206 { 207 struct iio_dma_buffer_queue *queue = block->queue; 208 unsigned long flags; 209 210 spin_lock_irqsave(&queue->list_lock, flags); 211 _iio_dma_buffer_block_done(block); 212 spin_unlock_irqrestore(&queue->list_lock, flags); 213 214 iio_buffer_block_put_atomic(block); 215 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); 216 } 217 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done); 218 219 /** 220 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been 221 * aborted 222 * @queue: Queue for which to complete blocks. 223 * @list: List of aborted blocks. All blocks in this list must be from @queue. 224 * 225 * Typically called from the abort() callback after the DMA controller has been 226 * stopped. This will set bytes_used to 0 for each block in the list and then 227 * hand the blocks back to the queue. 228 */ 229 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue, 230 struct list_head *list) 231 { 232 struct iio_dma_buffer_block *block, *_block; 233 unsigned long flags; 234 235 spin_lock_irqsave(&queue->list_lock, flags); 236 list_for_each_entry_safe(block, _block, list, head) { 237 list_del(&block->head); 238 block->bytes_used = 0; 239 _iio_dma_buffer_block_done(block); 240 iio_buffer_block_put_atomic(block); 241 } 242 spin_unlock_irqrestore(&queue->list_lock, flags); 243 244 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); 245 } 246 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort); 247 248 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) 249 { 250 /* 251 * If the core owns the block it can be re-used. This should be the 252 * default case when enabling the buffer, unless the DMA controller does 253 * not support abort and has not given back the block yet. 254 */ 255 switch (block->state) { 256 case IIO_BLOCK_STATE_QUEUED: 257 case IIO_BLOCK_STATE_DONE: 258 return true; 259 default: 260 return false; 261 } 262 } 263 264 /** 265 * iio_dma_buffer_request_update() - DMA buffer request_update callback 266 * @buffer: The buffer which to request an update 267 * 268 * Should be used as the iio_dma_buffer_request_update() callback for 269 * iio_buffer_access_ops struct for DMA buffers. 270 */ 271 int iio_dma_buffer_request_update(struct iio_buffer *buffer) 272 { 273 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 274 struct iio_dma_buffer_block *block; 275 bool try_reuse = false; 276 size_t size; 277 int ret = 0; 278 int i; 279 280 /* 281 * Split the buffer into two even parts. This is used as a double 282 * buffering scheme with usually one block at a time being used by the 283 * DMA and the other one by the application. 284 */ 285 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum * 286 queue->buffer.length, 2); 287 288 mutex_lock(&queue->lock); 289 290 /* Allocations are page aligned */ 291 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size)) 292 try_reuse = true; 293 294 queue->fileio.block_size = size; 295 queue->fileio.active_block = NULL; 296 297 spin_lock_irq(&queue->list_lock); 298 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 299 block = queue->fileio.blocks[i]; 300 301 /* If we can't re-use it free it */ 302 if (block && (!iio_dma_block_reusable(block) || !try_reuse)) 303 block->state = IIO_BLOCK_STATE_DEAD; 304 } 305 306 /* 307 * At this point all blocks are either owned by the core or marked as 308 * dead. This means we can reset the lists without having to fear 309 * corrution. 310 */ 311 spin_unlock_irq(&queue->list_lock); 312 313 INIT_LIST_HEAD(&queue->incoming); 314 315 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 316 if (queue->fileio.blocks[i]) { 317 block = queue->fileio.blocks[i]; 318 if (block->state == IIO_BLOCK_STATE_DEAD) { 319 /* Could not reuse it */ 320 iio_buffer_block_put(block); 321 block = NULL; 322 } else { 323 block->size = size; 324 } 325 } else { 326 block = NULL; 327 } 328 329 if (!block) { 330 block = iio_dma_buffer_alloc_block(queue, size); 331 if (!block) { 332 ret = -ENOMEM; 333 goto out_unlock; 334 } 335 queue->fileio.blocks[i] = block; 336 } 337 338 block->state = IIO_BLOCK_STATE_QUEUED; 339 list_add_tail(&block->head, &queue->incoming); 340 } 341 342 out_unlock: 343 mutex_unlock(&queue->lock); 344 345 return ret; 346 } 347 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update); 348 349 static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue) 350 { 351 unsigned int i; 352 353 spin_lock_irq(&queue->list_lock); 354 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 355 if (!queue->fileio.blocks[i]) 356 continue; 357 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD; 358 } 359 spin_unlock_irq(&queue->list_lock); 360 361 INIT_LIST_HEAD(&queue->incoming); 362 363 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 364 if (!queue->fileio.blocks[i]) 365 continue; 366 iio_buffer_block_put(queue->fileio.blocks[i]); 367 queue->fileio.blocks[i] = NULL; 368 } 369 queue->fileio.active_block = NULL; 370 } 371 372 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue, 373 struct iio_dma_buffer_block *block) 374 { 375 int ret; 376 377 /* 378 * If the hardware has already been removed we put the block into 379 * limbo. It will neither be on the incoming nor outgoing list, nor will 380 * it ever complete. It will just wait to be freed eventually. 381 */ 382 if (!queue->ops) 383 return; 384 385 block->state = IIO_BLOCK_STATE_ACTIVE; 386 iio_buffer_block_get(block); 387 ret = queue->ops->submit(queue, block); 388 if (ret) { 389 /* 390 * This is a bit of a problem and there is not much we can do 391 * other then wait for the buffer to be disabled and re-enabled 392 * and try again. But it should not really happen unless we run 393 * out of memory or something similar. 394 * 395 * TODO: Implement support in the IIO core to allow buffers to 396 * notify consumers that something went wrong and the buffer 397 * should be disabled. 398 */ 399 iio_buffer_block_put(block); 400 } 401 } 402 403 /** 404 * iio_dma_buffer_enable() - Enable DMA buffer 405 * @buffer: IIO buffer to enable 406 * @indio_dev: IIO device the buffer is attached to 407 * 408 * Needs to be called when the device that the buffer is attached to starts 409 * sampling. Typically should be the iio_buffer_access_ops enable callback. 410 * 411 * This will allocate the DMA buffers and start the DMA transfers. 412 */ 413 int iio_dma_buffer_enable(struct iio_buffer *buffer, 414 struct iio_dev *indio_dev) 415 { 416 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 417 struct iio_dma_buffer_block *block, *_block; 418 419 mutex_lock(&queue->lock); 420 queue->active = true; 421 list_for_each_entry_safe(block, _block, &queue->incoming, head) { 422 list_del(&block->head); 423 iio_dma_buffer_submit_block(queue, block); 424 } 425 mutex_unlock(&queue->lock); 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable); 430 431 /** 432 * iio_dma_buffer_disable() - Disable DMA buffer 433 * @buffer: IIO DMA buffer to disable 434 * @indio_dev: IIO device the buffer is attached to 435 * 436 * Needs to be called when the device that the buffer is attached to stops 437 * sampling. Typically should be the iio_buffer_access_ops disable callback. 438 */ 439 int iio_dma_buffer_disable(struct iio_buffer *buffer, 440 struct iio_dev *indio_dev) 441 { 442 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 443 444 mutex_lock(&queue->lock); 445 queue->active = false; 446 447 if (queue->ops && queue->ops->abort) 448 queue->ops->abort(queue); 449 mutex_unlock(&queue->lock); 450 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable); 454 455 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue, 456 struct iio_dma_buffer_block *block) 457 { 458 if (block->state == IIO_BLOCK_STATE_DEAD) { 459 iio_buffer_block_put(block); 460 } else if (queue->active) { 461 iio_dma_buffer_submit_block(queue, block); 462 } else { 463 block->state = IIO_BLOCK_STATE_QUEUED; 464 list_add_tail(&block->head, &queue->incoming); 465 } 466 } 467 468 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue( 469 struct iio_dma_buffer_queue *queue) 470 { 471 struct iio_dma_buffer_block *block; 472 unsigned int idx; 473 474 spin_lock_irq(&queue->list_lock); 475 476 idx = queue->fileio.next_dequeue; 477 block = queue->fileio.blocks[idx]; 478 479 if (block->state == IIO_BLOCK_STATE_DONE) { 480 idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks); 481 queue->fileio.next_dequeue = idx; 482 } else { 483 block = NULL; 484 } 485 486 spin_unlock_irq(&queue->list_lock); 487 488 return block; 489 } 490 491 /** 492 * iio_dma_buffer_read() - DMA buffer read callback 493 * @buffer: Buffer to read form 494 * @n: Number of bytes to read 495 * @user_buffer: Userspace buffer to copy the data to 496 * 497 * Should be used as the read callback for iio_buffer_access_ops 498 * struct for DMA buffers. 499 */ 500 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n, 501 char __user *user_buffer) 502 { 503 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); 504 struct iio_dma_buffer_block *block; 505 int ret; 506 507 if (n < buffer->bytes_per_datum) 508 return -EINVAL; 509 510 mutex_lock(&queue->lock); 511 512 if (!queue->fileio.active_block) { 513 block = iio_dma_buffer_dequeue(queue); 514 if (block == NULL) { 515 ret = 0; 516 goto out_unlock; 517 } 518 queue->fileio.pos = 0; 519 queue->fileio.active_block = block; 520 } else { 521 block = queue->fileio.active_block; 522 } 523 524 n = rounddown(n, buffer->bytes_per_datum); 525 if (n > block->bytes_used - queue->fileio.pos) 526 n = block->bytes_used - queue->fileio.pos; 527 528 if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) { 529 ret = -EFAULT; 530 goto out_unlock; 531 } 532 533 queue->fileio.pos += n; 534 535 if (queue->fileio.pos == block->bytes_used) { 536 queue->fileio.active_block = NULL; 537 iio_dma_buffer_enqueue(queue, block); 538 } 539 540 ret = n; 541 542 out_unlock: 543 mutex_unlock(&queue->lock); 544 545 return ret; 546 } 547 EXPORT_SYMBOL_GPL(iio_dma_buffer_read); 548 549 /** 550 * iio_dma_buffer_data_available() - DMA buffer data_available callback 551 * @buf: Buffer to check for data availability 552 * 553 * Should be used as the data_available callback for iio_buffer_access_ops 554 * struct for DMA buffers. 555 */ 556 size_t iio_dma_buffer_data_available(struct iio_buffer *buf) 557 { 558 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf); 559 struct iio_dma_buffer_block *block; 560 size_t data_available = 0; 561 unsigned int i; 562 563 /* 564 * For counting the available bytes we'll use the size of the block not 565 * the number of actual bytes available in the block. Otherwise it is 566 * possible that we end up with a value that is lower than the watermark 567 * but won't increase since all blocks are in use. 568 */ 569 570 mutex_lock(&queue->lock); 571 if (queue->fileio.active_block) 572 data_available += queue->fileio.active_block->size; 573 574 spin_lock_irq(&queue->list_lock); 575 576 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { 577 block = queue->fileio.blocks[i]; 578 579 if (block != queue->fileio.active_block 580 && block->state == IIO_BLOCK_STATE_DONE) 581 data_available += block->size; 582 } 583 584 spin_unlock_irq(&queue->list_lock); 585 mutex_unlock(&queue->lock); 586 587 return data_available; 588 } 589 EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available); 590 591 /** 592 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback 593 * @buffer: Buffer to set the bytes-per-datum for 594 * @bpd: The new bytes-per-datum value 595 * 596 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops 597 * struct for DMA buffers. 598 */ 599 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd) 600 { 601 buffer->bytes_per_datum = bpd; 602 603 return 0; 604 } 605 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum); 606 607 /** 608 * iio_dma_buffer_set_length - DMA buffer set_length callback 609 * @buffer: Buffer to set the length for 610 * @length: The new buffer length 611 * 612 * Should be used as the set_length callback for iio_buffer_access_ops 613 * struct for DMA buffers. 614 */ 615 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length) 616 { 617 /* Avoid an invalid state */ 618 if (length < 2) 619 length = 2; 620 buffer->length = length; 621 buffer->watermark = length / 2; 622 623 return 0; 624 } 625 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length); 626 627 /** 628 * iio_dma_buffer_init() - Initialize DMA buffer queue 629 * @queue: Buffer to initialize 630 * @dev: DMA device 631 * @ops: DMA buffer queue callback operations 632 * 633 * The DMA device will be used by the queue to do DMA memory allocations. So it 634 * should refer to the device that will perform the DMA to ensure that 635 * allocations are done from a memory region that can be accessed by the device. 636 */ 637 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue, 638 struct device *dev, const struct iio_dma_buffer_ops *ops) 639 { 640 iio_buffer_init(&queue->buffer); 641 queue->buffer.length = PAGE_SIZE; 642 queue->buffer.watermark = queue->buffer.length / 2; 643 queue->dev = dev; 644 queue->ops = ops; 645 646 INIT_LIST_HEAD(&queue->incoming); 647 648 mutex_init(&queue->lock); 649 spin_lock_init(&queue->list_lock); 650 651 return 0; 652 } 653 EXPORT_SYMBOL_GPL(iio_dma_buffer_init); 654 655 /** 656 * iio_dma_buffer_exit() - Cleanup DMA buffer queue 657 * @queue: Buffer to cleanup 658 * 659 * After this function has completed it is safe to free any resources that are 660 * associated with the buffer and are accessed inside the callback operations. 661 */ 662 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue) 663 { 664 mutex_lock(&queue->lock); 665 666 iio_dma_buffer_fileio_free(queue); 667 queue->ops = NULL; 668 669 mutex_unlock(&queue->lock); 670 } 671 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit); 672 673 /** 674 * iio_dma_buffer_release() - Release final buffer resources 675 * @queue: Buffer to release 676 * 677 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be 678 * called in the buffers release callback implementation right before freeing 679 * the memory associated with the buffer. 680 */ 681 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue) 682 { 683 mutex_destroy(&queue->lock); 684 } 685 EXPORT_SYMBOL_GPL(iio_dma_buffer_release); 686 687 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); 688 MODULE_DESCRIPTION("DMA buffer for the IIO framework"); 689 MODULE_LICENSE("GPL v2"); 690