1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx XADC driver 4 * 5 * Copyright 2013-2014 Analog Devices Inc. 6 * Author: Lars-Peter Clausen <lars@metafoo.de> 7 * 8 * Documentation for the parts can be found at: 9 * - XADC hardmacro: Xilinx UG480 10 * - ZYNQ XADC interface: Xilinx UG585 11 * - AXI XADC interface: Xilinx PG019 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/device.h> 16 #include <linux/err.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/mod_devicetable.h> 21 #include <linux/module.h> 22 #include <linux/overflow.h> 23 #include <linux/platform_device.h> 24 #include <linux/property.h> 25 #include <linux/slab.h> 26 #include <linux/sysfs.h> 27 28 #include <linux/iio/buffer.h> 29 #include <linux/iio/events.h> 30 #include <linux/iio/iio.h> 31 #include <linux/iio/sysfs.h> 32 #include <linux/iio/trigger.h> 33 #include <linux/iio/trigger_consumer.h> 34 #include <linux/iio/triggered_buffer.h> 35 36 #include "xilinx-xadc.h" 37 38 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500; 39 40 /* ZYNQ register definitions */ 41 #define XADC_ZYNQ_REG_CFG 0x00 42 #define XADC_ZYNQ_REG_INTSTS 0x04 43 #define XADC_ZYNQ_REG_INTMSK 0x08 44 #define XADC_ZYNQ_REG_STATUS 0x0c 45 #define XADC_ZYNQ_REG_CFIFO 0x10 46 #define XADC_ZYNQ_REG_DFIFO 0x14 47 #define XADC_ZYNQ_REG_CTL 0x18 48 49 #define XADC_ZYNQ_CFG_ENABLE BIT(31) 50 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20) 51 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20 52 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16) 53 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16 54 #define XADC_ZYNQ_CFG_WEDGE BIT(13) 55 #define XADC_ZYNQ_CFG_REDGE BIT(12) 56 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8) 57 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8) 58 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8) 59 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8) 60 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8) 61 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f 62 #define XADC_ZYNQ_CFG_IGAP(x) (x) 63 64 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9) 65 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8) 66 #define XADC_ZYNQ_INT_ALARM_MASK 0xff 67 #define XADC_ZYNQ_INT_ALARM_OFFSET 0 68 69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16) 70 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16 71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12) 72 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12 73 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11) 74 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10) 75 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9) 76 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8) 77 #define XADC_ZYNQ_STATUS_OT BIT(7) 78 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x) 79 80 #define XADC_ZYNQ_CTL_RESET BIT(4) 81 82 #define XADC_ZYNQ_CMD_NOP 0x00 83 #define XADC_ZYNQ_CMD_READ 0x01 84 #define XADC_ZYNQ_CMD_WRITE 0x02 85 86 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data)) 87 88 /* AXI register definitions */ 89 #define XADC_AXI_REG_RESET 0x00 90 #define XADC_AXI_REG_STATUS 0x04 91 #define XADC_AXI_REG_ALARM_STATUS 0x08 92 #define XADC_AXI_REG_CONVST 0x0c 93 #define XADC_AXI_REG_XADC_RESET 0x10 94 #define XADC_AXI_REG_GIER 0x5c 95 #define XADC_AXI_REG_IPISR 0x60 96 #define XADC_AXI_REG_IPIER 0x68 97 98 /* 7 Series */ 99 #define XADC_7S_AXI_ADC_REG_OFFSET 0x200 100 101 /* UltraScale */ 102 #define XADC_US_AXI_ADC_REG_OFFSET 0x400 103 104 #define XADC_AXI_RESET_MAGIC 0xa 105 #define XADC_AXI_GIER_ENABLE BIT(31) 106 107 #define XADC_AXI_INT_EOS BIT(4) 108 #define XADC_AXI_INT_ALARM_MASK 0x3c0f 109 110 #define XADC_FLAGS_BUFFERED BIT(0) 111 #define XADC_FLAGS_IRQ_OPTIONAL BIT(1) 112 113 /* 114 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does 115 * not have a hardware FIFO. Which means an interrupt is generated for each 116 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely 117 * overloaded by the interrupts that it soft-lockups. For this reason the driver 118 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy, 119 * but still responsive. 120 */ 121 #define XADC_MAX_SAMPLERATE 150000 122 123 static void xadc_write_reg(struct xadc *xadc, unsigned int reg, 124 uint32_t val) 125 { 126 writel(val, xadc->base + reg); 127 } 128 129 static void xadc_read_reg(struct xadc *xadc, unsigned int reg, 130 uint32_t *val) 131 { 132 *val = readl(xadc->base + reg); 133 } 134 135 /* 136 * The ZYNQ interface uses two asynchronous FIFOs for communication with the 137 * XADC. Reads and writes to the XADC register are performed by submitting a 138 * request to the command FIFO (CFIFO), once the request has been completed the 139 * result can be read from the data FIFO (DFIFO). The method currently used in 140 * this driver is to submit the request for a read/write operation, then go to 141 * sleep and wait for an interrupt that signals that a response is available in 142 * the data FIFO. 143 */ 144 145 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd, 146 unsigned int n) 147 { 148 unsigned int i; 149 150 for (i = 0; i < n; i++) 151 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]); 152 } 153 154 static void xadc_zynq_drain_fifo(struct xadc *xadc) 155 { 156 uint32_t status, tmp; 157 158 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 159 160 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) { 161 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 162 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 163 } 164 } 165 166 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask, 167 unsigned int val) 168 { 169 xadc->zynq_intmask &= ~mask; 170 xadc->zynq_intmask |= val; 171 172 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, 173 xadc->zynq_intmask | xadc->zynq_masked_alarm); 174 } 175 176 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg, 177 uint16_t val) 178 { 179 uint32_t cmd[1]; 180 uint32_t tmp; 181 int ret; 182 183 spin_lock_irq(&xadc->lock); 184 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 185 XADC_ZYNQ_INT_DFIFO_GTH); 186 187 reinit_completion(&xadc->completion); 188 189 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val); 190 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 191 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 192 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 193 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 194 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 195 196 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 197 spin_unlock_irq(&xadc->lock); 198 199 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 200 if (ret == 0) 201 ret = -EIO; 202 else 203 ret = 0; 204 205 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 206 207 return ret; 208 } 209 210 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg, 211 uint16_t *val) 212 { 213 uint32_t cmd[2]; 214 uint32_t resp, tmp; 215 int ret; 216 217 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0); 218 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0); 219 220 spin_lock_irq(&xadc->lock); 221 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 222 XADC_ZYNQ_INT_DFIFO_GTH); 223 xadc_zynq_drain_fifo(xadc); 224 reinit_completion(&xadc->completion); 225 226 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 227 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 228 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 229 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 230 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 231 232 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 233 spin_unlock_irq(&xadc->lock); 234 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 235 if (ret == 0) 236 ret = -EIO; 237 if (ret < 0) 238 return ret; 239 240 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 241 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 242 243 *val = resp & 0xffff; 244 245 return 0; 246 } 247 248 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm) 249 { 250 return ((alarm & 0x80) >> 4) | 251 ((alarm & 0x78) << 1) | 252 (alarm & 0x07); 253 } 254 255 /* 256 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the 257 * threshold condition go way from within the interrupt handler, this means as 258 * soon as a threshold condition is present we would enter the interrupt handler 259 * again and again. To work around this we mask all active thresholds interrupts 260 * in the interrupt handler and start a timer. In this timer we poll the 261 * interrupt status and only if the interrupt is inactive we unmask it again. 262 */ 263 static void xadc_zynq_unmask_worker(struct work_struct *work) 264 { 265 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work); 266 unsigned int misc_sts, unmask; 267 268 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts); 269 270 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK; 271 272 spin_lock_irq(&xadc->lock); 273 274 /* Clear those bits which are not active anymore */ 275 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm; 276 xadc->zynq_masked_alarm &= misc_sts; 277 278 /* Also clear those which are masked out anyway */ 279 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask; 280 281 /* Clear the interrupts before we unmask them */ 282 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask); 283 284 xadc_zynq_update_intmsk(xadc, 0, 0); 285 286 spin_unlock_irq(&xadc->lock); 287 288 /* if still pending some alarm re-trigger the timer */ 289 if (xadc->zynq_masked_alarm) { 290 schedule_delayed_work(&xadc->zynq_unmask_work, 291 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 292 } 293 294 } 295 296 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid) 297 { 298 struct iio_dev *indio_dev = devid; 299 struct xadc *xadc = iio_priv(indio_dev); 300 uint32_t status; 301 302 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 303 304 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm); 305 306 if (!status) 307 return IRQ_NONE; 308 309 spin_lock(&xadc->lock); 310 311 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status); 312 313 if (status & XADC_ZYNQ_INT_DFIFO_GTH) { 314 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 315 XADC_ZYNQ_INT_DFIFO_GTH); 316 complete(&xadc->completion); 317 } 318 319 status &= XADC_ZYNQ_INT_ALARM_MASK; 320 if (status) { 321 xadc->zynq_masked_alarm |= status; 322 /* 323 * mask the current event interrupt, 324 * unmask it when the interrupt is no more active. 325 */ 326 xadc_zynq_update_intmsk(xadc, 0, 0); 327 328 xadc_handle_events(indio_dev, 329 xadc_zynq_transform_alarm(status)); 330 331 /* unmask the required interrupts in timer. */ 332 schedule_delayed_work(&xadc->zynq_unmask_work, 333 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 334 } 335 spin_unlock(&xadc->lock); 336 337 return IRQ_HANDLED; 338 } 339 340 #define XADC_ZYNQ_TCK_RATE_MAX 50000000 341 #define XADC_ZYNQ_IGAP_DEFAULT 20 342 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000 343 344 static int xadc_zynq_setup(struct platform_device *pdev, 345 struct iio_dev *indio_dev, int irq) 346 { 347 struct xadc *xadc = iio_priv(indio_dev); 348 unsigned long pcap_rate; 349 unsigned int tck_div; 350 unsigned int div; 351 unsigned int igap; 352 unsigned int tck_rate; 353 int ret; 354 355 /* TODO: Figure out how to make igap and tck_rate configurable */ 356 igap = XADC_ZYNQ_IGAP_DEFAULT; 357 tck_rate = XADC_ZYNQ_TCK_RATE_MAX; 358 359 xadc->zynq_intmask = ~0; 360 361 pcap_rate = clk_get_rate(xadc->clk); 362 if (!pcap_rate) 363 return -EINVAL; 364 365 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { 366 ret = clk_set_rate(xadc->clk, 367 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX); 368 if (ret) 369 return ret; 370 } 371 372 if (tck_rate > pcap_rate / 2) { 373 div = 2; 374 } else { 375 div = pcap_rate / tck_rate; 376 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX) 377 div++; 378 } 379 380 if (div <= 3) 381 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2; 382 else if (div <= 7) 383 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4; 384 else if (div <= 15) 385 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8; 386 else 387 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16; 388 389 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET); 390 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0); 391 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0); 392 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask); 393 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE | 394 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE | 395 tck_div | XADC_ZYNQ_CFG_IGAP(igap)); 396 397 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { 398 ret = clk_set_rate(xadc->clk, pcap_rate); 399 if (ret) 400 return ret; 401 } 402 403 return 0; 404 } 405 406 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc) 407 { 408 unsigned int div; 409 uint32_t val; 410 411 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val); 412 413 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) { 414 case XADC_ZYNQ_CFG_TCKRATE_DIV4: 415 div = 4; 416 break; 417 case XADC_ZYNQ_CFG_TCKRATE_DIV8: 418 div = 8; 419 break; 420 case XADC_ZYNQ_CFG_TCKRATE_DIV16: 421 div = 16; 422 break; 423 default: 424 div = 2; 425 break; 426 } 427 428 return clk_get_rate(xadc->clk) / div; 429 } 430 431 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm) 432 { 433 unsigned long flags; 434 uint32_t status; 435 436 /* Move OT to bit 7 */ 437 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07); 438 439 spin_lock_irqsave(&xadc->lock, flags); 440 441 /* Clear previous interrupts if any. */ 442 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 443 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm); 444 445 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK, 446 ~alarm & XADC_ZYNQ_INT_ALARM_MASK); 447 448 spin_unlock_irqrestore(&xadc->lock, flags); 449 } 450 451 static const struct xadc_ops xadc_zynq_ops = { 452 .read = xadc_zynq_read_adc_reg, 453 .write = xadc_zynq_write_adc_reg, 454 .setup = xadc_zynq_setup, 455 .get_dclk_rate = xadc_zynq_get_dclk_rate, 456 .interrupt_handler = xadc_zynq_interrupt_handler, 457 .update_alarm = xadc_zynq_update_alarm, 458 .type = XADC_TYPE_S7, 459 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */ 460 .temp_scale = 503975, 461 .temp_offset = 273150, 462 }; 463 464 static const unsigned int xadc_axi_reg_offsets[] = { 465 [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET, 466 [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET, 467 }; 468 469 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg, 470 uint16_t *val) 471 { 472 uint32_t val32; 473 474 xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, 475 &val32); 476 *val = val32 & 0xffff; 477 478 return 0; 479 } 480 481 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg, 482 uint16_t val) 483 { 484 xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, 485 val); 486 487 return 0; 488 } 489 490 static int xadc_axi_setup(struct platform_device *pdev, 491 struct iio_dev *indio_dev, int irq) 492 { 493 struct xadc *xadc = iio_priv(indio_dev); 494 495 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC); 496 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE); 497 498 return 0; 499 } 500 501 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid) 502 { 503 struct iio_dev *indio_dev = devid; 504 struct xadc *xadc = iio_priv(indio_dev); 505 uint32_t status, mask; 506 unsigned int events; 507 508 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status); 509 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask); 510 status &= mask; 511 512 if (!status) 513 return IRQ_NONE; 514 515 if ((status & XADC_AXI_INT_EOS) && xadc->trigger) 516 iio_trigger_poll(xadc->trigger); 517 518 if (status & XADC_AXI_INT_ALARM_MASK) { 519 /* 520 * The order of the bits in the AXI-XADC status register does 521 * not match the order of the bits in the XADC alarm enable 522 * register. xadc_handle_events() expects the events to be in 523 * the same order as the XADC alarm enable register. 524 */ 525 events = (status & 0x000e) >> 1; 526 events |= (status & 0x0001) << 3; 527 events |= (status & 0x3c00) >> 6; 528 xadc_handle_events(indio_dev, events); 529 } 530 531 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status); 532 533 return IRQ_HANDLED; 534 } 535 536 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm) 537 { 538 uint32_t val; 539 unsigned long flags; 540 541 /* 542 * The order of the bits in the AXI-XADC status register does not match 543 * the order of the bits in the XADC alarm enable register. We get 544 * passed the alarm mask in the same order as in the XADC alarm enable 545 * register. 546 */ 547 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) | 548 ((alarm & 0xf0) << 6); 549 550 spin_lock_irqsave(&xadc->lock, flags); 551 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 552 val &= ~XADC_AXI_INT_ALARM_MASK; 553 val |= alarm; 554 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 555 spin_unlock_irqrestore(&xadc->lock, flags); 556 } 557 558 static unsigned long xadc_axi_get_dclk(struct xadc *xadc) 559 { 560 return clk_get_rate(xadc->clk); 561 } 562 563 static const struct xadc_ops xadc_7s_axi_ops = { 564 .read = xadc_axi_read_adc_reg, 565 .write = xadc_axi_write_adc_reg, 566 .setup = xadc_axi_setup, 567 .get_dclk_rate = xadc_axi_get_dclk, 568 .update_alarm = xadc_axi_update_alarm, 569 .interrupt_handler = xadc_axi_interrupt_handler, 570 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL, 571 .type = XADC_TYPE_S7, 572 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */ 573 .temp_scale = 503975, 574 .temp_offset = 273150, 575 }; 576 577 static const struct xadc_ops xadc_us_axi_ops = { 578 .read = xadc_axi_read_adc_reg, 579 .write = xadc_axi_write_adc_reg, 580 .setup = xadc_axi_setup, 581 .get_dclk_rate = xadc_axi_get_dclk, 582 .update_alarm = xadc_axi_update_alarm, 583 .interrupt_handler = xadc_axi_interrupt_handler, 584 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL, 585 .type = XADC_TYPE_US, 586 /** 587 * Values below are for UltraScale+ (SYSMONE4) using internal reference. 588 * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon 589 */ 590 .temp_scale = 509314, 591 .temp_offset = 280231, 592 }; 593 594 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 595 uint16_t mask, uint16_t val) 596 { 597 uint16_t tmp; 598 int ret; 599 600 ret = _xadc_read_adc_reg(xadc, reg, &tmp); 601 if (ret) 602 return ret; 603 604 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val); 605 } 606 607 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 608 uint16_t mask, uint16_t val) 609 { 610 int ret; 611 612 mutex_lock(&xadc->mutex); 613 ret = _xadc_update_adc_reg(xadc, reg, mask, val); 614 mutex_unlock(&xadc->mutex); 615 616 return ret; 617 } 618 619 static unsigned long xadc_get_dclk_rate(struct xadc *xadc) 620 { 621 return xadc->ops->get_dclk_rate(xadc); 622 } 623 624 static int xadc_update_scan_mode(struct iio_dev *indio_dev, 625 const unsigned long *mask) 626 { 627 struct xadc *xadc = iio_priv(indio_dev); 628 size_t n; 629 void *data; 630 631 n = bitmap_weight(mask, iio_get_masklength(indio_dev)); 632 633 data = devm_krealloc_array(indio_dev->dev.parent, xadc->data, 634 n, sizeof(*xadc->data), GFP_KERNEL); 635 if (!data) 636 return -ENOMEM; 637 638 memset(data, 0, n * sizeof(*xadc->data)); 639 xadc->data = data; 640 641 return 0; 642 } 643 644 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index) 645 { 646 switch (scan_index) { 647 case 5: 648 return XADC_REG_VCCPINT; 649 case 6: 650 return XADC_REG_VCCPAUX; 651 case 7: 652 return XADC_REG_VCCO_DDR; 653 case 8: 654 return XADC_REG_TEMP; 655 case 9: 656 return XADC_REG_VCCINT; 657 case 10: 658 return XADC_REG_VCCAUX; 659 case 11: 660 return XADC_REG_VPVN; 661 case 12: 662 return XADC_REG_VREFP; 663 case 13: 664 return XADC_REG_VREFN; 665 case 14: 666 return XADC_REG_VCCBRAM; 667 default: 668 return XADC_REG_VAUX(scan_index - 16); 669 } 670 } 671 672 static irqreturn_t xadc_trigger_handler(int irq, void *p) 673 { 674 struct iio_poll_func *pf = p; 675 struct iio_dev *indio_dev = pf->indio_dev; 676 struct xadc *xadc = iio_priv(indio_dev); 677 unsigned int chan; 678 int i, j; 679 680 if (!xadc->data) 681 goto out; 682 683 j = 0; 684 iio_for_each_active_channel(indio_dev, i) { 685 chan = xadc_scan_index_to_channel(i); 686 xadc_read_adc_reg(xadc, chan, &xadc->data[j]); 687 j++; 688 } 689 690 iio_push_to_buffers(indio_dev, xadc->data); 691 692 out: 693 iio_trigger_notify_done(indio_dev->trig); 694 695 return IRQ_HANDLED; 696 } 697 698 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state) 699 { 700 struct xadc *xadc = iio_trigger_get_drvdata(trigger); 701 unsigned long flags; 702 unsigned int convst; 703 unsigned int val; 704 int ret = 0; 705 706 mutex_lock(&xadc->mutex); 707 708 if (state) { 709 /* Only one of the two triggers can be active at a time. */ 710 if (xadc->trigger != NULL) { 711 ret = -EBUSY; 712 goto err_out; 713 } else { 714 xadc->trigger = trigger; 715 if (trigger == xadc->convst_trigger) 716 convst = XADC_CONF0_EC; 717 else 718 convst = 0; 719 } 720 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC, 721 convst); 722 if (ret) 723 goto err_out; 724 } else { 725 xadc->trigger = NULL; 726 } 727 728 spin_lock_irqsave(&xadc->lock, flags); 729 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 730 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS); 731 if (state) 732 val |= XADC_AXI_INT_EOS; 733 else 734 val &= ~XADC_AXI_INT_EOS; 735 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 736 spin_unlock_irqrestore(&xadc->lock, flags); 737 738 err_out: 739 mutex_unlock(&xadc->mutex); 740 741 return ret; 742 } 743 744 static const struct iio_trigger_ops xadc_trigger_ops = { 745 .set_trigger_state = &xadc_trigger_set_state, 746 }; 747 748 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev, 749 const char *name) 750 { 751 struct device *dev = indio_dev->dev.parent; 752 struct iio_trigger *trig; 753 int ret; 754 755 trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name, 756 iio_device_id(indio_dev), name); 757 if (trig == NULL) 758 return ERR_PTR(-ENOMEM); 759 760 trig->ops = &xadc_trigger_ops; 761 iio_trigger_set_drvdata(trig, iio_priv(indio_dev)); 762 763 ret = devm_iio_trigger_register(dev, trig); 764 if (ret) 765 return ERR_PTR(ret); 766 767 return trig; 768 } 769 770 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode) 771 { 772 uint16_t val; 773 774 /* 775 * As per datasheet the power-down bits are don't care in the 776 * UltraScale, but as per reality setting the power-down bit for the 777 * non-existing ADC-B powers down the main ADC, so just return and don't 778 * do anything. 779 */ 780 if (xadc->ops->type == XADC_TYPE_US) 781 return 0; 782 783 /* Powerdown the ADC-B when it is not needed. */ 784 switch (seq_mode) { 785 case XADC_CONF1_SEQ_SIMULTANEOUS: 786 case XADC_CONF1_SEQ_INDEPENDENT: 787 val = 0; 788 break; 789 default: 790 val = XADC_CONF2_PD_ADC_B; 791 break; 792 } 793 794 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK, 795 val); 796 } 797 798 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode) 799 { 800 unsigned int aux_scan_mode = scan_mode >> 16; 801 802 /* UltraScale has only one ADC and supports only continuous mode */ 803 if (xadc->ops->type == XADC_TYPE_US) 804 return XADC_CONF1_SEQ_CONTINUOUS; 805 806 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL) 807 return XADC_CONF1_SEQ_SIMULTANEOUS; 808 809 if ((aux_scan_mode & 0xff00) == 0 || 810 (aux_scan_mode & 0x00ff) == 0) 811 return XADC_CONF1_SEQ_CONTINUOUS; 812 813 return XADC_CONF1_SEQ_SIMULTANEOUS; 814 } 815 816 static int xadc_postdisable(struct iio_dev *indio_dev) 817 { 818 struct xadc *xadc = iio_priv(indio_dev); 819 unsigned long scan_mask; 820 int ret; 821 int i; 822 823 scan_mask = 1; /* Run calibration as part of the sequence */ 824 for (i = 0; i < indio_dev->num_channels; i++) 825 scan_mask |= BIT(indio_dev->channels[i].scan_index); 826 827 /* Enable all channels and calibration */ 828 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 829 if (ret) 830 return ret; 831 832 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 833 if (ret) 834 return ret; 835 836 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 837 XADC_CONF1_SEQ_CONTINUOUS); 838 if (ret) 839 return ret; 840 841 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS); 842 } 843 844 static int xadc_preenable(struct iio_dev *indio_dev) 845 { 846 struct xadc *xadc = iio_priv(indio_dev); 847 unsigned long scan_mask; 848 int seq_mode; 849 int ret; 850 851 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 852 XADC_CONF1_SEQ_DEFAULT); 853 if (ret) 854 goto err; 855 856 scan_mask = *indio_dev->active_scan_mask; 857 seq_mode = xadc_get_seq_mode(xadc, scan_mask); 858 859 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 860 if (ret) 861 goto err; 862 863 /* 864 * In simultaneous mode the upper and lower aux channels are samples at 865 * the same time. In this mode the upper 8 bits in the sequencer 866 * register are don't care and the lower 8 bits control two channels 867 * each. As such we must set the bit if either the channel in the lower 868 * group or the upper group is enabled. 869 */ 870 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS) 871 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000; 872 873 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 874 if (ret) 875 goto err; 876 877 ret = xadc_power_adc_b(xadc, seq_mode); 878 if (ret) 879 goto err; 880 881 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 882 seq_mode); 883 if (ret) 884 goto err; 885 886 return 0; 887 err: 888 xadc_postdisable(indio_dev); 889 return ret; 890 } 891 892 static const struct iio_buffer_setup_ops xadc_buffer_ops = { 893 .preenable = &xadc_preenable, 894 .postdisable = &xadc_postdisable, 895 }; 896 897 static int xadc_read_samplerate(struct xadc *xadc) 898 { 899 unsigned int div; 900 uint16_t val16; 901 int ret; 902 903 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16); 904 if (ret) 905 return ret; 906 907 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET; 908 if (div < 2) 909 div = 2; 910 911 return xadc_get_dclk_rate(xadc) / div / 26; 912 } 913 914 static int xadc_read_raw(struct iio_dev *indio_dev, 915 struct iio_chan_spec const *chan, int *val, int *val2, long info) 916 { 917 struct xadc *xadc = iio_priv(indio_dev); 918 unsigned int bits = chan->scan_type.realbits; 919 uint16_t val16; 920 int ret; 921 922 switch (info) { 923 case IIO_CHAN_INFO_RAW: 924 if (iio_buffer_enabled(indio_dev)) 925 return -EBUSY; 926 ret = xadc_read_adc_reg(xadc, chan->address, &val16); 927 if (ret < 0) 928 return ret; 929 930 val16 >>= chan->scan_type.shift; 931 if (chan->scan_type.sign == 'u') 932 *val = val16; 933 else 934 *val = sign_extend32(val16, bits - 1); 935 936 return IIO_VAL_INT; 937 case IIO_CHAN_INFO_SCALE: 938 switch (chan->type) { 939 case IIO_VOLTAGE: 940 /* V = (val * 3.0) / 2**bits */ 941 switch (chan->address) { 942 case XADC_REG_VCCINT: 943 case XADC_REG_VCCAUX: 944 case XADC_REG_VREFP: 945 case XADC_REG_VREFN: 946 case XADC_REG_VCCBRAM: 947 case XADC_REG_VCCPINT: 948 case XADC_REG_VCCPAUX: 949 case XADC_REG_VCCO_DDR: 950 *val = 3000; 951 break; 952 default: 953 *val = 1000; 954 break; 955 } 956 *val2 = bits; 957 return IIO_VAL_FRACTIONAL_LOG2; 958 case IIO_TEMP: 959 *val = xadc->ops->temp_scale; 960 *val2 = bits; 961 return IIO_VAL_FRACTIONAL_LOG2; 962 default: 963 return -EINVAL; 964 } 965 case IIO_CHAN_INFO_OFFSET: 966 /* Only the temperature channel has an offset */ 967 *val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale); 968 return IIO_VAL_INT; 969 case IIO_CHAN_INFO_SAMP_FREQ: 970 ret = xadc_read_samplerate(xadc); 971 if (ret < 0) 972 return ret; 973 974 *val = ret; 975 return IIO_VAL_INT; 976 default: 977 return -EINVAL; 978 } 979 } 980 981 static int xadc_write_samplerate(struct xadc *xadc, int val) 982 { 983 unsigned long clk_rate = xadc_get_dclk_rate(xadc); 984 unsigned int div; 985 986 if (!clk_rate) 987 return -EINVAL; 988 989 if (val <= 0) 990 return -EINVAL; 991 992 /* Max. 150 kSPS */ 993 if (val > XADC_MAX_SAMPLERATE) 994 val = XADC_MAX_SAMPLERATE; 995 996 val *= 26; 997 998 /* Min 1MHz */ 999 if (val < 1000000) 1000 val = 1000000; 1001 1002 /* 1003 * We want to round down, but only if we do not exceed the 150 kSPS 1004 * limit. 1005 */ 1006 div = clk_rate / val; 1007 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE) 1008 div++; 1009 if (div < 2) 1010 div = 2; 1011 else if (div > 0xff) 1012 div = 0xff; 1013 1014 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK, 1015 div << XADC_CONF2_DIV_OFFSET); 1016 } 1017 1018 static int xadc_write_raw(struct iio_dev *indio_dev, 1019 struct iio_chan_spec const *chan, int val, int val2, long info) 1020 { 1021 struct xadc *xadc = iio_priv(indio_dev); 1022 1023 if (info != IIO_CHAN_INFO_SAMP_FREQ) 1024 return -EINVAL; 1025 1026 return xadc_write_samplerate(xadc, val); 1027 } 1028 1029 static const struct iio_event_spec xadc_temp_events[] = { 1030 { 1031 .type = IIO_EV_TYPE_THRESH, 1032 .dir = IIO_EV_DIR_RISING, 1033 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 1034 BIT(IIO_EV_INFO_VALUE) | 1035 BIT(IIO_EV_INFO_HYSTERESIS), 1036 }, 1037 }; 1038 1039 /* Separate values for upper and lower thresholds, but only a shared enabled */ 1040 static const struct iio_event_spec xadc_voltage_events[] = { 1041 { 1042 .type = IIO_EV_TYPE_THRESH, 1043 .dir = IIO_EV_DIR_RISING, 1044 .mask_separate = BIT(IIO_EV_INFO_VALUE), 1045 }, { 1046 .type = IIO_EV_TYPE_THRESH, 1047 .dir = IIO_EV_DIR_FALLING, 1048 .mask_separate = BIT(IIO_EV_INFO_VALUE), 1049 }, { 1050 .type = IIO_EV_TYPE_THRESH, 1051 .dir = IIO_EV_DIR_EITHER, 1052 .mask_separate = BIT(IIO_EV_INFO_ENABLE), 1053 }, 1054 }; 1055 1056 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \ 1057 .type = IIO_TEMP, \ 1058 .indexed = 1, \ 1059 .channel = (_chan), \ 1060 .address = (_addr), \ 1061 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1062 BIT(IIO_CHAN_INFO_SCALE) | \ 1063 BIT(IIO_CHAN_INFO_OFFSET), \ 1064 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 1065 .event_spec = xadc_temp_events, \ 1066 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \ 1067 .scan_index = (_scan_index), \ 1068 .scan_type = { \ 1069 .sign = 'u', \ 1070 .realbits = (_bits), \ 1071 .storagebits = 16, \ 1072 .shift = 16 - (_bits), \ 1073 .endianness = IIO_CPU, \ 1074 }, \ 1075 } 1076 1077 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \ 1078 .type = IIO_VOLTAGE, \ 1079 .indexed = 1, \ 1080 .channel = (_chan), \ 1081 .address = (_addr), \ 1082 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1083 BIT(IIO_CHAN_INFO_SCALE), \ 1084 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 1085 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \ 1086 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \ 1087 .scan_index = (_scan_index), \ 1088 .scan_type = { \ 1089 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \ 1090 .realbits = (_bits), \ 1091 .storagebits = 16, \ 1092 .shift = 16 - (_bits), \ 1093 .endianness = IIO_CPU, \ 1094 }, \ 1095 .extend_name = _ext, \ 1096 } 1097 1098 /* 7 Series */ 1099 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \ 1100 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12) 1101 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ 1102 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm) 1103 1104 static const struct iio_chan_spec xadc_7s_channels[] = { 1105 XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP), 1106 XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), 1107 XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), 1108 XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), 1109 XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true), 1110 XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true), 1111 XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true), 1112 XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), 1113 XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), 1114 XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), 1115 XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), 1116 XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), 1117 XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), 1118 XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), 1119 XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), 1120 XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), 1121 XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), 1122 XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), 1123 XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), 1124 XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), 1125 XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), 1126 XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), 1127 XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), 1128 XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), 1129 XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), 1130 XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), 1131 }; 1132 1133 /* UltraScale */ 1134 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \ 1135 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10) 1136 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ 1137 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm) 1138 1139 static const struct iio_chan_spec xadc_us_channels[] = { 1140 XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP), 1141 XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), 1142 XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), 1143 XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), 1144 XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true), 1145 XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true), 1146 XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true), 1147 XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), 1148 XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), 1149 XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), 1150 XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), 1151 XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), 1152 XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), 1153 XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), 1154 XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), 1155 XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), 1156 XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), 1157 XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), 1158 XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), 1159 XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), 1160 XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), 1161 XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), 1162 XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), 1163 XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), 1164 XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), 1165 XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), 1166 }; 1167 1168 static const struct iio_info xadc_info = { 1169 .read_raw = &xadc_read_raw, 1170 .write_raw = &xadc_write_raw, 1171 .read_event_config = &xadc_read_event_config, 1172 .write_event_config = &xadc_write_event_config, 1173 .read_event_value = &xadc_read_event_value, 1174 .write_event_value = &xadc_write_event_value, 1175 .update_scan_mode = &xadc_update_scan_mode, 1176 }; 1177 1178 static const struct of_device_id xadc_of_match_table[] = { 1179 { 1180 .compatible = "xlnx,zynq-xadc-1.00.a", 1181 .data = &xadc_zynq_ops 1182 }, { 1183 .compatible = "xlnx,axi-xadc-1.00.a", 1184 .data = &xadc_7s_axi_ops 1185 }, { 1186 .compatible = "xlnx,system-management-wiz-1.3", 1187 .data = &xadc_us_axi_ops 1188 }, 1189 { }, 1190 }; 1191 MODULE_DEVICE_TABLE(of, xadc_of_match_table); 1192 1193 static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq) 1194 { 1195 struct device *dev = indio_dev->dev.parent; 1196 struct xadc *xadc = iio_priv(indio_dev); 1197 const struct iio_chan_spec *channel_templates; 1198 struct iio_chan_spec *channels, *chan; 1199 struct fwnode_handle *chan_node, *child; 1200 unsigned int max_channels; 1201 unsigned int num_channels; 1202 const char *external_mux; 1203 u32 ext_mux_chan; 1204 u32 reg; 1205 int ret; 1206 int i; 1207 1208 *conf = 0; 1209 1210 ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux); 1211 if (ret < 0 || strcasecmp(external_mux, "none") == 0) 1212 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE; 1213 else if (strcasecmp(external_mux, "single") == 0) 1214 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE; 1215 else if (strcasecmp(external_mux, "dual") == 0) 1216 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL; 1217 else 1218 return -EINVAL; 1219 1220 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) { 1221 ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan); 1222 if (ret < 0) 1223 return ret; 1224 1225 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) { 1226 if (ext_mux_chan == 0) 1227 ext_mux_chan = XADC_REG_VPVN; 1228 else if (ext_mux_chan <= 16) 1229 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1230 else 1231 return -EINVAL; 1232 } else { 1233 if (ext_mux_chan > 0 && ext_mux_chan <= 8) 1234 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1235 else 1236 return -EINVAL; 1237 } 1238 1239 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan); 1240 } 1241 if (xadc->ops->type == XADC_TYPE_S7) { 1242 channel_templates = xadc_7s_channels; 1243 max_channels = ARRAY_SIZE(xadc_7s_channels); 1244 } else { 1245 channel_templates = xadc_us_channels; 1246 max_channels = ARRAY_SIZE(xadc_us_channels); 1247 } 1248 channels = devm_kmemdup(dev, channel_templates, 1249 sizeof(channels[0]) * max_channels, GFP_KERNEL); 1250 if (!channels) 1251 return -ENOMEM; 1252 1253 num_channels = 9; 1254 chan = &channels[9]; 1255 1256 chan_node = device_get_named_child_node(dev, "xlnx,channels"); 1257 fwnode_for_each_child_node(chan_node, child) { 1258 if (num_channels >= max_channels) { 1259 fwnode_handle_put(child); 1260 break; 1261 } 1262 1263 ret = fwnode_property_read_u32(child, "reg", ®); 1264 if (ret || reg > 16) 1265 continue; 1266 1267 if (fwnode_property_read_bool(child, "xlnx,bipolar")) 1268 chan->scan_type.sign = 's'; 1269 1270 if (reg == 0) { 1271 chan->scan_index = 11; 1272 chan->address = XADC_REG_VPVN; 1273 } else { 1274 chan->scan_index = 15 + reg; 1275 chan->address = XADC_REG_VAUX(reg - 1); 1276 } 1277 num_channels++; 1278 chan++; 1279 } 1280 fwnode_handle_put(chan_node); 1281 1282 /* No IRQ => no events */ 1283 if (irq <= 0) { 1284 for (i = 0; i < num_channels; i++) { 1285 channels[i].event_spec = NULL; 1286 channels[i].num_event_specs = 0; 1287 } 1288 } 1289 1290 indio_dev->num_channels = num_channels; 1291 indio_dev->channels = devm_krealloc_array(dev, channels, 1292 num_channels, sizeof(*channels), 1293 GFP_KERNEL); 1294 /* If we can't resize the channels array, just use the original */ 1295 if (!indio_dev->channels) 1296 indio_dev->channels = channels; 1297 1298 return 0; 1299 } 1300 1301 static const char * const xadc_type_names[] = { 1302 [XADC_TYPE_S7] = "xadc", 1303 [XADC_TYPE_US] = "xilinx-system-monitor", 1304 }; 1305 1306 static void xadc_cancel_delayed_work(void *data) 1307 { 1308 struct delayed_work *work = data; 1309 1310 cancel_delayed_work_sync(work); 1311 } 1312 1313 static int xadc_probe(struct platform_device *pdev) 1314 { 1315 struct device *dev = &pdev->dev; 1316 const struct xadc_ops *ops; 1317 struct iio_dev *indio_dev; 1318 unsigned int bipolar_mask; 1319 unsigned int conf0; 1320 struct xadc *xadc; 1321 int ret; 1322 int irq; 1323 int i; 1324 1325 ops = device_get_match_data(dev); 1326 if (!ops) 1327 return -EINVAL; 1328 1329 irq = platform_get_irq_optional(pdev, 0); 1330 if (irq < 0 && 1331 (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL))) 1332 return irq; 1333 1334 indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc)); 1335 if (!indio_dev) 1336 return -ENOMEM; 1337 1338 xadc = iio_priv(indio_dev); 1339 xadc->ops = ops; 1340 init_completion(&xadc->completion); 1341 mutex_init(&xadc->mutex); 1342 spin_lock_init(&xadc->lock); 1343 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker); 1344 1345 xadc->base = devm_platform_ioremap_resource(pdev, 0); 1346 if (IS_ERR(xadc->base)) 1347 return PTR_ERR(xadc->base); 1348 1349 indio_dev->name = xadc_type_names[xadc->ops->type]; 1350 indio_dev->modes = INDIO_DIRECT_MODE; 1351 indio_dev->info = &xadc_info; 1352 1353 ret = xadc_parse_dt(indio_dev, &conf0, irq); 1354 if (ret) 1355 return ret; 1356 1357 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1358 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, 1359 &iio_pollfunc_store_time, 1360 &xadc_trigger_handler, 1361 &xadc_buffer_ops); 1362 if (ret) 1363 return ret; 1364 1365 if (irq > 0) { 1366 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst"); 1367 if (IS_ERR(xadc->convst_trigger)) 1368 return PTR_ERR(xadc->convst_trigger); 1369 1370 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev, 1371 "samplerate"); 1372 if (IS_ERR(xadc->samplerate_trigger)) 1373 return PTR_ERR(xadc->samplerate_trigger); 1374 } 1375 } 1376 1377 xadc->clk = devm_clk_get_enabled(dev, NULL); 1378 if (IS_ERR(xadc->clk)) 1379 return PTR_ERR(xadc->clk); 1380 1381 /* 1382 * Make sure not to exceed the maximum samplerate since otherwise the 1383 * resulting interrupt storm will soft-lock the system. 1384 */ 1385 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1386 ret = xadc_read_samplerate(xadc); 1387 if (ret < 0) 1388 return ret; 1389 1390 if (ret > XADC_MAX_SAMPLERATE) { 1391 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE); 1392 if (ret < 0) 1393 return ret; 1394 } 1395 } 1396 1397 if (irq > 0) { 1398 ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler, 1399 0, dev_name(dev), indio_dev); 1400 if (ret) 1401 return ret; 1402 1403 ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work, 1404 &xadc->zynq_unmask_work); 1405 if (ret) 1406 return ret; 1407 } 1408 1409 ret = xadc->ops->setup(pdev, indio_dev, irq); 1410 if (ret) 1411 return ret; 1412 1413 for (i = 0; i < 16; i++) 1414 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i), 1415 &xadc->threshold[i]); 1416 1417 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0); 1418 if (ret) 1419 return ret; 1420 1421 bipolar_mask = 0; 1422 for (i = 0; i < indio_dev->num_channels; i++) { 1423 if (indio_dev->channels[i].scan_type.sign == 's') 1424 bipolar_mask |= BIT(indio_dev->channels[i].scan_index); 1425 } 1426 1427 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask); 1428 if (ret) 1429 return ret; 1430 1431 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1), 1432 bipolar_mask >> 16); 1433 if (ret) 1434 return ret; 1435 1436 /* Go to non-buffered mode */ 1437 xadc_postdisable(indio_dev); 1438 1439 return devm_iio_device_register(dev, indio_dev); 1440 } 1441 1442 static struct platform_driver xadc_driver = { 1443 .probe = xadc_probe, 1444 .driver = { 1445 .name = "xadc", 1446 .of_match_table = xadc_of_match_table, 1447 }, 1448 }; 1449 module_platform_driver(xadc_driver); 1450 1451 MODULE_LICENSE("GPL v2"); 1452 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); 1453 MODULE_DESCRIPTION("Xilinx XADC IIO driver"); 1454