xref: /linux/drivers/iio/adc/xilinx-ams.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx AMS driver
4  *
5  *  Copyright (C) 2021 Xilinx, Inc.
6  *
7  *  Manish Narani <mnarani@xilinx.com>
8  *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/devm-helpers.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26 
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 
30 /* AMS registers definitions */
31 #define AMS_ISR_0			0x010
32 #define AMS_ISR_1			0x014
33 #define AMS_IER_0			0x020
34 #define AMS_IER_1			0x024
35 #define AMS_IDR_0			0x028
36 #define AMS_IDR_1			0x02C
37 #define AMS_PS_CSTS			0x040
38 #define AMS_PL_CSTS			0x044
39 
40 #define AMS_VCC_PSPLL0			0x060
41 #define AMS_VCC_PSPLL3			0x06C
42 #define AMS_VCCINT			0x078
43 #define AMS_VCCBRAM			0x07C
44 #define AMS_VCCAUX			0x080
45 #define AMS_PSDDRPLL			0x084
46 #define AMS_PSINTFPDDR			0x09C
47 
48 #define AMS_VCC_PSPLL0_CH		48
49 #define AMS_VCC_PSPLL3_CH		51
50 #define AMS_VCCINT_CH			54
51 #define AMS_VCCBRAM_CH			55
52 #define AMS_VCCAUX_CH			56
53 #define AMS_PSDDRPLL_CH			57
54 #define AMS_PSINTFPDDR_CH		63
55 
56 #define AMS_REG_CONFIG0			0x100
57 #define AMS_REG_CONFIG1			0x104
58 #define AMS_REG_CONFIG3			0x10C
59 #define AMS_REG_CONFIG4			0x110
60 #define AMS_REG_SEQ_CH0			0x120
61 #define AMS_REG_SEQ_CH1			0x124
62 #define AMS_REG_SEQ_CH2			0x118
63 
64 #define AMS_VUSER0_MASK			BIT(0)
65 #define AMS_VUSER1_MASK			BIT(1)
66 #define AMS_VUSER2_MASK			BIT(2)
67 #define AMS_VUSER3_MASK			BIT(3)
68 
69 #define AMS_TEMP			0x000
70 #define AMS_SUPPLY1			0x004
71 #define AMS_SUPPLY2			0x008
72 #define AMS_VP_VN			0x00C
73 #define AMS_VREFP			0x010
74 #define AMS_VREFN			0x014
75 #define AMS_SUPPLY3			0x018
76 #define AMS_SUPPLY4			0x034
77 #define AMS_SUPPLY5			0x038
78 #define AMS_SUPPLY6			0x03C
79 #define AMS_SUPPLY7			0x200
80 #define AMS_SUPPLY8			0x204
81 #define AMS_SUPPLY9			0x208
82 #define AMS_SUPPLY10			0x20C
83 #define AMS_VCCAMS			0x210
84 #define AMS_TEMP_REMOTE			0x214
85 
86 #define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
87 
88 #define AMS_PS_RESET_VALUE		0xFFFF
89 #define AMS_PL_RESET_VALUE		0xFFFF
90 
91 #define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
92 
93 #define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
94 #define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95 #define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96 #define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97 
98 #define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
99 #define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
100 #define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
101 
102 #define AMS_PS_SEQ_MASK			GENMASK(21, 0)
103 #define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
104 
105 #define AMS_ALARM_TEMP			0x140
106 #define AMS_ALARM_SUPPLY1		0x144
107 #define AMS_ALARM_SUPPLY2		0x148
108 #define AMS_ALARM_SUPPLY3		0x160
109 #define AMS_ALARM_SUPPLY4		0x164
110 #define AMS_ALARM_SUPPLY5		0x168
111 #define AMS_ALARM_SUPPLY6		0x16C
112 #define AMS_ALARM_SUPPLY7		0x180
113 #define AMS_ALARM_SUPPLY8		0x184
114 #define AMS_ALARM_SUPPLY9		0x188
115 #define AMS_ALARM_SUPPLY10		0x18C
116 #define AMS_ALARM_VCCAMS		0x190
117 #define AMS_ALARM_TEMP_REMOTE		0x194
118 #define AMS_ALARM_THRESHOLD_OFF_10	0x10
119 #define AMS_ALARM_THRESHOLD_OFF_20	0x20
120 
121 #define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
122 #define AMS_ALARM_THR_MIN		0x0000
123 #define AMS_ALARM_THR_MAX		(BIT(16) - 1)
124 
125 #define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
126 #define AMS_NO_OF_ALARMS		32
127 #define AMS_PL_ALARM_START		16
128 #define AMS_PL_ALARM_MASK		GENMASK(31, 16)
129 #define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
130 #define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
131 #define AMS_ISR1_EOC_MASK		BIT(3)
132 #define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
133 #define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
134 #define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
135 #define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
136 #define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
137 #define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
138 #define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
139 #define AMS_REGCFG1_ALARM_MASK  \
140 	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141 #define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
142 
143 #define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
144 #define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
145 
146 #define AMS_PL_MAX_FIXED_CHANNEL	10
147 #define AMS_PL_MAX_EXT_CHANNEL		20
148 
149 #define AMS_INIT_POLL_TIME_US		200
150 #define AMS_INIT_TIMEOUT_US		10000
151 #define AMS_UNMASK_TIMEOUT_MS		500
152 
153 /*
154  * Following scale and offset value is derived from
155  * UG580 (v1.7) December 20, 2016
156  */
157 #define AMS_SUPPLY_SCALE_1VOLT_mV		1000
158 #define AMS_SUPPLY_SCALE_3VOLT_mV		3000
159 #define AMS_SUPPLY_SCALE_6VOLT_mV		6000
160 #define AMS_SUPPLY_SCALE_DIV_BIT	16
161 
162 #define AMS_TEMP_SCALE			509314
163 #define AMS_TEMP_SCALE_DIV_BIT		16
164 #define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
165 
166 enum ams_alarm_bit {
167 	AMS_ALARM_BIT_TEMP = 0,
168 	AMS_ALARM_BIT_SUPPLY1 = 1,
169 	AMS_ALARM_BIT_SUPPLY2 = 2,
170 	AMS_ALARM_BIT_SUPPLY3 = 3,
171 	AMS_ALARM_BIT_SUPPLY4 = 4,
172 	AMS_ALARM_BIT_SUPPLY5 = 5,
173 	AMS_ALARM_BIT_SUPPLY6 = 6,
174 	AMS_ALARM_BIT_RESERVED = 7,
175 	AMS_ALARM_BIT_SUPPLY7 = 8,
176 	AMS_ALARM_BIT_SUPPLY8 = 9,
177 	AMS_ALARM_BIT_SUPPLY9 = 10,
178 	AMS_ALARM_BIT_SUPPLY10 = 11,
179 	AMS_ALARM_BIT_VCCAMS = 12,
180 	AMS_ALARM_BIT_TEMP_REMOTE = 13,
181 };
182 
183 enum ams_seq {
184 	AMS_SEQ_VCC_PSPLL = 0,
185 	AMS_SEQ_VCC_PSBATT = 1,
186 	AMS_SEQ_VCCINT = 2,
187 	AMS_SEQ_VCCBRAM = 3,
188 	AMS_SEQ_VCCAUX = 4,
189 	AMS_SEQ_PSDDRPLL = 5,
190 	AMS_SEQ_INTDDR = 6,
191 };
192 
193 enum ams_ps_pl_seq {
194 	AMS_SEQ_CALIB = 0,
195 	AMS_SEQ_RSVD_1 = 1,
196 	AMS_SEQ_RSVD_2 = 2,
197 	AMS_SEQ_TEST = 3,
198 	AMS_SEQ_RSVD_4 = 4,
199 	AMS_SEQ_SUPPLY4 = 5,
200 	AMS_SEQ_SUPPLY5 = 6,
201 	AMS_SEQ_SUPPLY6 = 7,
202 	AMS_SEQ_TEMP = 8,
203 	AMS_SEQ_SUPPLY2 = 9,
204 	AMS_SEQ_SUPPLY1 = 10,
205 	AMS_SEQ_VP_VN = 11,
206 	AMS_SEQ_VREFP = 12,
207 	AMS_SEQ_VREFN = 13,
208 	AMS_SEQ_SUPPLY3 = 14,
209 	AMS_SEQ_CURRENT_MON = 15,
210 	AMS_SEQ_SUPPLY7 = 16,
211 	AMS_SEQ_SUPPLY8 = 17,
212 	AMS_SEQ_SUPPLY9 = 18,
213 	AMS_SEQ_SUPPLY10 = 19,
214 	AMS_SEQ_VCCAMS = 20,
215 	AMS_SEQ_TEMP_REMOTE = 21,
216 	AMS_SEQ_MAX = 22
217 };
218 
219 #define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
220 #define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
221 #define PS_SEQ(x)		(x)
222 #define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
223 #define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
224 
225 #define AMS_CHAN_TEMP(_scan_index, _addr, _name) { \
226 	.type = IIO_TEMP, \
227 	.indexed = 1, \
228 	.address = (_addr), \
229 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230 		BIT(IIO_CHAN_INFO_SCALE) | \
231 		BIT(IIO_CHAN_INFO_OFFSET), \
232 	.event_spec = ams_temp_events, \
233 	.scan_index = _scan_index, \
234 	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
235 	.datasheet_name = _name, \
236 }
237 
238 #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) { \
239 	.type = IIO_VOLTAGE, \
240 	.indexed = 1, \
241 	.address = (_addr), \
242 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
243 		BIT(IIO_CHAN_INFO_SCALE), \
244 	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
245 	.scan_index = _scan_index, \
246 	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
247 	.datasheet_name = _name, \
248 }
249 
250 #define AMS_PS_CHAN_TEMP(_scan_index, _addr, _name) \
251 	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr, _name)
252 #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr, _name) \
253 	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true, _name)
254 
255 #define AMS_PL_CHAN_TEMP(_scan_index, _addr, _name) \
256 	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr, _name)
257 #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) \
258 	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm, _name)
259 #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
260 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false, \
261 			 "VAUX" #_auxno)
262 #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr, _name) \
263 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false, \
264 			 _name)
265 
266 /**
267  * struct ams - This structure contains necessary state for xilinx-ams to operate
268  * @base: physical base address of device
269  * @ps_base: physical base address of PS device
270  * @pl_base: physical base address of PL device
271  * @clk: clocks associated with the device
272  * @dev: pointer to device struct
273  * @lock: to handle multiple user interaction
274  * @intr_lock: to protect interrupt mask values
275  * @alarm_mask: alarm configuration
276  * @current_masked_alarm: currently masked due to alarm
277  * @intr_mask: interrupt configuration
278  * @ams_unmask_work: re-enables event once the event condition disappears
279  *
280  */
281 struct ams {
282 	void __iomem *base;
283 	void __iomem *ps_base;
284 	void __iomem *pl_base;
285 	struct clk *clk;
286 	struct device *dev;
287 	struct mutex lock;
288 	spinlock_t intr_lock;
289 	unsigned int alarm_mask;
290 	unsigned int current_masked_alarm;
291 	u64 intr_mask;
292 	struct delayed_work ams_unmask_work;
293 };
294 
295 static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
296 				     u32 mask, u32 data)
297 {
298 	u32 val, regval;
299 
300 	val = readl(ams->ps_base + offset);
301 	regval = (val & ~mask) | (data & mask);
302 	writel(regval, ams->ps_base + offset);
303 }
304 
305 static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
306 				     u32 mask, u32 data)
307 {
308 	u32 val, regval;
309 
310 	val = readl(ams->pl_base + offset);
311 	regval = (val & ~mask) | (data & mask);
312 	writel(regval, ams->pl_base + offset);
313 }
314 
315 static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
316 {
317 	u32 regval;
318 
319 	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
320 
321 	regval = ~(ams->intr_mask | ams->current_masked_alarm);
322 	writel(regval, ams->base + AMS_IER_0);
323 
324 	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
325 	writel(regval, ams->base + AMS_IER_1);
326 
327 	regval = ams->intr_mask | ams->current_masked_alarm;
328 	writel(regval, ams->base + AMS_IDR_0);
329 
330 	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
331 	writel(regval, ams->base + AMS_IDR_1);
332 }
333 
334 static void ams_disable_all_alarms(struct ams *ams)
335 {
336 	/* disable PS module alarm */
337 	if (ams->ps_base) {
338 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
339 				  AMS_REGCFG1_ALARM_MASK);
340 		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
341 				  AMS_REGCFG3_ALARM_MASK);
342 	}
343 
344 	/* disable PL module alarm */
345 	if (ams->pl_base) {
346 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
347 				  AMS_REGCFG1_ALARM_MASK);
348 		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
349 				  AMS_REGCFG3_ALARM_MASK);
350 	}
351 }
352 
353 static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
354 {
355 	u32 cfg;
356 	u32 val;
357 
358 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
359 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
360 
361 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
362 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
363 
364 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
365 
366 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
367 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
368 	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
369 }
370 
371 static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
372 {
373 	unsigned long pl_alarm_mask;
374 	u32 cfg;
375 	u32 val;
376 
377 	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
378 
379 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
380 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
381 
382 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
383 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
384 
385 	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
386 
387 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
388 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
389 	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
390 }
391 
392 static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
393 {
394 	unsigned long flags;
395 
396 	if (ams->ps_base)
397 		ams_update_ps_alarm(ams, alarm_mask);
398 
399 	if (ams->pl_base)
400 		ams_update_pl_alarm(ams, alarm_mask);
401 
402 	spin_lock_irqsave(&ams->intr_lock, flags);
403 	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
404 	spin_unlock_irqrestore(&ams->intr_lock, flags);
405 }
406 
407 static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
408 {
409 	struct ams *ams = iio_priv(indio_dev);
410 	unsigned long long scan_mask;
411 	int i;
412 	u32 regval;
413 
414 	/*
415 	 * Enable channel sequence. First 22 bits of scan_mask represent
416 	 * PS channels, and next remaining bits represent PL channels.
417 	 */
418 
419 	/* Run calibration of PS & PL as part of the sequence */
420 	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
421 	for (i = 0; i < indio_dev->num_channels; i++) {
422 		const struct iio_chan_spec *chan = &indio_dev->channels[i];
423 
424 		if (chan->scan_index < AMS_CTRL_SEQ_BASE)
425 			scan_mask |= BIT_ULL(chan->scan_index);
426 	}
427 
428 	if (ams->ps_base) {
429 		/* put sysmon in a soft reset to change the sequence */
430 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
431 				  AMS_CONF1_SEQ_DEFAULT);
432 
433 		/* configure basic channels */
434 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
435 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
436 
437 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
438 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
439 
440 		/* set continuous sequence mode */
441 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
442 				  AMS_CONF1_SEQ_CONTINUOUS);
443 	}
444 
445 	if (ams->pl_base) {
446 		/* put sysmon in a soft reset to change the sequence */
447 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
448 				  AMS_CONF1_SEQ_DEFAULT);
449 
450 		/* configure basic channels */
451 		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
452 
453 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
454 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
455 
456 		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
457 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
458 
459 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
460 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
461 
462 		/* set continuous sequence mode */
463 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
464 				  AMS_CONF1_SEQ_CONTINUOUS);
465 	}
466 }
467 
468 static int ams_init_device(struct ams *ams)
469 {
470 	u32 expect = AMS_PS_CSTS_PS_READY;
471 	u32 reg, value;
472 	int ret;
473 
474 	/* reset AMS */
475 	if (ams->ps_base) {
476 		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
477 
478 		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
479 					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
480 		if (ret)
481 			return ret;
482 
483 		/* put sysmon in a default state */
484 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
485 				  AMS_CONF1_SEQ_DEFAULT);
486 	}
487 
488 	if (ams->pl_base) {
489 		value = readl(ams->base + AMS_PL_CSTS);
490 		if (value == 0)
491 			return 0;
492 
493 		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
494 
495 		/* put sysmon in a default state */
496 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
497 				  AMS_CONF1_SEQ_DEFAULT);
498 	}
499 
500 	ams_disable_all_alarms(ams);
501 
502 	/* Disable interrupt */
503 	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
504 
505 	/* Clear any pending interrupt */
506 	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
507 	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
508 
509 	return 0;
510 }
511 
512 static int ams_read_label(struct iio_dev *indio_dev,
513 			  struct iio_chan_spec const *chan, char *label)
514 {
515 	return sysfs_emit(label, "%s\n", chan->datasheet_name);
516 }
517 
518 static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
519 {
520 	u8 channel_num;
521 
522 	switch (offset) {
523 	case AMS_VCC_PSPLL0:
524 		channel_num = AMS_VCC_PSPLL0_CH;
525 		break;
526 	case AMS_VCC_PSPLL3:
527 		channel_num = AMS_VCC_PSPLL3_CH;
528 		break;
529 	case AMS_VCCINT:
530 		channel_num = AMS_VCCINT_CH;
531 		break;
532 	case AMS_VCCBRAM:
533 		channel_num = AMS_VCCBRAM_CH;
534 		break;
535 	case AMS_VCCAUX:
536 		channel_num = AMS_VCCAUX_CH;
537 		break;
538 	case AMS_PSDDRPLL:
539 		channel_num = AMS_PSDDRPLL_CH;
540 		break;
541 	case AMS_PSINTFPDDR:
542 		channel_num = AMS_PSINTFPDDR_CH;
543 		break;
544 	default:
545 		return -EINVAL;
546 	}
547 
548 	/* put sysmon in a soft reset to change the sequence */
549 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
550 			  AMS_CONF1_SEQ_DEFAULT);
551 
552 	/* write the channel number */
553 	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
554 			  channel_num);
555 
556 	/* set single channel, sequencer off mode */
557 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
558 			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
559 
560 	return 0;
561 }
562 
563 static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
564 {
565 	u32 expect = AMS_ISR1_EOC_MASK;
566 	u32 reg;
567 	int ret;
568 
569 	ret = ams_enable_single_channel(ams, offset);
570 	if (ret)
571 		return ret;
572 
573 	/* clear end-of-conversion flag, wait for next conversion to complete */
574 	writel(expect, ams->base + AMS_ISR_1);
575 	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
576 				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
577 	if (ret)
578 		return ret;
579 
580 	*data = readl(ams->base + offset);
581 
582 	return 0;
583 }
584 
585 static int ams_get_ps_scale(int address)
586 {
587 	int val;
588 
589 	switch (address) {
590 	case AMS_SUPPLY1:
591 	case AMS_SUPPLY2:
592 	case AMS_SUPPLY3:
593 	case AMS_SUPPLY4:
594 	case AMS_SUPPLY9:
595 	case AMS_SUPPLY10:
596 	case AMS_VCCAMS:
597 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
598 		break;
599 	case AMS_SUPPLY5:
600 	case AMS_SUPPLY6:
601 	case AMS_SUPPLY7:
602 	case AMS_SUPPLY8:
603 		val = AMS_SUPPLY_SCALE_6VOLT_mV;
604 		break;
605 	default:
606 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
607 		break;
608 	}
609 
610 	return val;
611 }
612 
613 static int ams_get_pl_scale(struct ams *ams, int address)
614 {
615 	int val, regval;
616 
617 	switch (address) {
618 	case AMS_SUPPLY1:
619 	case AMS_SUPPLY2:
620 	case AMS_SUPPLY3:
621 	case AMS_SUPPLY4:
622 	case AMS_SUPPLY5:
623 	case AMS_SUPPLY6:
624 	case AMS_VCCAMS:
625 	case AMS_VREFP:
626 	case AMS_VREFN:
627 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
628 		break;
629 	case AMS_SUPPLY7:
630 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
631 		if (FIELD_GET(AMS_VUSER0_MASK, regval))
632 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
633 		else
634 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
635 		break;
636 	case AMS_SUPPLY8:
637 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
638 		if (FIELD_GET(AMS_VUSER1_MASK, regval))
639 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
640 		else
641 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
642 		break;
643 	case AMS_SUPPLY9:
644 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
645 		if (FIELD_GET(AMS_VUSER2_MASK, regval))
646 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
647 		else
648 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
649 		break;
650 	case AMS_SUPPLY10:
651 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
652 		if (FIELD_GET(AMS_VUSER3_MASK, regval))
653 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
654 		else
655 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
656 		break;
657 	case AMS_VP_VN:
658 	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
659 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
660 		break;
661 	default:
662 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
663 		break;
664 	}
665 
666 	return val;
667 }
668 
669 static int ams_get_ctrl_scale(int address)
670 {
671 	int val;
672 
673 	switch (address) {
674 	case AMS_VCC_PSPLL0:
675 	case AMS_VCC_PSPLL3:
676 	case AMS_VCCINT:
677 	case AMS_VCCBRAM:
678 	case AMS_VCCAUX:
679 	case AMS_PSDDRPLL:
680 	case AMS_PSINTFPDDR:
681 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
682 		break;
683 	default:
684 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
685 		break;
686 	}
687 
688 	return val;
689 }
690 
691 static int ams_read_raw(struct iio_dev *indio_dev,
692 			struct iio_chan_spec const *chan,
693 			int *val, int *val2, long mask)
694 {
695 	struct ams *ams = iio_priv(indio_dev);
696 	int ret;
697 
698 	switch (mask) {
699 	case IIO_CHAN_INFO_RAW:
700 		mutex_lock(&ams->lock);
701 		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
702 			ret = ams_read_vcc_reg(ams, chan->address, val);
703 			if (ret)
704 				goto unlock_mutex;
705 			ams_enable_channel_sequence(indio_dev);
706 		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
707 			*val = readl(ams->pl_base + chan->address);
708 		else
709 			*val = readl(ams->ps_base + chan->address);
710 
711 		ret = IIO_VAL_INT;
712 unlock_mutex:
713 		mutex_unlock(&ams->lock);
714 		return ret;
715 	case IIO_CHAN_INFO_SCALE:
716 		switch (chan->type) {
717 		case IIO_VOLTAGE:
718 			if (chan->scan_index < AMS_PS_SEQ_MAX)
719 				*val = ams_get_ps_scale(chan->address);
720 			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
721 				 chan->scan_index < AMS_CTRL_SEQ_BASE)
722 				*val = ams_get_pl_scale(ams, chan->address);
723 			else
724 				*val = ams_get_ctrl_scale(chan->address);
725 
726 			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
727 			return IIO_VAL_FRACTIONAL_LOG2;
728 		case IIO_TEMP:
729 			*val = AMS_TEMP_SCALE;
730 			*val2 = AMS_TEMP_SCALE_DIV_BIT;
731 			return IIO_VAL_FRACTIONAL_LOG2;
732 		default:
733 			return -EINVAL;
734 		}
735 	case IIO_CHAN_INFO_OFFSET:
736 		/* Only the temperature channel has an offset */
737 		*val = AMS_TEMP_OFFSET;
738 		return IIO_VAL_INT;
739 	default:
740 		return -EINVAL;
741 	}
742 }
743 
744 static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
745 {
746 	int offset;
747 
748 	if (scan_index >= AMS_PS_SEQ_MAX)
749 		scan_index -= AMS_PS_SEQ_MAX;
750 
751 	if (dir == IIO_EV_DIR_FALLING) {
752 		if (scan_index < AMS_SEQ_SUPPLY7)
753 			offset = AMS_ALARM_THRESHOLD_OFF_10;
754 		else
755 			offset = AMS_ALARM_THRESHOLD_OFF_20;
756 	} else {
757 		offset = 0;
758 	}
759 
760 	switch (scan_index) {
761 	case AMS_SEQ_TEMP:
762 		return AMS_ALARM_TEMP + offset;
763 	case AMS_SEQ_SUPPLY1:
764 		return AMS_ALARM_SUPPLY1 + offset;
765 	case AMS_SEQ_SUPPLY2:
766 		return AMS_ALARM_SUPPLY2 + offset;
767 	case AMS_SEQ_SUPPLY3:
768 		return AMS_ALARM_SUPPLY3 + offset;
769 	case AMS_SEQ_SUPPLY4:
770 		return AMS_ALARM_SUPPLY4 + offset;
771 	case AMS_SEQ_SUPPLY5:
772 		return AMS_ALARM_SUPPLY5 + offset;
773 	case AMS_SEQ_SUPPLY6:
774 		return AMS_ALARM_SUPPLY6 + offset;
775 	case AMS_SEQ_SUPPLY7:
776 		return AMS_ALARM_SUPPLY7 + offset;
777 	case AMS_SEQ_SUPPLY8:
778 		return AMS_ALARM_SUPPLY8 + offset;
779 	case AMS_SEQ_SUPPLY9:
780 		return AMS_ALARM_SUPPLY9 + offset;
781 	case AMS_SEQ_SUPPLY10:
782 		return AMS_ALARM_SUPPLY10 + offset;
783 	case AMS_SEQ_VCCAMS:
784 		return AMS_ALARM_VCCAMS + offset;
785 	case AMS_SEQ_TEMP_REMOTE:
786 		return AMS_ALARM_TEMP_REMOTE + offset;
787 	default:
788 		return 0;
789 	}
790 }
791 
792 static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
793 							u32 event)
794 {
795 	int scan_index = 0, i;
796 
797 	if (event >= AMS_PL_ALARM_START) {
798 		event -= AMS_PL_ALARM_START;
799 		scan_index = AMS_PS_SEQ_MAX;
800 	}
801 
802 	switch (event) {
803 	case AMS_ALARM_BIT_TEMP:
804 		scan_index += AMS_SEQ_TEMP;
805 		break;
806 	case AMS_ALARM_BIT_SUPPLY1:
807 		scan_index += AMS_SEQ_SUPPLY1;
808 		break;
809 	case AMS_ALARM_BIT_SUPPLY2:
810 		scan_index += AMS_SEQ_SUPPLY2;
811 		break;
812 	case AMS_ALARM_BIT_SUPPLY3:
813 		scan_index += AMS_SEQ_SUPPLY3;
814 		break;
815 	case AMS_ALARM_BIT_SUPPLY4:
816 		scan_index += AMS_SEQ_SUPPLY4;
817 		break;
818 	case AMS_ALARM_BIT_SUPPLY5:
819 		scan_index += AMS_SEQ_SUPPLY5;
820 		break;
821 	case AMS_ALARM_BIT_SUPPLY6:
822 		scan_index += AMS_SEQ_SUPPLY6;
823 		break;
824 	case AMS_ALARM_BIT_SUPPLY7:
825 		scan_index += AMS_SEQ_SUPPLY7;
826 		break;
827 	case AMS_ALARM_BIT_SUPPLY8:
828 		scan_index += AMS_SEQ_SUPPLY8;
829 		break;
830 	case AMS_ALARM_BIT_SUPPLY9:
831 		scan_index += AMS_SEQ_SUPPLY9;
832 		break;
833 	case AMS_ALARM_BIT_SUPPLY10:
834 		scan_index += AMS_SEQ_SUPPLY10;
835 		break;
836 	case AMS_ALARM_BIT_VCCAMS:
837 		scan_index += AMS_SEQ_VCCAMS;
838 		break;
839 	case AMS_ALARM_BIT_TEMP_REMOTE:
840 		scan_index += AMS_SEQ_TEMP_REMOTE;
841 		break;
842 	default:
843 		break;
844 	}
845 
846 	for (i = 0; i < dev->num_channels; i++)
847 		if (dev->channels[i].scan_index == scan_index)
848 			break;
849 
850 	return &dev->channels[i];
851 }
852 
853 static int ams_get_alarm_mask(int scan_index)
854 {
855 	int bit = 0;
856 
857 	if (scan_index >= AMS_PS_SEQ_MAX) {
858 		bit = AMS_PL_ALARM_START;
859 		scan_index -= AMS_PS_SEQ_MAX;
860 	}
861 
862 	switch (scan_index) {
863 	case AMS_SEQ_TEMP:
864 		return BIT(AMS_ALARM_BIT_TEMP + bit);
865 	case AMS_SEQ_SUPPLY1:
866 		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
867 	case AMS_SEQ_SUPPLY2:
868 		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
869 	case AMS_SEQ_SUPPLY3:
870 		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
871 	case AMS_SEQ_SUPPLY4:
872 		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
873 	case AMS_SEQ_SUPPLY5:
874 		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
875 	case AMS_SEQ_SUPPLY6:
876 		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
877 	case AMS_SEQ_SUPPLY7:
878 		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
879 	case AMS_SEQ_SUPPLY8:
880 		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
881 	case AMS_SEQ_SUPPLY9:
882 		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
883 	case AMS_SEQ_SUPPLY10:
884 		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
885 	case AMS_SEQ_VCCAMS:
886 		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
887 	case AMS_SEQ_TEMP_REMOTE:
888 		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
889 	default:
890 		return 0;
891 	}
892 }
893 
894 static int ams_read_event_config(struct iio_dev *indio_dev,
895 				 const struct iio_chan_spec *chan,
896 				 enum iio_event_type type,
897 				 enum iio_event_direction dir)
898 {
899 	struct ams *ams = iio_priv(indio_dev);
900 
901 	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
902 }
903 
904 static int ams_write_event_config(struct iio_dev *indio_dev,
905 				  const struct iio_chan_spec *chan,
906 				  enum iio_event_type type,
907 				  enum iio_event_direction dir,
908 				  int state)
909 {
910 	struct ams *ams = iio_priv(indio_dev);
911 	unsigned int alarm;
912 
913 	alarm = ams_get_alarm_mask(chan->scan_index);
914 
915 	mutex_lock(&ams->lock);
916 
917 	if (state)
918 		ams->alarm_mask |= alarm;
919 	else
920 		ams->alarm_mask &= ~alarm;
921 
922 	ams_update_alarm(ams, ams->alarm_mask);
923 
924 	mutex_unlock(&ams->lock);
925 
926 	return 0;
927 }
928 
929 static int ams_read_event_value(struct iio_dev *indio_dev,
930 				const struct iio_chan_spec *chan,
931 				enum iio_event_type type,
932 				enum iio_event_direction dir,
933 				enum iio_event_info info, int *val, int *val2)
934 {
935 	struct ams *ams = iio_priv(indio_dev);
936 	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
937 
938 	mutex_lock(&ams->lock);
939 
940 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
941 		*val = readl(ams->pl_base + offset);
942 	else
943 		*val = readl(ams->ps_base + offset);
944 
945 	mutex_unlock(&ams->lock);
946 
947 	return IIO_VAL_INT;
948 }
949 
950 static int ams_write_event_value(struct iio_dev *indio_dev,
951 				 const struct iio_chan_spec *chan,
952 				 enum iio_event_type type,
953 				 enum iio_event_direction dir,
954 				 enum iio_event_info info, int val, int val2)
955 {
956 	struct ams *ams = iio_priv(indio_dev);
957 	unsigned int offset;
958 
959 	mutex_lock(&ams->lock);
960 
961 	/* Set temperature channel threshold to direct threshold */
962 	if (chan->type == IIO_TEMP) {
963 		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
964 
965 		if (chan->scan_index >= AMS_PS_SEQ_MAX)
966 			ams_pl_update_reg(ams, offset,
967 					  AMS_ALARM_THR_DIRECT_MASK,
968 					  AMS_ALARM_THR_DIRECT_MASK);
969 		else
970 			ams_ps_update_reg(ams, offset,
971 					  AMS_ALARM_THR_DIRECT_MASK,
972 					  AMS_ALARM_THR_DIRECT_MASK);
973 	}
974 
975 	offset = ams_get_alarm_offset(chan->scan_index, dir);
976 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
977 		writel(val, ams->pl_base + offset);
978 	else
979 		writel(val, ams->ps_base + offset);
980 
981 	mutex_unlock(&ams->lock);
982 
983 	return 0;
984 }
985 
986 static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
987 {
988 	const struct iio_chan_spec *chan;
989 
990 	chan = ams_event_to_channel(indio_dev, event);
991 
992 	if (chan->type == IIO_TEMP) {
993 		/*
994 		 * The temperature channel only supports over-temperature
995 		 * events.
996 		 */
997 		iio_push_event(indio_dev,
998 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
999 						    IIO_EV_TYPE_THRESH,
1000 						    IIO_EV_DIR_RISING),
1001 			       iio_get_time_ns(indio_dev));
1002 	} else {
1003 		/*
1004 		 * For other channels we don't know whether it is a upper or
1005 		 * lower threshold event. Userspace will have to check the
1006 		 * channel value if it wants to know.
1007 		 */
1008 		iio_push_event(indio_dev,
1009 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1010 						    IIO_EV_TYPE_THRESH,
1011 						    IIO_EV_DIR_EITHER),
1012 			       iio_get_time_ns(indio_dev));
1013 	}
1014 }
1015 
1016 static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1017 {
1018 	unsigned int bit;
1019 
1020 	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1021 		ams_handle_event(indio_dev, bit);
1022 }
1023 
1024 /**
1025  * ams_unmask_worker - ams alarm interrupt unmask worker
1026  * @work: work to be done
1027  *
1028  * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1029  * threshold condition go way from within the interrupt handler, this means as
1030  * soon as a threshold condition is present we would enter the interrupt handler
1031  * again and again. To work around this we mask all active threshold interrupts
1032  * in the interrupt handler and start a timer. In this timer we poll the
1033  * interrupt status and only if the interrupt is inactive we unmask it again.
1034  */
1035 static void ams_unmask_worker(struct work_struct *work)
1036 {
1037 	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1038 	unsigned int status, unmask;
1039 
1040 	spin_lock_irq(&ams->intr_lock);
1041 
1042 	status = readl(ams->base + AMS_ISR_0);
1043 
1044 	/* Clear those bits which are not active anymore */
1045 	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1046 
1047 	/* Clear status of disabled alarm */
1048 	unmask |= ams->intr_mask;
1049 
1050 	ams->current_masked_alarm &= status;
1051 
1052 	/* Also clear those which are masked out anyway */
1053 	ams->current_masked_alarm &= ~ams->intr_mask;
1054 
1055 	/* Clear the interrupts before we unmask them */
1056 	writel(unmask, ams->base + AMS_ISR_0);
1057 
1058 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1059 
1060 	spin_unlock_irq(&ams->intr_lock);
1061 
1062 	/* If still pending some alarm re-trigger the timer */
1063 	if (ams->current_masked_alarm)
1064 		schedule_delayed_work(&ams->ams_unmask_work,
1065 				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1066 }
1067 
1068 static irqreturn_t ams_irq(int irq, void *data)
1069 {
1070 	struct iio_dev *indio_dev = data;
1071 	struct ams *ams = iio_priv(indio_dev);
1072 	u32 isr0;
1073 
1074 	spin_lock(&ams->intr_lock);
1075 
1076 	isr0 = readl(ams->base + AMS_ISR_0);
1077 
1078 	/* Only process alarms that are not masked */
1079 	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1080 	if (!isr0) {
1081 		spin_unlock(&ams->intr_lock);
1082 		return IRQ_NONE;
1083 	}
1084 
1085 	/* Clear interrupt */
1086 	writel(isr0, ams->base + AMS_ISR_0);
1087 
1088 	/* Mask the alarm interrupts until cleared */
1089 	ams->current_masked_alarm |= isr0;
1090 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1091 
1092 	ams_handle_events(indio_dev, isr0);
1093 
1094 	schedule_delayed_work(&ams->ams_unmask_work,
1095 			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1096 
1097 	spin_unlock(&ams->intr_lock);
1098 
1099 	return IRQ_HANDLED;
1100 }
1101 
1102 static const struct iio_event_spec ams_temp_events[] = {
1103 	{
1104 		.type = IIO_EV_TYPE_THRESH,
1105 		.dir = IIO_EV_DIR_RISING,
1106 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1107 	},
1108 };
1109 
1110 static const struct iio_event_spec ams_voltage_events[] = {
1111 	{
1112 		.type = IIO_EV_TYPE_THRESH,
1113 		.dir = IIO_EV_DIR_RISING,
1114 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1115 	},
1116 	{
1117 		.type = IIO_EV_TYPE_THRESH,
1118 		.dir = IIO_EV_DIR_FALLING,
1119 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1120 	},
1121 	{
1122 		.type = IIO_EV_TYPE_THRESH,
1123 		.dir = IIO_EV_DIR_EITHER,
1124 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1125 	},
1126 };
1127 
1128 static const struct iio_chan_spec ams_ps_channels[] = {
1129 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_LPD"),
1130 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE, "Temp_FPD"),
1131 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, "VCC_PSINTLP"),
1132 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, "VCC_PSINTFP"),
1133 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, "VCC_PSAUX"),
1134 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, "VCC_PSDDR"),
1135 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, "VCC_PSIO3"),
1136 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, "VCC_PSIO0"),
1137 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, "VCC_PSIO1"),
1138 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, "VCC_PSIO2"),
1139 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, "PS_MGTRAVCC"),
1140 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, "PS_MGTRAVTT"),
1141 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, "VCC_PSADC"),
1142 };
1143 
1144 static const struct iio_chan_spec ams_pl_channels[] = {
1145 	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_PL"),
1146 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true, "VCCINT"),
1147 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true, "VCCAUX"),
1148 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false, "VREFP"),
1149 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false, "VREFN"),
1150 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true, "VCCBRAM"),
1151 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true, "VCC_PSINTLP"),
1152 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true, "VCC_PSINTFP"),
1153 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true, "VCC_PSAUX"),
1154 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true, "VCCAMS"),
1155 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false, "VP_VN"),
1156 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true, "VUser0"),
1157 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true, "VUser1"),
1158 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true, "VUser2"),
1159 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true, "VUser3"),
1160 	AMS_PL_AUX_CHAN_VOLTAGE(0),
1161 	AMS_PL_AUX_CHAN_VOLTAGE(1),
1162 	AMS_PL_AUX_CHAN_VOLTAGE(2),
1163 	AMS_PL_AUX_CHAN_VOLTAGE(3),
1164 	AMS_PL_AUX_CHAN_VOLTAGE(4),
1165 	AMS_PL_AUX_CHAN_VOLTAGE(5),
1166 	AMS_PL_AUX_CHAN_VOLTAGE(6),
1167 	AMS_PL_AUX_CHAN_VOLTAGE(7),
1168 	AMS_PL_AUX_CHAN_VOLTAGE(8),
1169 	AMS_PL_AUX_CHAN_VOLTAGE(9),
1170 	AMS_PL_AUX_CHAN_VOLTAGE(10),
1171 	AMS_PL_AUX_CHAN_VOLTAGE(11),
1172 	AMS_PL_AUX_CHAN_VOLTAGE(12),
1173 	AMS_PL_AUX_CHAN_VOLTAGE(13),
1174 	AMS_PL_AUX_CHAN_VOLTAGE(14),
1175 	AMS_PL_AUX_CHAN_VOLTAGE(15),
1176 };
1177 
1178 static const struct iio_chan_spec ams_ctrl_channels[] = {
1179 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0, "VCC_PSPLL"),
1180 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3, "VCC_PSBATT"),
1181 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT, "VCCINT"),
1182 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM, "VCCBRAM"),
1183 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX, "VCCAUX"),
1184 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL, "VCC_PSDDR_PLL"),
1185 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR, "VCC_PSINTFP_DDR"),
1186 };
1187 
1188 static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1189 			    struct iio_chan_spec *channels, int num_channels)
1190 {
1191 	struct iio_chan_spec *chan;
1192 	struct fwnode_handle *child;
1193 	unsigned int reg, ext_chan;
1194 	int ret;
1195 
1196 	fwnode_for_each_child_node(chan_node, child) {
1197 		ret = fwnode_property_read_u32(child, "reg", &reg);
1198 		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1199 			continue;
1200 
1201 		chan = &channels[num_channels];
1202 		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1203 		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1204 
1205 		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1206 			chan->scan_type.sign = 's';
1207 
1208 		num_channels++;
1209 	}
1210 
1211 	return num_channels;
1212 }
1213 
1214 static void ams_iounmap_ps(void *data)
1215 {
1216 	struct ams *ams = data;
1217 
1218 	iounmap(ams->ps_base);
1219 }
1220 
1221 static void ams_iounmap_pl(void *data)
1222 {
1223 	struct ams *ams = data;
1224 
1225 	iounmap(ams->pl_base);
1226 }
1227 
1228 static int ams_init_module(struct iio_dev *indio_dev,
1229 			   struct fwnode_handle *fwnode,
1230 			   struct iio_chan_spec *channels)
1231 {
1232 	struct device *dev = indio_dev->dev.parent;
1233 	struct ams *ams = iio_priv(indio_dev);
1234 	int num_channels = 0;
1235 	int ret;
1236 
1237 	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1238 		ams->ps_base = fwnode_iomap(fwnode, 0);
1239 		if (!ams->ps_base)
1240 			return -ENXIO;
1241 		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1242 		if (ret < 0)
1243 			return ret;
1244 
1245 		/* add PS channels to iio device channels */
1246 		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1247 		num_channels = ARRAY_SIZE(ams_ps_channels);
1248 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1249 		ams->pl_base = fwnode_iomap(fwnode, 0);
1250 		if (!ams->pl_base)
1251 			return -ENXIO;
1252 
1253 		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1254 		if (ret < 0)
1255 			return ret;
1256 
1257 		/* Copy only first 10 fix channels */
1258 		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1259 		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1260 		num_channels = ams_get_ext_chan(fwnode, channels,
1261 						num_channels);
1262 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1263 		/* add AMS channels to iio device channels */
1264 		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1265 		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1266 	} else {
1267 		return -EINVAL;
1268 	}
1269 
1270 	return num_channels;
1271 }
1272 
1273 static int ams_parse_firmware(struct iio_dev *indio_dev)
1274 {
1275 	struct ams *ams = iio_priv(indio_dev);
1276 	struct iio_chan_spec *ams_channels, *dev_channels;
1277 	struct device *dev = indio_dev->dev.parent;
1278 	struct fwnode_handle *child = NULL;
1279 	struct fwnode_handle *fwnode = dev_fwnode(dev);
1280 	size_t ams_size;
1281 	int ret, ch_cnt = 0, i, rising_off, falling_off;
1282 	unsigned int num_channels = 0;
1283 
1284 	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1285 		ARRAY_SIZE(ams_ctrl_channels);
1286 
1287 	/* Initialize buffer for channel specification */
1288 	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1289 	if (!ams_channels)
1290 		return -ENOMEM;
1291 
1292 	if (fwnode_device_is_available(fwnode)) {
1293 		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1294 		if (ret < 0)
1295 			return ret;
1296 
1297 		num_channels += ret;
1298 	}
1299 
1300 	fwnode_for_each_child_node(fwnode, child) {
1301 		if (fwnode_device_is_available(child)) {
1302 			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1303 			if (ret < 0) {
1304 				fwnode_handle_put(child);
1305 				return ret;
1306 			}
1307 
1308 			num_channels += ret;
1309 		}
1310 	}
1311 
1312 	for (i = 0; i < num_channels; i++) {
1313 		ams_channels[i].channel = ch_cnt++;
1314 
1315 		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1316 			/* set threshold to max and min for each channel */
1317 			falling_off =
1318 				ams_get_alarm_offset(ams_channels[i].scan_index,
1319 						     IIO_EV_DIR_FALLING);
1320 			rising_off =
1321 				ams_get_alarm_offset(ams_channels[i].scan_index,
1322 						     IIO_EV_DIR_RISING);
1323 			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1324 				writel(AMS_ALARM_THR_MIN,
1325 				       ams->pl_base + falling_off);
1326 				writel(AMS_ALARM_THR_MAX,
1327 				       ams->pl_base + rising_off);
1328 			} else {
1329 				writel(AMS_ALARM_THR_MIN,
1330 				       ams->ps_base + falling_off);
1331 				writel(AMS_ALARM_THR_MAX,
1332 				       ams->ps_base + rising_off);
1333 			}
1334 		}
1335 	}
1336 
1337 	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1338 					   sizeof(*dev_channels), GFP_KERNEL);
1339 	if (!dev_channels)
1340 		return -ENOMEM;
1341 
1342 	indio_dev->channels = dev_channels;
1343 	indio_dev->num_channels = num_channels;
1344 
1345 	return 0;
1346 }
1347 
1348 static const struct iio_info iio_ams_info = {
1349 	.read_label = ams_read_label,
1350 	.read_raw = &ams_read_raw,
1351 	.read_event_config = &ams_read_event_config,
1352 	.write_event_config = &ams_write_event_config,
1353 	.read_event_value = &ams_read_event_value,
1354 	.write_event_value = &ams_write_event_value,
1355 };
1356 
1357 static const struct of_device_id ams_of_match_table[] = {
1358 	{ .compatible = "xlnx,zynqmp-ams" },
1359 	{ }
1360 };
1361 MODULE_DEVICE_TABLE(of, ams_of_match_table);
1362 
1363 static int ams_probe(struct platform_device *pdev)
1364 {
1365 	struct iio_dev *indio_dev;
1366 	struct ams *ams;
1367 	int ret;
1368 	int irq;
1369 
1370 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1371 	if (!indio_dev)
1372 		return -ENOMEM;
1373 
1374 	ams = iio_priv(indio_dev);
1375 	mutex_init(&ams->lock);
1376 	spin_lock_init(&ams->intr_lock);
1377 
1378 	indio_dev->name = "xilinx-ams";
1379 
1380 	indio_dev->info = &iio_ams_info;
1381 	indio_dev->modes = INDIO_DIRECT_MODE;
1382 
1383 	ams->base = devm_platform_ioremap_resource(pdev, 0);
1384 	if (IS_ERR(ams->base))
1385 		return PTR_ERR(ams->base);
1386 
1387 	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1388 	if (IS_ERR(ams->clk))
1389 		return PTR_ERR(ams->clk);
1390 
1391 	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1392 					   ams_unmask_worker);
1393 	if (ret < 0)
1394 		return ret;
1395 
1396 	ret = ams_parse_firmware(indio_dev);
1397 	if (ret)
1398 		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1399 
1400 	ret = ams_init_device(ams);
1401 	if (ret)
1402 		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1403 
1404 	ams_enable_channel_sequence(indio_dev);
1405 
1406 	irq = platform_get_irq(pdev, 0);
1407 	if (irq < 0)
1408 		return irq;
1409 
1410 	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1411 			       indio_dev);
1412 	if (ret < 0)
1413 		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1414 
1415 	platform_set_drvdata(pdev, indio_dev);
1416 
1417 	return devm_iio_device_register(&pdev->dev, indio_dev);
1418 }
1419 
1420 static int ams_suspend(struct device *dev)
1421 {
1422 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1423 
1424 	clk_disable_unprepare(ams->clk);
1425 
1426 	return 0;
1427 }
1428 
1429 static int ams_resume(struct device *dev)
1430 {
1431 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1432 
1433 	return clk_prepare_enable(ams->clk);
1434 }
1435 
1436 static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1437 
1438 static struct platform_driver ams_driver = {
1439 	.probe = ams_probe,
1440 	.driver = {
1441 		.name = "xilinx-ams",
1442 		.pm = pm_sleep_ptr(&ams_pm_ops),
1443 		.of_match_table = ams_of_match_table,
1444 	},
1445 };
1446 module_platform_driver(ams_driver);
1447 
1448 MODULE_DESCRIPTION("Xilinx AMS driver");
1449 MODULE_LICENSE("GPL v2");
1450 MODULE_AUTHOR("Xilinx, Inc.");
1451