xref: /linux/drivers/iio/adc/xilinx-ams.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx AMS driver
4  *
5  *  Copyright (C) 2021 Xilinx, Inc.
6  *
7  *  Manish Narani <mnarani@xilinx.com>
8  *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/devm-helpers.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26 
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 
30 /* AMS registers definitions */
31 #define AMS_ISR_0			0x010
32 #define AMS_ISR_1			0x014
33 #define AMS_IER_0			0x020
34 #define AMS_IER_1			0x024
35 #define AMS_IDR_0			0x028
36 #define AMS_IDR_1			0x02C
37 #define AMS_PS_CSTS			0x040
38 #define AMS_PL_CSTS			0x044
39 
40 #define AMS_VCC_PSPLL0			0x060
41 #define AMS_VCC_PSPLL3			0x06C
42 #define AMS_VCCINT			0x078
43 #define AMS_VCCBRAM			0x07C
44 #define AMS_VCCAUX			0x080
45 #define AMS_PSDDRPLL			0x084
46 #define AMS_PSINTFPDDR			0x09C
47 
48 #define AMS_VCC_PSPLL0_CH		48
49 #define AMS_VCC_PSPLL3_CH		51
50 #define AMS_VCCINT_CH			54
51 #define AMS_VCCBRAM_CH			55
52 #define AMS_VCCAUX_CH			56
53 #define AMS_PSDDRPLL_CH			57
54 #define AMS_PSINTFPDDR_CH		63
55 
56 #define AMS_REG_CONFIG0			0x100
57 #define AMS_REG_CONFIG1			0x104
58 #define AMS_REG_CONFIG3			0x10C
59 #define AMS_REG_CONFIG4			0x110
60 #define AMS_REG_SEQ_CH0			0x120
61 #define AMS_REG_SEQ_CH1			0x124
62 #define AMS_REG_SEQ_CH2			0x118
63 
64 #define AMS_VUSER0_MASK			BIT(0)
65 #define AMS_VUSER1_MASK			BIT(1)
66 #define AMS_VUSER2_MASK			BIT(2)
67 #define AMS_VUSER3_MASK			BIT(3)
68 
69 #define AMS_TEMP			0x000
70 #define AMS_SUPPLY1			0x004
71 #define AMS_SUPPLY2			0x008
72 #define AMS_VP_VN			0x00C
73 #define AMS_VREFP			0x010
74 #define AMS_VREFN			0x014
75 #define AMS_SUPPLY3			0x018
76 #define AMS_SUPPLY4			0x034
77 #define AMS_SUPPLY5			0x038
78 #define AMS_SUPPLY6			0x03C
79 #define AMS_SUPPLY7			0x200
80 #define AMS_SUPPLY8			0x204
81 #define AMS_SUPPLY9			0x208
82 #define AMS_SUPPLY10			0x20C
83 #define AMS_VCCAMS			0x210
84 #define AMS_TEMP_REMOTE			0x214
85 
86 #define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
87 
88 #define AMS_PS_RESET_VALUE		0xFFFF
89 #define AMS_PL_RESET_VALUE		0xFFFF
90 
91 #define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
92 
93 #define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
94 #define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95 #define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96 #define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97 
98 #define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
99 #define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
100 #define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
101 
102 #define AMS_PS_SEQ_MASK			GENMASK(21, 0)
103 #define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
104 
105 #define AMS_ALARM_TEMP			0x140
106 #define AMS_ALARM_SUPPLY1		0x144
107 #define AMS_ALARM_SUPPLY2		0x148
108 #define AMS_ALARM_SUPPLY3		0x160
109 #define AMS_ALARM_SUPPLY4		0x164
110 #define AMS_ALARM_SUPPLY5		0x168
111 #define AMS_ALARM_SUPPLY6		0x16C
112 #define AMS_ALARM_SUPPLY7		0x180
113 #define AMS_ALARM_SUPPLY8		0x184
114 #define AMS_ALARM_SUPPLY9		0x188
115 #define AMS_ALARM_SUPPLY10		0x18C
116 #define AMS_ALARM_VCCAMS		0x190
117 #define AMS_ALARM_TEMP_REMOTE		0x194
118 #define AMS_ALARM_THRESHOLD_OFF_10	0x10
119 #define AMS_ALARM_THRESHOLD_OFF_20	0x20
120 
121 #define AMS_ALARM_THR_DIRECT_MASK	BIT(0)
122 #define AMS_ALARM_THR_MIN		0x0000
123 #define AMS_ALARM_THR_MAX		(BIT(16) - 1)
124 
125 #define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
126 #define AMS_NO_OF_ALARMS		32
127 #define AMS_PL_ALARM_START		16
128 #define AMS_PL_ALARM_MASK		GENMASK(31, 16)
129 #define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
130 #define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
131 #define AMS_ISR1_EOC_MASK		BIT(3)
132 #define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
133 #define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
134 #define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
135 #define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
136 #define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
137 #define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
138 #define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
139 #define AMS_REGCFG1_ALARM_MASK  \
140 	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141 #define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
142 
143 #define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
144 #define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
145 
146 #define AMS_PL_MAX_FIXED_CHANNEL	10
147 #define AMS_PL_MAX_EXT_CHANNEL		20
148 
149 #define AMS_INIT_POLL_TIME_US		200
150 #define AMS_INIT_TIMEOUT_US		10000
151 #define AMS_UNMASK_TIMEOUT_MS		500
152 
153 /*
154  * Following scale and offset value is derived from
155  * UG580 (v1.7) December 20, 2016
156  */
157 #define AMS_SUPPLY_SCALE_1VOLT_mV		1000
158 #define AMS_SUPPLY_SCALE_3VOLT_mV		3000
159 #define AMS_SUPPLY_SCALE_6VOLT_mV		6000
160 #define AMS_SUPPLY_SCALE_DIV_BIT	16
161 
162 #define AMS_TEMP_SCALE			509314
163 #define AMS_TEMP_SCALE_DIV_BIT		16
164 #define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
165 
166 enum ams_alarm_bit {
167 	AMS_ALARM_BIT_TEMP = 0,
168 	AMS_ALARM_BIT_SUPPLY1 = 1,
169 	AMS_ALARM_BIT_SUPPLY2 = 2,
170 	AMS_ALARM_BIT_SUPPLY3 = 3,
171 	AMS_ALARM_BIT_SUPPLY4 = 4,
172 	AMS_ALARM_BIT_SUPPLY5 = 5,
173 	AMS_ALARM_BIT_SUPPLY6 = 6,
174 	AMS_ALARM_BIT_RESERVED = 7,
175 	AMS_ALARM_BIT_SUPPLY7 = 8,
176 	AMS_ALARM_BIT_SUPPLY8 = 9,
177 	AMS_ALARM_BIT_SUPPLY9 = 10,
178 	AMS_ALARM_BIT_SUPPLY10 = 11,
179 	AMS_ALARM_BIT_VCCAMS = 12,
180 	AMS_ALARM_BIT_TEMP_REMOTE = 13,
181 };
182 
183 enum ams_seq {
184 	AMS_SEQ_VCC_PSPLL = 0,
185 	AMS_SEQ_VCC_PSBATT = 1,
186 	AMS_SEQ_VCCINT = 2,
187 	AMS_SEQ_VCCBRAM = 3,
188 	AMS_SEQ_VCCAUX = 4,
189 	AMS_SEQ_PSDDRPLL = 5,
190 	AMS_SEQ_INTDDR = 6,
191 };
192 
193 enum ams_ps_pl_seq {
194 	AMS_SEQ_CALIB = 0,
195 	AMS_SEQ_RSVD_1 = 1,
196 	AMS_SEQ_RSVD_2 = 2,
197 	AMS_SEQ_TEST = 3,
198 	AMS_SEQ_RSVD_4 = 4,
199 	AMS_SEQ_SUPPLY4 = 5,
200 	AMS_SEQ_SUPPLY5 = 6,
201 	AMS_SEQ_SUPPLY6 = 7,
202 	AMS_SEQ_TEMP = 8,
203 	AMS_SEQ_SUPPLY2 = 9,
204 	AMS_SEQ_SUPPLY1 = 10,
205 	AMS_SEQ_VP_VN = 11,
206 	AMS_SEQ_VREFP = 12,
207 	AMS_SEQ_VREFN = 13,
208 	AMS_SEQ_SUPPLY3 = 14,
209 	AMS_SEQ_CURRENT_MON = 15,
210 	AMS_SEQ_SUPPLY7 = 16,
211 	AMS_SEQ_SUPPLY8 = 17,
212 	AMS_SEQ_SUPPLY9 = 18,
213 	AMS_SEQ_SUPPLY10 = 19,
214 	AMS_SEQ_VCCAMS = 20,
215 	AMS_SEQ_TEMP_REMOTE = 21,
216 	AMS_SEQ_MAX = 22
217 };
218 
219 #define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
220 #define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
221 #define PS_SEQ(x)		(x)
222 #define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
223 #define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
224 
225 #define AMS_CHAN_TEMP(_scan_index, _addr, _name) { \
226 	.type = IIO_TEMP, \
227 	.indexed = 1, \
228 	.address = (_addr), \
229 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230 		BIT(IIO_CHAN_INFO_SCALE) | \
231 		BIT(IIO_CHAN_INFO_OFFSET), \
232 	.event_spec = ams_temp_events, \
233 	.scan_index = _scan_index, \
234 	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
235 	.datasheet_name = _name, \
236 }
237 
238 #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) { \
239 	.type = IIO_VOLTAGE, \
240 	.indexed = 1, \
241 	.address = (_addr), \
242 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
243 		BIT(IIO_CHAN_INFO_SCALE), \
244 	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
245 	.scan_index = _scan_index, \
246 	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
247 	.datasheet_name = _name, \
248 }
249 
250 #define AMS_PS_CHAN_TEMP(_scan_index, _addr, _name) \
251 	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr, _name)
252 #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr, _name) \
253 	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true, _name)
254 
255 #define AMS_PL_CHAN_TEMP(_scan_index, _addr, _name) \
256 	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr, _name)
257 #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) \
258 	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm, _name)
259 #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
260 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false, \
261 			 "VAUX" #_auxno)
262 #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr, _name) \
263 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false, \
264 			 _name)
265 
266 /**
267  * struct ams - This structure contains necessary state for xilinx-ams to operate
268  * @base: physical base address of device
269  * @ps_base: physical base address of PS device
270  * @pl_base: physical base address of PL device
271  * @clk: clocks associated with the device
272  * @dev: pointer to device struct
273  * @lock: to handle multiple user interaction
274  * @intr_lock: to protect interrupt mask values
275  * @alarm_mask: alarm configuration
276  * @current_masked_alarm: currently masked due to alarm
277  * @intr_mask: interrupt configuration
278  * @ams_unmask_work: re-enables event once the event condition disappears
279  *
280  */
281 struct ams {
282 	void __iomem *base;
283 	void __iomem *ps_base;
284 	void __iomem *pl_base;
285 	struct clk *clk;
286 	struct device *dev;
287 	struct mutex lock;
288 	spinlock_t intr_lock;
289 	unsigned int alarm_mask;
290 	unsigned int current_masked_alarm;
291 	u64 intr_mask;
292 	struct delayed_work ams_unmask_work;
293 };
294 
295 static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
296 				     u32 mask, u32 data)
297 {
298 	u32 val, regval;
299 
300 	val = readl(ams->ps_base + offset);
301 	regval = (val & ~mask) | (data & mask);
302 	writel(regval, ams->ps_base + offset);
303 }
304 
305 static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
306 				     u32 mask, u32 data)
307 {
308 	u32 val, regval;
309 
310 	val = readl(ams->pl_base + offset);
311 	regval = (val & ~mask) | (data & mask);
312 	writel(regval, ams->pl_base + offset);
313 }
314 
315 static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
316 {
317 	u32 regval;
318 
319 	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
320 
321 	regval = ~(ams->intr_mask | ams->current_masked_alarm);
322 	writel(regval, ams->base + AMS_IER_0);
323 
324 	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
325 	writel(regval, ams->base + AMS_IER_1);
326 
327 	regval = ams->intr_mask | ams->current_masked_alarm;
328 	writel(regval, ams->base + AMS_IDR_0);
329 
330 	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
331 	writel(regval, ams->base + AMS_IDR_1);
332 }
333 
334 static void ams_disable_all_alarms(struct ams *ams)
335 {
336 	/* disable PS module alarm */
337 	if (ams->ps_base) {
338 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
339 				  AMS_REGCFG1_ALARM_MASK);
340 		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
341 				  AMS_REGCFG3_ALARM_MASK);
342 	}
343 
344 	/* disable PL module alarm */
345 	if (ams->pl_base) {
346 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
347 				  AMS_REGCFG1_ALARM_MASK);
348 		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
349 				  AMS_REGCFG3_ALARM_MASK);
350 	}
351 }
352 
353 static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
354 {
355 	u32 cfg;
356 	u32 val;
357 
358 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
359 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
360 
361 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
362 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
363 
364 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
365 
366 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
367 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
368 	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
369 }
370 
371 static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
372 {
373 	unsigned long pl_alarm_mask;
374 	u32 cfg;
375 	u32 val;
376 
377 	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
378 
379 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
380 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
381 
382 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
383 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
384 
385 	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
386 
387 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
388 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
389 	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
390 }
391 
392 static void ams_unmask(struct ams *ams)
393 {
394 	unsigned int status, unmask;
395 
396 	status = readl(ams->base + AMS_ISR_0);
397 
398 	/* Clear those bits which are not active anymore */
399 	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
400 
401 	/* Clear status of disabled alarm */
402 	unmask |= ams->intr_mask;
403 
404 	ams->current_masked_alarm &= status;
405 
406 	/* Also clear those which are masked out anyway */
407 	ams->current_masked_alarm &= ~ams->intr_mask;
408 
409 	/* Clear the interrupts before we unmask them */
410 	writel(unmask, ams->base + AMS_ISR_0);
411 
412 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
413 }
414 
415 static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
416 {
417 	unsigned long flags;
418 
419 	if (ams->ps_base)
420 		ams_update_ps_alarm(ams, alarm_mask);
421 
422 	if (ams->pl_base)
423 		ams_update_pl_alarm(ams, alarm_mask);
424 
425 	spin_lock_irqsave(&ams->intr_lock, flags);
426 	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
427 	ams_unmask(ams);
428 	spin_unlock_irqrestore(&ams->intr_lock, flags);
429 }
430 
431 static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
432 {
433 	struct ams *ams = iio_priv(indio_dev);
434 	unsigned long long scan_mask;
435 	int i;
436 	u32 regval;
437 
438 	/*
439 	 * Enable channel sequence. First 22 bits of scan_mask represent
440 	 * PS channels, and next remaining bits represent PL channels.
441 	 */
442 
443 	/* Run calibration of PS & PL as part of the sequence */
444 	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
445 	for (i = 0; i < indio_dev->num_channels; i++) {
446 		const struct iio_chan_spec *chan = &indio_dev->channels[i];
447 
448 		if (chan->scan_index < AMS_CTRL_SEQ_BASE)
449 			scan_mask |= BIT_ULL(chan->scan_index);
450 	}
451 
452 	if (ams->ps_base) {
453 		/* put sysmon in a soft reset to change the sequence */
454 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
455 				  AMS_CONF1_SEQ_DEFAULT);
456 
457 		/* configure basic channels */
458 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
459 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
460 
461 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
462 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
463 
464 		/* set continuous sequence mode */
465 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
466 				  AMS_CONF1_SEQ_CONTINUOUS);
467 	}
468 
469 	if (ams->pl_base) {
470 		/* put sysmon in a soft reset to change the sequence */
471 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
472 				  AMS_CONF1_SEQ_DEFAULT);
473 
474 		/* configure basic channels */
475 		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
476 
477 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
478 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
479 
480 		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
481 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
482 
483 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
484 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
485 
486 		/* set continuous sequence mode */
487 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
488 				  AMS_CONF1_SEQ_CONTINUOUS);
489 	}
490 }
491 
492 static int ams_init_device(struct ams *ams)
493 {
494 	u32 expect = AMS_PS_CSTS_PS_READY;
495 	u32 reg, value;
496 	int ret;
497 
498 	/* reset AMS */
499 	if (ams->ps_base) {
500 		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
501 
502 		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
503 					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
504 		if (ret)
505 			return ret;
506 
507 		/* put sysmon in a default state */
508 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
509 				  AMS_CONF1_SEQ_DEFAULT);
510 	}
511 
512 	if (ams->pl_base) {
513 		value = readl(ams->base + AMS_PL_CSTS);
514 		if (value == 0)
515 			return 0;
516 
517 		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
518 
519 		/* put sysmon in a default state */
520 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
521 				  AMS_CONF1_SEQ_DEFAULT);
522 	}
523 
524 	ams_disable_all_alarms(ams);
525 
526 	/* Disable interrupt */
527 	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
528 
529 	/* Clear any pending interrupt */
530 	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
531 	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
532 
533 	return 0;
534 }
535 
536 static int ams_read_label(struct iio_dev *indio_dev,
537 			  struct iio_chan_spec const *chan, char *label)
538 {
539 	return sysfs_emit(label, "%s\n", chan->datasheet_name);
540 }
541 
542 static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
543 {
544 	u8 channel_num;
545 
546 	switch (offset) {
547 	case AMS_VCC_PSPLL0:
548 		channel_num = AMS_VCC_PSPLL0_CH;
549 		break;
550 	case AMS_VCC_PSPLL3:
551 		channel_num = AMS_VCC_PSPLL3_CH;
552 		break;
553 	case AMS_VCCINT:
554 		channel_num = AMS_VCCINT_CH;
555 		break;
556 	case AMS_VCCBRAM:
557 		channel_num = AMS_VCCBRAM_CH;
558 		break;
559 	case AMS_VCCAUX:
560 		channel_num = AMS_VCCAUX_CH;
561 		break;
562 	case AMS_PSDDRPLL:
563 		channel_num = AMS_PSDDRPLL_CH;
564 		break;
565 	case AMS_PSINTFPDDR:
566 		channel_num = AMS_PSINTFPDDR_CH;
567 		break;
568 	default:
569 		return -EINVAL;
570 	}
571 
572 	/* put sysmon in a soft reset to change the sequence */
573 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
574 			  AMS_CONF1_SEQ_DEFAULT);
575 
576 	/* write the channel number */
577 	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
578 			  channel_num);
579 
580 	/* set single channel, sequencer off mode */
581 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
582 			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
583 
584 	return 0;
585 }
586 
587 static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
588 {
589 	u32 expect = AMS_ISR1_EOC_MASK;
590 	u32 reg;
591 	int ret;
592 
593 	ret = ams_enable_single_channel(ams, offset);
594 	if (ret)
595 		return ret;
596 
597 	/* clear end-of-conversion flag, wait for next conversion to complete */
598 	writel(expect, ams->base + AMS_ISR_1);
599 	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
600 				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
601 	if (ret)
602 		return ret;
603 
604 	*data = readl(ams->base + offset);
605 
606 	return 0;
607 }
608 
609 static int ams_get_ps_scale(int address)
610 {
611 	int val;
612 
613 	switch (address) {
614 	case AMS_SUPPLY1:
615 	case AMS_SUPPLY2:
616 	case AMS_SUPPLY3:
617 	case AMS_SUPPLY4:
618 	case AMS_SUPPLY9:
619 	case AMS_SUPPLY10:
620 	case AMS_VCCAMS:
621 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
622 		break;
623 	case AMS_SUPPLY5:
624 	case AMS_SUPPLY6:
625 	case AMS_SUPPLY7:
626 	case AMS_SUPPLY8:
627 		val = AMS_SUPPLY_SCALE_6VOLT_mV;
628 		break;
629 	default:
630 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
631 		break;
632 	}
633 
634 	return val;
635 }
636 
637 static int ams_get_pl_scale(struct ams *ams, int address)
638 {
639 	int val, regval;
640 
641 	switch (address) {
642 	case AMS_SUPPLY1:
643 	case AMS_SUPPLY2:
644 	case AMS_SUPPLY3:
645 	case AMS_SUPPLY4:
646 	case AMS_SUPPLY5:
647 	case AMS_SUPPLY6:
648 	case AMS_VCCAMS:
649 	case AMS_VREFP:
650 	case AMS_VREFN:
651 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
652 		break;
653 	case AMS_SUPPLY7:
654 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
655 		if (FIELD_GET(AMS_VUSER0_MASK, regval))
656 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
657 		else
658 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
659 		break;
660 	case AMS_SUPPLY8:
661 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
662 		if (FIELD_GET(AMS_VUSER1_MASK, regval))
663 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
664 		else
665 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
666 		break;
667 	case AMS_SUPPLY9:
668 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
669 		if (FIELD_GET(AMS_VUSER2_MASK, regval))
670 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
671 		else
672 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
673 		break;
674 	case AMS_SUPPLY10:
675 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
676 		if (FIELD_GET(AMS_VUSER3_MASK, regval))
677 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
678 		else
679 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
680 		break;
681 	case AMS_VP_VN:
682 	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
683 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
684 		break;
685 	default:
686 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
687 		break;
688 	}
689 
690 	return val;
691 }
692 
693 static int ams_get_ctrl_scale(int address)
694 {
695 	int val;
696 
697 	switch (address) {
698 	case AMS_VCC_PSPLL0:
699 	case AMS_VCC_PSPLL3:
700 	case AMS_VCCINT:
701 	case AMS_VCCBRAM:
702 	case AMS_VCCAUX:
703 	case AMS_PSDDRPLL:
704 	case AMS_PSINTFPDDR:
705 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
706 		break;
707 	default:
708 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
709 		break;
710 	}
711 
712 	return val;
713 }
714 
715 static int ams_read_raw(struct iio_dev *indio_dev,
716 			struct iio_chan_spec const *chan,
717 			int *val, int *val2, long mask)
718 {
719 	struct ams *ams = iio_priv(indio_dev);
720 	int ret;
721 
722 	switch (mask) {
723 	case IIO_CHAN_INFO_RAW:
724 		mutex_lock(&ams->lock);
725 		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
726 			ret = ams_read_vcc_reg(ams, chan->address, val);
727 			if (ret)
728 				goto unlock_mutex;
729 			ams_enable_channel_sequence(indio_dev);
730 		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
731 			*val = readl(ams->pl_base + chan->address);
732 		else
733 			*val = readl(ams->ps_base + chan->address);
734 
735 		ret = IIO_VAL_INT;
736 unlock_mutex:
737 		mutex_unlock(&ams->lock);
738 		return ret;
739 	case IIO_CHAN_INFO_SCALE:
740 		switch (chan->type) {
741 		case IIO_VOLTAGE:
742 			if (chan->scan_index < AMS_PS_SEQ_MAX)
743 				*val = ams_get_ps_scale(chan->address);
744 			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
745 				 chan->scan_index < AMS_CTRL_SEQ_BASE)
746 				*val = ams_get_pl_scale(ams, chan->address);
747 			else
748 				*val = ams_get_ctrl_scale(chan->address);
749 
750 			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
751 			return IIO_VAL_FRACTIONAL_LOG2;
752 		case IIO_TEMP:
753 			*val = AMS_TEMP_SCALE;
754 			*val2 = AMS_TEMP_SCALE_DIV_BIT;
755 			return IIO_VAL_FRACTIONAL_LOG2;
756 		default:
757 			return -EINVAL;
758 		}
759 	case IIO_CHAN_INFO_OFFSET:
760 		/* Only the temperature channel has an offset */
761 		*val = AMS_TEMP_OFFSET;
762 		return IIO_VAL_INT;
763 	default:
764 		return -EINVAL;
765 	}
766 }
767 
768 static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
769 {
770 	int offset;
771 
772 	if (scan_index >= AMS_PS_SEQ_MAX)
773 		scan_index -= AMS_PS_SEQ_MAX;
774 
775 	if (dir == IIO_EV_DIR_FALLING) {
776 		if (scan_index < AMS_SEQ_SUPPLY7)
777 			offset = AMS_ALARM_THRESHOLD_OFF_10;
778 		else
779 			offset = AMS_ALARM_THRESHOLD_OFF_20;
780 	} else {
781 		offset = 0;
782 	}
783 
784 	switch (scan_index) {
785 	case AMS_SEQ_TEMP:
786 		return AMS_ALARM_TEMP + offset;
787 	case AMS_SEQ_SUPPLY1:
788 		return AMS_ALARM_SUPPLY1 + offset;
789 	case AMS_SEQ_SUPPLY2:
790 		return AMS_ALARM_SUPPLY2 + offset;
791 	case AMS_SEQ_SUPPLY3:
792 		return AMS_ALARM_SUPPLY3 + offset;
793 	case AMS_SEQ_SUPPLY4:
794 		return AMS_ALARM_SUPPLY4 + offset;
795 	case AMS_SEQ_SUPPLY5:
796 		return AMS_ALARM_SUPPLY5 + offset;
797 	case AMS_SEQ_SUPPLY6:
798 		return AMS_ALARM_SUPPLY6 + offset;
799 	case AMS_SEQ_SUPPLY7:
800 		return AMS_ALARM_SUPPLY7 + offset;
801 	case AMS_SEQ_SUPPLY8:
802 		return AMS_ALARM_SUPPLY8 + offset;
803 	case AMS_SEQ_SUPPLY9:
804 		return AMS_ALARM_SUPPLY9 + offset;
805 	case AMS_SEQ_SUPPLY10:
806 		return AMS_ALARM_SUPPLY10 + offset;
807 	case AMS_SEQ_VCCAMS:
808 		return AMS_ALARM_VCCAMS + offset;
809 	case AMS_SEQ_TEMP_REMOTE:
810 		return AMS_ALARM_TEMP_REMOTE + offset;
811 	default:
812 		return 0;
813 	}
814 }
815 
816 static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
817 							u32 event)
818 {
819 	int scan_index = 0, i;
820 
821 	if (event >= AMS_PL_ALARM_START) {
822 		event -= AMS_PL_ALARM_START;
823 		scan_index = AMS_PS_SEQ_MAX;
824 	}
825 
826 	switch (event) {
827 	case AMS_ALARM_BIT_TEMP:
828 		scan_index += AMS_SEQ_TEMP;
829 		break;
830 	case AMS_ALARM_BIT_SUPPLY1:
831 		scan_index += AMS_SEQ_SUPPLY1;
832 		break;
833 	case AMS_ALARM_BIT_SUPPLY2:
834 		scan_index += AMS_SEQ_SUPPLY2;
835 		break;
836 	case AMS_ALARM_BIT_SUPPLY3:
837 		scan_index += AMS_SEQ_SUPPLY3;
838 		break;
839 	case AMS_ALARM_BIT_SUPPLY4:
840 		scan_index += AMS_SEQ_SUPPLY4;
841 		break;
842 	case AMS_ALARM_BIT_SUPPLY5:
843 		scan_index += AMS_SEQ_SUPPLY5;
844 		break;
845 	case AMS_ALARM_BIT_SUPPLY6:
846 		scan_index += AMS_SEQ_SUPPLY6;
847 		break;
848 	case AMS_ALARM_BIT_SUPPLY7:
849 		scan_index += AMS_SEQ_SUPPLY7;
850 		break;
851 	case AMS_ALARM_BIT_SUPPLY8:
852 		scan_index += AMS_SEQ_SUPPLY8;
853 		break;
854 	case AMS_ALARM_BIT_SUPPLY9:
855 		scan_index += AMS_SEQ_SUPPLY9;
856 		break;
857 	case AMS_ALARM_BIT_SUPPLY10:
858 		scan_index += AMS_SEQ_SUPPLY10;
859 		break;
860 	case AMS_ALARM_BIT_VCCAMS:
861 		scan_index += AMS_SEQ_VCCAMS;
862 		break;
863 	case AMS_ALARM_BIT_TEMP_REMOTE:
864 		scan_index += AMS_SEQ_TEMP_REMOTE;
865 		break;
866 	default:
867 		break;
868 	}
869 
870 	for (i = 0; i < dev->num_channels; i++)
871 		if (dev->channels[i].scan_index == scan_index)
872 			break;
873 
874 	return &dev->channels[i];
875 }
876 
877 static int ams_get_alarm_mask(int scan_index)
878 {
879 	int bit = 0;
880 
881 	if (scan_index >= AMS_PS_SEQ_MAX) {
882 		bit = AMS_PL_ALARM_START;
883 		scan_index -= AMS_PS_SEQ_MAX;
884 	}
885 
886 	switch (scan_index) {
887 	case AMS_SEQ_TEMP:
888 		return BIT(AMS_ALARM_BIT_TEMP + bit);
889 	case AMS_SEQ_SUPPLY1:
890 		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
891 	case AMS_SEQ_SUPPLY2:
892 		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
893 	case AMS_SEQ_SUPPLY3:
894 		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
895 	case AMS_SEQ_SUPPLY4:
896 		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
897 	case AMS_SEQ_SUPPLY5:
898 		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
899 	case AMS_SEQ_SUPPLY6:
900 		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
901 	case AMS_SEQ_SUPPLY7:
902 		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
903 	case AMS_SEQ_SUPPLY8:
904 		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
905 	case AMS_SEQ_SUPPLY9:
906 		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
907 	case AMS_SEQ_SUPPLY10:
908 		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
909 	case AMS_SEQ_VCCAMS:
910 		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
911 	case AMS_SEQ_TEMP_REMOTE:
912 		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
913 	default:
914 		return 0;
915 	}
916 }
917 
918 static int ams_read_event_config(struct iio_dev *indio_dev,
919 				 const struct iio_chan_spec *chan,
920 				 enum iio_event_type type,
921 				 enum iio_event_direction dir)
922 {
923 	struct ams *ams = iio_priv(indio_dev);
924 
925 	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
926 }
927 
928 static int ams_write_event_config(struct iio_dev *indio_dev,
929 				  const struct iio_chan_spec *chan,
930 				  enum iio_event_type type,
931 				  enum iio_event_direction dir,
932 				  bool state)
933 {
934 	struct ams *ams = iio_priv(indio_dev);
935 	unsigned int alarm;
936 
937 	alarm = ams_get_alarm_mask(chan->scan_index);
938 
939 	mutex_lock(&ams->lock);
940 
941 	if (state)
942 		ams->alarm_mask |= alarm;
943 	else
944 		ams->alarm_mask &= ~alarm;
945 
946 	ams_update_alarm(ams, ams->alarm_mask);
947 
948 	mutex_unlock(&ams->lock);
949 
950 	return 0;
951 }
952 
953 static int ams_read_event_value(struct iio_dev *indio_dev,
954 				const struct iio_chan_spec *chan,
955 				enum iio_event_type type,
956 				enum iio_event_direction dir,
957 				enum iio_event_info info, int *val, int *val2)
958 {
959 	struct ams *ams = iio_priv(indio_dev);
960 	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
961 
962 	mutex_lock(&ams->lock);
963 
964 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
965 		*val = readl(ams->pl_base + offset);
966 	else
967 		*val = readl(ams->ps_base + offset);
968 
969 	mutex_unlock(&ams->lock);
970 
971 	return IIO_VAL_INT;
972 }
973 
974 static int ams_write_event_value(struct iio_dev *indio_dev,
975 				 const struct iio_chan_spec *chan,
976 				 enum iio_event_type type,
977 				 enum iio_event_direction dir,
978 				 enum iio_event_info info, int val, int val2)
979 {
980 	struct ams *ams = iio_priv(indio_dev);
981 	unsigned int offset;
982 
983 	mutex_lock(&ams->lock);
984 
985 	/* Set temperature channel threshold to direct threshold */
986 	if (chan->type == IIO_TEMP) {
987 		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
988 
989 		if (chan->scan_index >= AMS_PS_SEQ_MAX)
990 			ams_pl_update_reg(ams, offset,
991 					  AMS_ALARM_THR_DIRECT_MASK,
992 					  AMS_ALARM_THR_DIRECT_MASK);
993 		else
994 			ams_ps_update_reg(ams, offset,
995 					  AMS_ALARM_THR_DIRECT_MASK,
996 					  AMS_ALARM_THR_DIRECT_MASK);
997 	}
998 
999 	offset = ams_get_alarm_offset(chan->scan_index, dir);
1000 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
1001 		writel(val, ams->pl_base + offset);
1002 	else
1003 		writel(val, ams->ps_base + offset);
1004 
1005 	mutex_unlock(&ams->lock);
1006 
1007 	return 0;
1008 }
1009 
1010 static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
1011 {
1012 	const struct iio_chan_spec *chan;
1013 
1014 	chan = ams_event_to_channel(indio_dev, event);
1015 
1016 	if (chan->type == IIO_TEMP) {
1017 		/*
1018 		 * The temperature channel only supports over-temperature
1019 		 * events.
1020 		 */
1021 		iio_push_event(indio_dev,
1022 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1023 						    IIO_EV_TYPE_THRESH,
1024 						    IIO_EV_DIR_RISING),
1025 			       iio_get_time_ns(indio_dev));
1026 	} else {
1027 		/*
1028 		 * For other channels we don't know whether it is a upper or
1029 		 * lower threshold event. Userspace will have to check the
1030 		 * channel value if it wants to know.
1031 		 */
1032 		iio_push_event(indio_dev,
1033 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1034 						    IIO_EV_TYPE_THRESH,
1035 						    IIO_EV_DIR_EITHER),
1036 			       iio_get_time_ns(indio_dev));
1037 	}
1038 }
1039 
1040 static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1041 {
1042 	unsigned int bit;
1043 
1044 	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1045 		ams_handle_event(indio_dev, bit);
1046 }
1047 
1048 /**
1049  * ams_unmask_worker - ams alarm interrupt unmask worker
1050  * @work: work to be done
1051  *
1052  * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1053  * threshold condition go way from within the interrupt handler, this means as
1054  * soon as a threshold condition is present we would enter the interrupt handler
1055  * again and again. To work around this we mask all active threshold interrupts
1056  * in the interrupt handler and start a timer. In this timer we poll the
1057  * interrupt status and only if the interrupt is inactive we unmask it again.
1058  */
1059 static void ams_unmask_worker(struct work_struct *work)
1060 {
1061 	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1062 
1063 	spin_lock_irq(&ams->intr_lock);
1064 	ams_unmask(ams);
1065 	spin_unlock_irq(&ams->intr_lock);
1066 
1067 	/* If still pending some alarm re-trigger the timer */
1068 	if (ams->current_masked_alarm)
1069 		schedule_delayed_work(&ams->ams_unmask_work,
1070 				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1071 }
1072 
1073 static irqreturn_t ams_irq(int irq, void *data)
1074 {
1075 	struct iio_dev *indio_dev = data;
1076 	struct ams *ams = iio_priv(indio_dev);
1077 	u32 isr0;
1078 
1079 	spin_lock(&ams->intr_lock);
1080 
1081 	isr0 = readl(ams->base + AMS_ISR_0);
1082 
1083 	/* Only process alarms that are not masked */
1084 	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1085 	if (!isr0) {
1086 		spin_unlock(&ams->intr_lock);
1087 		return IRQ_NONE;
1088 	}
1089 
1090 	/* Clear interrupt */
1091 	writel(isr0, ams->base + AMS_ISR_0);
1092 
1093 	/* Mask the alarm interrupts until cleared */
1094 	ams->current_masked_alarm |= isr0;
1095 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1096 
1097 	ams_handle_events(indio_dev, isr0);
1098 
1099 	schedule_delayed_work(&ams->ams_unmask_work,
1100 			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1101 
1102 	spin_unlock(&ams->intr_lock);
1103 
1104 	return IRQ_HANDLED;
1105 }
1106 
1107 static const struct iio_event_spec ams_temp_events[] = {
1108 	{
1109 		.type = IIO_EV_TYPE_THRESH,
1110 		.dir = IIO_EV_DIR_RISING,
1111 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1112 	},
1113 };
1114 
1115 static const struct iio_event_spec ams_voltage_events[] = {
1116 	{
1117 		.type = IIO_EV_TYPE_THRESH,
1118 		.dir = IIO_EV_DIR_RISING,
1119 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1120 	},
1121 	{
1122 		.type = IIO_EV_TYPE_THRESH,
1123 		.dir = IIO_EV_DIR_FALLING,
1124 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1125 	},
1126 	{
1127 		.type = IIO_EV_TYPE_THRESH,
1128 		.dir = IIO_EV_DIR_EITHER,
1129 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1130 	},
1131 };
1132 
1133 static const struct iio_chan_spec ams_ps_channels[] = {
1134 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_LPD"),
1135 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE, "Temp_FPD"),
1136 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, "VCC_PSINTLP"),
1137 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, "VCC_PSINTFP"),
1138 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, "VCC_PSAUX"),
1139 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, "VCC_PSDDR"),
1140 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, "VCC_PSIO3"),
1141 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, "VCC_PSIO0"),
1142 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, "VCC_PSIO1"),
1143 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, "VCC_PSIO2"),
1144 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, "PS_MGTRAVCC"),
1145 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, "PS_MGTRAVTT"),
1146 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, "VCC_PSADC"),
1147 };
1148 
1149 static const struct iio_chan_spec ams_pl_channels[] = {
1150 	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_PL"),
1151 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true, "VCCINT"),
1152 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true, "VCCAUX"),
1153 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false, "VREFP"),
1154 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false, "VREFN"),
1155 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true, "VCCBRAM"),
1156 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true, "VCC_PSINTLP"),
1157 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true, "VCC_PSINTFP"),
1158 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true, "VCC_PSAUX"),
1159 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true, "VCCAMS"),
1160 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false, "VP_VN"),
1161 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true, "VUser0"),
1162 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true, "VUser1"),
1163 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true, "VUser2"),
1164 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true, "VUser3"),
1165 	AMS_PL_AUX_CHAN_VOLTAGE(0),
1166 	AMS_PL_AUX_CHAN_VOLTAGE(1),
1167 	AMS_PL_AUX_CHAN_VOLTAGE(2),
1168 	AMS_PL_AUX_CHAN_VOLTAGE(3),
1169 	AMS_PL_AUX_CHAN_VOLTAGE(4),
1170 	AMS_PL_AUX_CHAN_VOLTAGE(5),
1171 	AMS_PL_AUX_CHAN_VOLTAGE(6),
1172 	AMS_PL_AUX_CHAN_VOLTAGE(7),
1173 	AMS_PL_AUX_CHAN_VOLTAGE(8),
1174 	AMS_PL_AUX_CHAN_VOLTAGE(9),
1175 	AMS_PL_AUX_CHAN_VOLTAGE(10),
1176 	AMS_PL_AUX_CHAN_VOLTAGE(11),
1177 	AMS_PL_AUX_CHAN_VOLTAGE(12),
1178 	AMS_PL_AUX_CHAN_VOLTAGE(13),
1179 	AMS_PL_AUX_CHAN_VOLTAGE(14),
1180 	AMS_PL_AUX_CHAN_VOLTAGE(15),
1181 };
1182 
1183 static const struct iio_chan_spec ams_ctrl_channels[] = {
1184 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0, "VCC_PSPLL"),
1185 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3, "VCC_PSBATT"),
1186 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT, "VCCINT"),
1187 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM, "VCCBRAM"),
1188 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX, "VCCAUX"),
1189 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL, "VCC_PSDDR_PLL"),
1190 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR, "VCC_PSINTFP_DDR"),
1191 };
1192 
1193 static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1194 			    struct iio_chan_spec *channels, int num_channels)
1195 {
1196 	struct iio_chan_spec *chan;
1197 	struct fwnode_handle *child;
1198 	unsigned int reg, ext_chan;
1199 	int ret;
1200 
1201 	fwnode_for_each_child_node(chan_node, child) {
1202 		ret = fwnode_property_read_u32(child, "reg", &reg);
1203 		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1204 			continue;
1205 
1206 		chan = &channels[num_channels];
1207 		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1208 		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1209 
1210 		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1211 			chan->scan_type.sign = 's';
1212 
1213 		num_channels++;
1214 	}
1215 
1216 	return num_channels;
1217 }
1218 
1219 static void ams_iounmap_ps(void *data)
1220 {
1221 	struct ams *ams = data;
1222 
1223 	iounmap(ams->ps_base);
1224 }
1225 
1226 static void ams_iounmap_pl(void *data)
1227 {
1228 	struct ams *ams = data;
1229 
1230 	iounmap(ams->pl_base);
1231 }
1232 
1233 static int ams_init_module(struct iio_dev *indio_dev,
1234 			   struct fwnode_handle *fwnode,
1235 			   struct iio_chan_spec *channels)
1236 {
1237 	struct device *dev = indio_dev->dev.parent;
1238 	struct ams *ams = iio_priv(indio_dev);
1239 	int num_channels = 0;
1240 	int ret;
1241 
1242 	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1243 		ams->ps_base = fwnode_iomap(fwnode, 0);
1244 		if (!ams->ps_base)
1245 			return -ENXIO;
1246 		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1247 		if (ret < 0)
1248 			return ret;
1249 
1250 		/* add PS channels to iio device channels */
1251 		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1252 		num_channels = ARRAY_SIZE(ams_ps_channels);
1253 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1254 		ams->pl_base = fwnode_iomap(fwnode, 0);
1255 		if (!ams->pl_base)
1256 			return -ENXIO;
1257 
1258 		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1259 		if (ret < 0)
1260 			return ret;
1261 
1262 		/* Copy only first 10 fix channels */
1263 		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1264 		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1265 		num_channels = ams_get_ext_chan(fwnode, channels,
1266 						num_channels);
1267 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1268 		/* add AMS channels to iio device channels */
1269 		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1270 		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1271 	} else {
1272 		return -EINVAL;
1273 	}
1274 
1275 	return num_channels;
1276 }
1277 
1278 static int ams_parse_firmware(struct iio_dev *indio_dev)
1279 {
1280 	struct ams *ams = iio_priv(indio_dev);
1281 	struct iio_chan_spec *ams_channels, *dev_channels;
1282 	struct device *dev = indio_dev->dev.parent;
1283 	struct fwnode_handle *fwnode = dev_fwnode(dev);
1284 	size_t ams_size;
1285 	int ret, ch_cnt = 0, i, rising_off, falling_off;
1286 	unsigned int num_channels = 0;
1287 
1288 	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1289 		ARRAY_SIZE(ams_ctrl_channels);
1290 
1291 	/* Initialize buffer for channel specification */
1292 	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1293 	if (!ams_channels)
1294 		return -ENOMEM;
1295 
1296 	if (fwnode_device_is_available(fwnode)) {
1297 		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1298 		if (ret < 0)
1299 			return ret;
1300 
1301 		num_channels += ret;
1302 	}
1303 
1304 	device_for_each_child_node_scoped(dev, child) {
1305 		ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1306 		if (ret < 0)
1307 			return ret;
1308 
1309 		num_channels += ret;
1310 	}
1311 
1312 	for (i = 0; i < num_channels; i++) {
1313 		ams_channels[i].channel = ch_cnt++;
1314 
1315 		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1316 			/* set threshold to max and min for each channel */
1317 			falling_off =
1318 				ams_get_alarm_offset(ams_channels[i].scan_index,
1319 						     IIO_EV_DIR_FALLING);
1320 			rising_off =
1321 				ams_get_alarm_offset(ams_channels[i].scan_index,
1322 						     IIO_EV_DIR_RISING);
1323 			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1324 				writel(AMS_ALARM_THR_MIN,
1325 				       ams->pl_base + falling_off);
1326 				writel(AMS_ALARM_THR_MAX,
1327 				       ams->pl_base + rising_off);
1328 			} else {
1329 				writel(AMS_ALARM_THR_MIN,
1330 				       ams->ps_base + falling_off);
1331 				writel(AMS_ALARM_THR_MAX,
1332 				       ams->ps_base + rising_off);
1333 			}
1334 		}
1335 	}
1336 
1337 	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1338 					   sizeof(*dev_channels), GFP_KERNEL);
1339 	if (!dev_channels)
1340 		return -ENOMEM;
1341 
1342 	indio_dev->channels = dev_channels;
1343 	indio_dev->num_channels = num_channels;
1344 
1345 	return 0;
1346 }
1347 
1348 static const struct iio_info iio_ams_info = {
1349 	.read_label = ams_read_label,
1350 	.read_raw = &ams_read_raw,
1351 	.read_event_config = &ams_read_event_config,
1352 	.write_event_config = &ams_write_event_config,
1353 	.read_event_value = &ams_read_event_value,
1354 	.write_event_value = &ams_write_event_value,
1355 };
1356 
1357 static const struct of_device_id ams_of_match_table[] = {
1358 	{ .compatible = "xlnx,zynqmp-ams" },
1359 	{ }
1360 };
1361 MODULE_DEVICE_TABLE(of, ams_of_match_table);
1362 
1363 static int ams_probe(struct platform_device *pdev)
1364 {
1365 	struct iio_dev *indio_dev;
1366 	struct ams *ams;
1367 	int ret;
1368 	int irq;
1369 
1370 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1371 	if (!indio_dev)
1372 		return -ENOMEM;
1373 
1374 	ams = iio_priv(indio_dev);
1375 	mutex_init(&ams->lock);
1376 	spin_lock_init(&ams->intr_lock);
1377 
1378 	indio_dev->name = "xilinx-ams";
1379 
1380 	indio_dev->info = &iio_ams_info;
1381 	indio_dev->modes = INDIO_DIRECT_MODE;
1382 
1383 	ams->base = devm_platform_ioremap_resource(pdev, 0);
1384 	if (IS_ERR(ams->base))
1385 		return PTR_ERR(ams->base);
1386 
1387 	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1388 	if (IS_ERR(ams->clk))
1389 		return PTR_ERR(ams->clk);
1390 
1391 	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1392 					   ams_unmask_worker);
1393 	if (ret < 0)
1394 		return ret;
1395 
1396 	ret = ams_parse_firmware(indio_dev);
1397 	if (ret)
1398 		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1399 
1400 	ret = ams_init_device(ams);
1401 	if (ret)
1402 		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1403 
1404 	ams_enable_channel_sequence(indio_dev);
1405 
1406 	irq = platform_get_irq(pdev, 0);
1407 	if (irq < 0)
1408 		return irq;
1409 
1410 	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1411 			       indio_dev);
1412 	if (ret < 0)
1413 		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1414 
1415 	platform_set_drvdata(pdev, indio_dev);
1416 
1417 	return devm_iio_device_register(&pdev->dev, indio_dev);
1418 }
1419 
1420 static int ams_suspend(struct device *dev)
1421 {
1422 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1423 
1424 	clk_disable_unprepare(ams->clk);
1425 
1426 	return 0;
1427 }
1428 
1429 static int ams_resume(struct device *dev)
1430 {
1431 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1432 
1433 	return clk_prepare_enable(ams->clk);
1434 }
1435 
1436 static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1437 
1438 static struct platform_driver ams_driver = {
1439 	.probe = ams_probe,
1440 	.driver = {
1441 		.name = "xilinx-ams",
1442 		.pm = pm_sleep_ptr(&ams_pm_ops),
1443 		.of_match_table = ams_of_match_table,
1444 	},
1445 };
1446 module_platform_driver(ams_driver);
1447 
1448 MODULE_DESCRIPTION("Xilinx AMS driver");
1449 MODULE_LICENSE("GPL v2");
1450 MODULE_AUTHOR("Xilinx, Inc.");
1451