xref: /linux/drivers/iio/adc/xilinx-ams.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx AMS driver
4  *
5  *  Copyright (C) 2021 Xilinx, Inc.
6  *
7  *  Manish Narani <mnarani@xilinx.com>
8  *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/devm-helpers.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26 
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 
30 /* AMS registers definitions */
31 #define AMS_ISR_0			0x010
32 #define AMS_ISR_1			0x014
33 #define AMS_IER_0			0x020
34 #define AMS_IER_1			0x024
35 #define AMS_IDR_0			0x028
36 #define AMS_IDR_1			0x02C
37 #define AMS_PS_CSTS			0x040
38 #define AMS_PL_CSTS			0x044
39 
40 #define AMS_VCC_PSPLL0			0x060
41 #define AMS_VCC_PSPLL3			0x06C
42 #define AMS_VCCINT			0x078
43 #define AMS_VCCBRAM			0x07C
44 #define AMS_VCCAUX			0x080
45 #define AMS_PSDDRPLL			0x084
46 #define AMS_PSINTFPDDR			0x09C
47 
48 #define AMS_VCC_PSPLL0_CH		48
49 #define AMS_VCC_PSPLL3_CH		51
50 #define AMS_VCCINT_CH			54
51 #define AMS_VCCBRAM_CH			55
52 #define AMS_VCCAUX_CH			56
53 #define AMS_PSDDRPLL_CH			57
54 #define AMS_PSINTFPDDR_CH		63
55 
56 #define AMS_REG_CONFIG0			0x100
57 #define AMS_REG_CONFIG1			0x104
58 #define AMS_REG_CONFIG3			0x10C
59 #define AMS_REG_CONFIG4			0x110
60 #define AMS_REG_SEQ_CH0			0x120
61 #define AMS_REG_SEQ_CH1			0x124
62 #define AMS_REG_SEQ_CH2			0x118
63 
64 #define AMS_VUSER0_MASK			BIT(0)
65 #define AMS_VUSER1_MASK			BIT(1)
66 #define AMS_VUSER2_MASK			BIT(2)
67 #define AMS_VUSER3_MASK			BIT(3)
68 
69 #define AMS_TEMP			0x000
70 #define AMS_SUPPLY1			0x004
71 #define AMS_SUPPLY2			0x008
72 #define AMS_VP_VN			0x00C
73 #define AMS_VREFP			0x010
74 #define AMS_VREFN			0x014
75 #define AMS_SUPPLY3			0x018
76 #define AMS_SUPPLY4			0x034
77 #define AMS_SUPPLY5			0x038
78 #define AMS_SUPPLY6			0x03C
79 #define AMS_SUPPLY7			0x200
80 #define AMS_SUPPLY8			0x204
81 #define AMS_SUPPLY9			0x208
82 #define AMS_SUPPLY10			0x20C
83 #define AMS_VCCAMS			0x210
84 #define AMS_TEMP_REMOTE			0x214
85 
86 #define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
87 
88 #define AMS_PS_RESET_VALUE		0xFFFF
89 #define AMS_PL_RESET_VALUE		0xFFFF
90 
91 #define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
92 
93 #define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
94 #define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95 #define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96 #define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97 
98 #define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
99 #define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
100 #define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
101 
102 #define AMS_PS_SEQ_MASK			GENMASK(21, 0)
103 #define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
104 
105 #define AMS_ALARM_TEMP			0x140
106 #define AMS_ALARM_SUPPLY1		0x144
107 #define AMS_ALARM_SUPPLY2		0x148
108 #define AMS_ALARM_SUPPLY3		0x160
109 #define AMS_ALARM_SUPPLY4		0x164
110 #define AMS_ALARM_SUPPLY5		0x168
111 #define AMS_ALARM_SUPPLY6		0x16C
112 #define AMS_ALARM_SUPPLY7		0x180
113 #define AMS_ALARM_SUPPLY8		0x184
114 #define AMS_ALARM_SUPPLY9		0x188
115 #define AMS_ALARM_SUPPLY10		0x18C
116 #define AMS_ALARM_VCCAMS		0x190
117 #define AMS_ALARM_TEMP_REMOTE		0x194
118 #define AMS_ALARM_THRESHOLD_OFF_10	0x10
119 #define AMS_ALARM_THRESHOLD_OFF_20	0x20
120 
121 #define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
122 #define AMS_ALARM_THR_MIN		0x0000
123 #define AMS_ALARM_THR_MAX		(BIT(16) - 1)
124 
125 #define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
126 #define AMS_NO_OF_ALARMS		32
127 #define AMS_PL_ALARM_START		16
128 #define AMS_PL_ALARM_MASK		GENMASK(31, 16)
129 #define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
130 #define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
131 #define AMS_ISR1_EOC_MASK		BIT(3)
132 #define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
133 #define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
134 #define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
135 #define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
136 #define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
137 #define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
138 #define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
139 #define AMS_REGCFG1_ALARM_MASK  \
140 	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141 #define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
142 
143 #define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
144 #define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
145 
146 #define AMS_PL_MAX_FIXED_CHANNEL	10
147 #define AMS_PL_MAX_EXT_CHANNEL		20
148 
149 #define AMS_INIT_POLL_TIME_US		200
150 #define AMS_INIT_TIMEOUT_US		10000
151 #define AMS_UNMASK_TIMEOUT_MS		500
152 
153 /*
154  * Following scale and offset value is derived from
155  * UG580 (v1.7) December 20, 2016
156  */
157 #define AMS_SUPPLY_SCALE_1VOLT_mV		1000
158 #define AMS_SUPPLY_SCALE_3VOLT_mV		3000
159 #define AMS_SUPPLY_SCALE_6VOLT_mV		6000
160 #define AMS_SUPPLY_SCALE_DIV_BIT	16
161 
162 #define AMS_TEMP_SCALE			509314
163 #define AMS_TEMP_SCALE_DIV_BIT		16
164 #define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
165 
166 enum ams_alarm_bit {
167 	AMS_ALARM_BIT_TEMP = 0,
168 	AMS_ALARM_BIT_SUPPLY1 = 1,
169 	AMS_ALARM_BIT_SUPPLY2 = 2,
170 	AMS_ALARM_BIT_SUPPLY3 = 3,
171 	AMS_ALARM_BIT_SUPPLY4 = 4,
172 	AMS_ALARM_BIT_SUPPLY5 = 5,
173 	AMS_ALARM_BIT_SUPPLY6 = 6,
174 	AMS_ALARM_BIT_RESERVED = 7,
175 	AMS_ALARM_BIT_SUPPLY7 = 8,
176 	AMS_ALARM_BIT_SUPPLY8 = 9,
177 	AMS_ALARM_BIT_SUPPLY9 = 10,
178 	AMS_ALARM_BIT_SUPPLY10 = 11,
179 	AMS_ALARM_BIT_VCCAMS = 12,
180 	AMS_ALARM_BIT_TEMP_REMOTE = 13,
181 };
182 
183 enum ams_seq {
184 	AMS_SEQ_VCC_PSPLL = 0,
185 	AMS_SEQ_VCC_PSBATT = 1,
186 	AMS_SEQ_VCCINT = 2,
187 	AMS_SEQ_VCCBRAM = 3,
188 	AMS_SEQ_VCCAUX = 4,
189 	AMS_SEQ_PSDDRPLL = 5,
190 	AMS_SEQ_INTDDR = 6,
191 };
192 
193 enum ams_ps_pl_seq {
194 	AMS_SEQ_CALIB = 0,
195 	AMS_SEQ_RSVD_1 = 1,
196 	AMS_SEQ_RSVD_2 = 2,
197 	AMS_SEQ_TEST = 3,
198 	AMS_SEQ_RSVD_4 = 4,
199 	AMS_SEQ_SUPPLY4 = 5,
200 	AMS_SEQ_SUPPLY5 = 6,
201 	AMS_SEQ_SUPPLY6 = 7,
202 	AMS_SEQ_TEMP = 8,
203 	AMS_SEQ_SUPPLY2 = 9,
204 	AMS_SEQ_SUPPLY1 = 10,
205 	AMS_SEQ_VP_VN = 11,
206 	AMS_SEQ_VREFP = 12,
207 	AMS_SEQ_VREFN = 13,
208 	AMS_SEQ_SUPPLY3 = 14,
209 	AMS_SEQ_CURRENT_MON = 15,
210 	AMS_SEQ_SUPPLY7 = 16,
211 	AMS_SEQ_SUPPLY8 = 17,
212 	AMS_SEQ_SUPPLY9 = 18,
213 	AMS_SEQ_SUPPLY10 = 19,
214 	AMS_SEQ_VCCAMS = 20,
215 	AMS_SEQ_TEMP_REMOTE = 21,
216 	AMS_SEQ_MAX = 22
217 };
218 
219 #define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
220 #define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
221 #define PS_SEQ(x)		(x)
222 #define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
223 #define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
224 
225 #define AMS_CHAN_TEMP(_scan_index, _addr) { \
226 	.type = IIO_TEMP, \
227 	.indexed = 1, \
228 	.address = (_addr), \
229 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230 		BIT(IIO_CHAN_INFO_SCALE) | \
231 		BIT(IIO_CHAN_INFO_OFFSET), \
232 	.event_spec = ams_temp_events, \
233 	.scan_index = _scan_index, \
234 	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
235 }
236 
237 #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
238 	.type = IIO_VOLTAGE, \
239 	.indexed = 1, \
240 	.address = (_addr), \
241 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
242 		BIT(IIO_CHAN_INFO_SCALE), \
243 	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
244 	.scan_index = _scan_index, \
245 	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
246 }
247 
248 #define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
249 	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
250 #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
251 	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
252 
253 #define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
254 	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
255 #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
256 	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
257 #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
258 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
259 #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
260 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
261 
262 /**
263  * struct ams - This structure contains necessary state for xilinx-ams to operate
264  * @base: physical base address of device
265  * @ps_base: physical base address of PS device
266  * @pl_base: physical base address of PL device
267  * @clk: clocks associated with the device
268  * @dev: pointer to device struct
269  * @lock: to handle multiple user interaction
270  * @intr_lock: to protect interrupt mask values
271  * @alarm_mask: alarm configuration
272  * @current_masked_alarm: currently masked due to alarm
273  * @intr_mask: interrupt configuration
274  * @ams_unmask_work: re-enables event once the event condition disappears
275  *
276  */
277 struct ams {
278 	void __iomem *base;
279 	void __iomem *ps_base;
280 	void __iomem *pl_base;
281 	struct clk *clk;
282 	struct device *dev;
283 	struct mutex lock;
284 	spinlock_t intr_lock;
285 	unsigned int alarm_mask;
286 	unsigned int current_masked_alarm;
287 	u64 intr_mask;
288 	struct delayed_work ams_unmask_work;
289 };
290 
291 static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
292 				     u32 mask, u32 data)
293 {
294 	u32 val, regval;
295 
296 	val = readl(ams->ps_base + offset);
297 	regval = (val & ~mask) | (data & mask);
298 	writel(regval, ams->ps_base + offset);
299 }
300 
301 static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
302 				     u32 mask, u32 data)
303 {
304 	u32 val, regval;
305 
306 	val = readl(ams->pl_base + offset);
307 	regval = (val & ~mask) | (data & mask);
308 	writel(regval, ams->pl_base + offset);
309 }
310 
311 static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
312 {
313 	u32 regval;
314 
315 	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
316 
317 	regval = ~(ams->intr_mask | ams->current_masked_alarm);
318 	writel(regval, ams->base + AMS_IER_0);
319 
320 	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
321 	writel(regval, ams->base + AMS_IER_1);
322 
323 	regval = ams->intr_mask | ams->current_masked_alarm;
324 	writel(regval, ams->base + AMS_IDR_0);
325 
326 	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
327 	writel(regval, ams->base + AMS_IDR_1);
328 }
329 
330 static void ams_disable_all_alarms(struct ams *ams)
331 {
332 	/* disable PS module alarm */
333 	if (ams->ps_base) {
334 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
335 				  AMS_REGCFG1_ALARM_MASK);
336 		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
337 				  AMS_REGCFG3_ALARM_MASK);
338 	}
339 
340 	/* disable PL module alarm */
341 	if (ams->pl_base) {
342 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
343 				  AMS_REGCFG1_ALARM_MASK);
344 		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
345 				  AMS_REGCFG3_ALARM_MASK);
346 	}
347 }
348 
349 static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
350 {
351 	u32 cfg;
352 	u32 val;
353 
354 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
355 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
356 
357 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
358 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
359 
360 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
361 
362 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
363 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
364 	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
365 }
366 
367 static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
368 {
369 	unsigned long pl_alarm_mask;
370 	u32 cfg;
371 	u32 val;
372 
373 	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
374 
375 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
376 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
377 
378 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
379 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
380 
381 	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
382 
383 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
384 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
385 	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
386 }
387 
388 static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
389 {
390 	unsigned long flags;
391 
392 	if (ams->ps_base)
393 		ams_update_ps_alarm(ams, alarm_mask);
394 
395 	if (ams->pl_base)
396 		ams_update_pl_alarm(ams, alarm_mask);
397 
398 	spin_lock_irqsave(&ams->intr_lock, flags);
399 	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
400 	spin_unlock_irqrestore(&ams->intr_lock, flags);
401 }
402 
403 static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
404 {
405 	struct ams *ams = iio_priv(indio_dev);
406 	unsigned long long scan_mask;
407 	int i;
408 	u32 regval;
409 
410 	/*
411 	 * Enable channel sequence. First 22 bits of scan_mask represent
412 	 * PS channels, and next remaining bits represent PL channels.
413 	 */
414 
415 	/* Run calibration of PS & PL as part of the sequence */
416 	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
417 	for (i = 0; i < indio_dev->num_channels; i++) {
418 		const struct iio_chan_spec *chan = &indio_dev->channels[i];
419 
420 		if (chan->scan_index < AMS_CTRL_SEQ_BASE)
421 			scan_mask |= BIT_ULL(chan->scan_index);
422 	}
423 
424 	if (ams->ps_base) {
425 		/* put sysmon in a soft reset to change the sequence */
426 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
427 				  AMS_CONF1_SEQ_DEFAULT);
428 
429 		/* configure basic channels */
430 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
431 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
432 
433 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
434 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
435 
436 		/* set continuous sequence mode */
437 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
438 				  AMS_CONF1_SEQ_CONTINUOUS);
439 	}
440 
441 	if (ams->pl_base) {
442 		/* put sysmon in a soft reset to change the sequence */
443 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
444 				  AMS_CONF1_SEQ_DEFAULT);
445 
446 		/* configure basic channels */
447 		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
448 
449 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
450 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
451 
452 		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
453 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
454 
455 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
456 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
457 
458 		/* set continuous sequence mode */
459 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
460 				  AMS_CONF1_SEQ_CONTINUOUS);
461 	}
462 }
463 
464 static int ams_init_device(struct ams *ams)
465 {
466 	u32 expect = AMS_PS_CSTS_PS_READY;
467 	u32 reg, value;
468 	int ret;
469 
470 	/* reset AMS */
471 	if (ams->ps_base) {
472 		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
473 
474 		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
475 					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
476 		if (ret)
477 			return ret;
478 
479 		/* put sysmon in a default state */
480 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
481 				  AMS_CONF1_SEQ_DEFAULT);
482 	}
483 
484 	if (ams->pl_base) {
485 		value = readl(ams->base + AMS_PL_CSTS);
486 		if (value == 0)
487 			return 0;
488 
489 		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
490 
491 		/* put sysmon in a default state */
492 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
493 				  AMS_CONF1_SEQ_DEFAULT);
494 	}
495 
496 	ams_disable_all_alarms(ams);
497 
498 	/* Disable interrupt */
499 	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
500 
501 	/* Clear any pending interrupt */
502 	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
503 	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
504 
505 	return 0;
506 }
507 
508 static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
509 {
510 	u8 channel_num;
511 
512 	switch (offset) {
513 	case AMS_VCC_PSPLL0:
514 		channel_num = AMS_VCC_PSPLL0_CH;
515 		break;
516 	case AMS_VCC_PSPLL3:
517 		channel_num = AMS_VCC_PSPLL3_CH;
518 		break;
519 	case AMS_VCCINT:
520 		channel_num = AMS_VCCINT_CH;
521 		break;
522 	case AMS_VCCBRAM:
523 		channel_num = AMS_VCCBRAM_CH;
524 		break;
525 	case AMS_VCCAUX:
526 		channel_num = AMS_VCCAUX_CH;
527 		break;
528 	case AMS_PSDDRPLL:
529 		channel_num = AMS_PSDDRPLL_CH;
530 		break;
531 	case AMS_PSINTFPDDR:
532 		channel_num = AMS_PSINTFPDDR_CH;
533 		break;
534 	default:
535 		return -EINVAL;
536 	}
537 
538 	/* put sysmon in a soft reset to change the sequence */
539 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
540 			  AMS_CONF1_SEQ_DEFAULT);
541 
542 	/* write the channel number */
543 	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
544 			  channel_num);
545 
546 	/* set single channel, sequencer off mode */
547 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
548 			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
549 
550 	return 0;
551 }
552 
553 static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
554 {
555 	u32 expect = AMS_ISR1_EOC_MASK;
556 	u32 reg;
557 	int ret;
558 
559 	ret = ams_enable_single_channel(ams, offset);
560 	if (ret)
561 		return ret;
562 
563 	/* clear end-of-conversion flag, wait for next conversion to complete */
564 	writel(expect, ams->base + AMS_ISR_1);
565 	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
566 				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
567 	if (ret)
568 		return ret;
569 
570 	*data = readl(ams->base + offset);
571 
572 	return 0;
573 }
574 
575 static int ams_get_ps_scale(int address)
576 {
577 	int val;
578 
579 	switch (address) {
580 	case AMS_SUPPLY1:
581 	case AMS_SUPPLY2:
582 	case AMS_SUPPLY3:
583 	case AMS_SUPPLY4:
584 	case AMS_SUPPLY9:
585 	case AMS_SUPPLY10:
586 	case AMS_VCCAMS:
587 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
588 		break;
589 	case AMS_SUPPLY5:
590 	case AMS_SUPPLY6:
591 	case AMS_SUPPLY7:
592 	case AMS_SUPPLY8:
593 		val = AMS_SUPPLY_SCALE_6VOLT_mV;
594 		break;
595 	default:
596 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
597 		break;
598 	}
599 
600 	return val;
601 }
602 
603 static int ams_get_pl_scale(struct ams *ams, int address)
604 {
605 	int val, regval;
606 
607 	switch (address) {
608 	case AMS_SUPPLY1:
609 	case AMS_SUPPLY2:
610 	case AMS_SUPPLY3:
611 	case AMS_SUPPLY4:
612 	case AMS_SUPPLY5:
613 	case AMS_SUPPLY6:
614 	case AMS_VCCAMS:
615 	case AMS_VREFP:
616 	case AMS_VREFN:
617 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
618 		break;
619 	case AMS_SUPPLY7:
620 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
621 		if (FIELD_GET(AMS_VUSER0_MASK, regval))
622 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
623 		else
624 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
625 		break;
626 	case AMS_SUPPLY8:
627 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
628 		if (FIELD_GET(AMS_VUSER1_MASK, regval))
629 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
630 		else
631 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
632 		break;
633 	case AMS_SUPPLY9:
634 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
635 		if (FIELD_GET(AMS_VUSER2_MASK, regval))
636 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
637 		else
638 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
639 		break;
640 	case AMS_SUPPLY10:
641 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
642 		if (FIELD_GET(AMS_VUSER3_MASK, regval))
643 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
644 		else
645 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
646 		break;
647 	case AMS_VP_VN:
648 	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
649 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
650 		break;
651 	default:
652 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
653 		break;
654 	}
655 
656 	return val;
657 }
658 
659 static int ams_get_ctrl_scale(int address)
660 {
661 	int val;
662 
663 	switch (address) {
664 	case AMS_VCC_PSPLL0:
665 	case AMS_VCC_PSPLL3:
666 	case AMS_VCCINT:
667 	case AMS_VCCBRAM:
668 	case AMS_VCCAUX:
669 	case AMS_PSDDRPLL:
670 	case AMS_PSINTFPDDR:
671 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
672 		break;
673 	default:
674 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
675 		break;
676 	}
677 
678 	return val;
679 }
680 
681 static int ams_read_raw(struct iio_dev *indio_dev,
682 			struct iio_chan_spec const *chan,
683 			int *val, int *val2, long mask)
684 {
685 	struct ams *ams = iio_priv(indio_dev);
686 	int ret;
687 
688 	switch (mask) {
689 	case IIO_CHAN_INFO_RAW:
690 		mutex_lock(&ams->lock);
691 		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
692 			ret = ams_read_vcc_reg(ams, chan->address, val);
693 			if (ret)
694 				goto unlock_mutex;
695 			ams_enable_channel_sequence(indio_dev);
696 		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
697 			*val = readl(ams->pl_base + chan->address);
698 		else
699 			*val = readl(ams->ps_base + chan->address);
700 
701 		ret = IIO_VAL_INT;
702 unlock_mutex:
703 		mutex_unlock(&ams->lock);
704 		return ret;
705 	case IIO_CHAN_INFO_SCALE:
706 		switch (chan->type) {
707 		case IIO_VOLTAGE:
708 			if (chan->scan_index < AMS_PS_SEQ_MAX)
709 				*val = ams_get_ps_scale(chan->address);
710 			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
711 				 chan->scan_index < AMS_CTRL_SEQ_BASE)
712 				*val = ams_get_pl_scale(ams, chan->address);
713 			else
714 				*val = ams_get_ctrl_scale(chan->address);
715 
716 			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
717 			return IIO_VAL_FRACTIONAL_LOG2;
718 		case IIO_TEMP:
719 			*val = AMS_TEMP_SCALE;
720 			*val2 = AMS_TEMP_SCALE_DIV_BIT;
721 			return IIO_VAL_FRACTIONAL_LOG2;
722 		default:
723 			return -EINVAL;
724 		}
725 	case IIO_CHAN_INFO_OFFSET:
726 		/* Only the temperature channel has an offset */
727 		*val = AMS_TEMP_OFFSET;
728 		return IIO_VAL_INT;
729 	default:
730 		return -EINVAL;
731 	}
732 }
733 
734 static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
735 {
736 	int offset;
737 
738 	if (scan_index >= AMS_PS_SEQ_MAX)
739 		scan_index -= AMS_PS_SEQ_MAX;
740 
741 	if (dir == IIO_EV_DIR_FALLING) {
742 		if (scan_index < AMS_SEQ_SUPPLY7)
743 			offset = AMS_ALARM_THRESHOLD_OFF_10;
744 		else
745 			offset = AMS_ALARM_THRESHOLD_OFF_20;
746 	} else {
747 		offset = 0;
748 	}
749 
750 	switch (scan_index) {
751 	case AMS_SEQ_TEMP:
752 		return AMS_ALARM_TEMP + offset;
753 	case AMS_SEQ_SUPPLY1:
754 		return AMS_ALARM_SUPPLY1 + offset;
755 	case AMS_SEQ_SUPPLY2:
756 		return AMS_ALARM_SUPPLY2 + offset;
757 	case AMS_SEQ_SUPPLY3:
758 		return AMS_ALARM_SUPPLY3 + offset;
759 	case AMS_SEQ_SUPPLY4:
760 		return AMS_ALARM_SUPPLY4 + offset;
761 	case AMS_SEQ_SUPPLY5:
762 		return AMS_ALARM_SUPPLY5 + offset;
763 	case AMS_SEQ_SUPPLY6:
764 		return AMS_ALARM_SUPPLY6 + offset;
765 	case AMS_SEQ_SUPPLY7:
766 		return AMS_ALARM_SUPPLY7 + offset;
767 	case AMS_SEQ_SUPPLY8:
768 		return AMS_ALARM_SUPPLY8 + offset;
769 	case AMS_SEQ_SUPPLY9:
770 		return AMS_ALARM_SUPPLY9 + offset;
771 	case AMS_SEQ_SUPPLY10:
772 		return AMS_ALARM_SUPPLY10 + offset;
773 	case AMS_SEQ_VCCAMS:
774 		return AMS_ALARM_VCCAMS + offset;
775 	case AMS_SEQ_TEMP_REMOTE:
776 		return AMS_ALARM_TEMP_REMOTE + offset;
777 	default:
778 		return 0;
779 	}
780 }
781 
782 static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
783 							u32 event)
784 {
785 	int scan_index = 0, i;
786 
787 	if (event >= AMS_PL_ALARM_START) {
788 		event -= AMS_PL_ALARM_START;
789 		scan_index = AMS_PS_SEQ_MAX;
790 	}
791 
792 	switch (event) {
793 	case AMS_ALARM_BIT_TEMP:
794 		scan_index += AMS_SEQ_TEMP;
795 		break;
796 	case AMS_ALARM_BIT_SUPPLY1:
797 		scan_index += AMS_SEQ_SUPPLY1;
798 		break;
799 	case AMS_ALARM_BIT_SUPPLY2:
800 		scan_index += AMS_SEQ_SUPPLY2;
801 		break;
802 	case AMS_ALARM_BIT_SUPPLY3:
803 		scan_index += AMS_SEQ_SUPPLY3;
804 		break;
805 	case AMS_ALARM_BIT_SUPPLY4:
806 		scan_index += AMS_SEQ_SUPPLY4;
807 		break;
808 	case AMS_ALARM_BIT_SUPPLY5:
809 		scan_index += AMS_SEQ_SUPPLY5;
810 		break;
811 	case AMS_ALARM_BIT_SUPPLY6:
812 		scan_index += AMS_SEQ_SUPPLY6;
813 		break;
814 	case AMS_ALARM_BIT_SUPPLY7:
815 		scan_index += AMS_SEQ_SUPPLY7;
816 		break;
817 	case AMS_ALARM_BIT_SUPPLY8:
818 		scan_index += AMS_SEQ_SUPPLY8;
819 		break;
820 	case AMS_ALARM_BIT_SUPPLY9:
821 		scan_index += AMS_SEQ_SUPPLY9;
822 		break;
823 	case AMS_ALARM_BIT_SUPPLY10:
824 		scan_index += AMS_SEQ_SUPPLY10;
825 		break;
826 	case AMS_ALARM_BIT_VCCAMS:
827 		scan_index += AMS_SEQ_VCCAMS;
828 		break;
829 	case AMS_ALARM_BIT_TEMP_REMOTE:
830 		scan_index += AMS_SEQ_TEMP_REMOTE;
831 		break;
832 	default:
833 		break;
834 	}
835 
836 	for (i = 0; i < dev->num_channels; i++)
837 		if (dev->channels[i].scan_index == scan_index)
838 			break;
839 
840 	return &dev->channels[i];
841 }
842 
843 static int ams_get_alarm_mask(int scan_index)
844 {
845 	int bit = 0;
846 
847 	if (scan_index >= AMS_PS_SEQ_MAX) {
848 		bit = AMS_PL_ALARM_START;
849 		scan_index -= AMS_PS_SEQ_MAX;
850 	}
851 
852 	switch (scan_index) {
853 	case AMS_SEQ_TEMP:
854 		return BIT(AMS_ALARM_BIT_TEMP + bit);
855 	case AMS_SEQ_SUPPLY1:
856 		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
857 	case AMS_SEQ_SUPPLY2:
858 		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
859 	case AMS_SEQ_SUPPLY3:
860 		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
861 	case AMS_SEQ_SUPPLY4:
862 		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
863 	case AMS_SEQ_SUPPLY5:
864 		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
865 	case AMS_SEQ_SUPPLY6:
866 		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
867 	case AMS_SEQ_SUPPLY7:
868 		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
869 	case AMS_SEQ_SUPPLY8:
870 		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
871 	case AMS_SEQ_SUPPLY9:
872 		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
873 	case AMS_SEQ_SUPPLY10:
874 		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
875 	case AMS_SEQ_VCCAMS:
876 		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
877 	case AMS_SEQ_TEMP_REMOTE:
878 		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
879 	default:
880 		return 0;
881 	}
882 }
883 
884 static int ams_read_event_config(struct iio_dev *indio_dev,
885 				 const struct iio_chan_spec *chan,
886 				 enum iio_event_type type,
887 				 enum iio_event_direction dir)
888 {
889 	struct ams *ams = iio_priv(indio_dev);
890 
891 	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
892 }
893 
894 static int ams_write_event_config(struct iio_dev *indio_dev,
895 				  const struct iio_chan_spec *chan,
896 				  enum iio_event_type type,
897 				  enum iio_event_direction dir,
898 				  int state)
899 {
900 	struct ams *ams = iio_priv(indio_dev);
901 	unsigned int alarm;
902 
903 	alarm = ams_get_alarm_mask(chan->scan_index);
904 
905 	mutex_lock(&ams->lock);
906 
907 	if (state)
908 		ams->alarm_mask |= alarm;
909 	else
910 		ams->alarm_mask &= ~alarm;
911 
912 	ams_update_alarm(ams, ams->alarm_mask);
913 
914 	mutex_unlock(&ams->lock);
915 
916 	return 0;
917 }
918 
919 static int ams_read_event_value(struct iio_dev *indio_dev,
920 				const struct iio_chan_spec *chan,
921 				enum iio_event_type type,
922 				enum iio_event_direction dir,
923 				enum iio_event_info info, int *val, int *val2)
924 {
925 	struct ams *ams = iio_priv(indio_dev);
926 	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
927 
928 	mutex_lock(&ams->lock);
929 
930 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
931 		*val = readl(ams->pl_base + offset);
932 	else
933 		*val = readl(ams->ps_base + offset);
934 
935 	mutex_unlock(&ams->lock);
936 
937 	return IIO_VAL_INT;
938 }
939 
940 static int ams_write_event_value(struct iio_dev *indio_dev,
941 				 const struct iio_chan_spec *chan,
942 				 enum iio_event_type type,
943 				 enum iio_event_direction dir,
944 				 enum iio_event_info info, int val, int val2)
945 {
946 	struct ams *ams = iio_priv(indio_dev);
947 	unsigned int offset;
948 
949 	mutex_lock(&ams->lock);
950 
951 	/* Set temperature channel threshold to direct threshold */
952 	if (chan->type == IIO_TEMP) {
953 		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
954 
955 		if (chan->scan_index >= AMS_PS_SEQ_MAX)
956 			ams_pl_update_reg(ams, offset,
957 					  AMS_ALARM_THR_DIRECT_MASK,
958 					  AMS_ALARM_THR_DIRECT_MASK);
959 		else
960 			ams_ps_update_reg(ams, offset,
961 					  AMS_ALARM_THR_DIRECT_MASK,
962 					  AMS_ALARM_THR_DIRECT_MASK);
963 	}
964 
965 	offset = ams_get_alarm_offset(chan->scan_index, dir);
966 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
967 		writel(val, ams->pl_base + offset);
968 	else
969 		writel(val, ams->ps_base + offset);
970 
971 	mutex_unlock(&ams->lock);
972 
973 	return 0;
974 }
975 
976 static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
977 {
978 	const struct iio_chan_spec *chan;
979 
980 	chan = ams_event_to_channel(indio_dev, event);
981 
982 	if (chan->type == IIO_TEMP) {
983 		/*
984 		 * The temperature channel only supports over-temperature
985 		 * events.
986 		 */
987 		iio_push_event(indio_dev,
988 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
989 						    IIO_EV_TYPE_THRESH,
990 						    IIO_EV_DIR_RISING),
991 			       iio_get_time_ns(indio_dev));
992 	} else {
993 		/*
994 		 * For other channels we don't know whether it is a upper or
995 		 * lower threshold event. Userspace will have to check the
996 		 * channel value if it wants to know.
997 		 */
998 		iio_push_event(indio_dev,
999 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
1000 						    IIO_EV_TYPE_THRESH,
1001 						    IIO_EV_DIR_EITHER),
1002 			       iio_get_time_ns(indio_dev));
1003 	}
1004 }
1005 
1006 static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1007 {
1008 	unsigned int bit;
1009 
1010 	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1011 		ams_handle_event(indio_dev, bit);
1012 }
1013 
1014 /**
1015  * ams_unmask_worker - ams alarm interrupt unmask worker
1016  * @work: work to be done
1017  *
1018  * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1019  * threshold condition go way from within the interrupt handler, this means as
1020  * soon as a threshold condition is present we would enter the interrupt handler
1021  * again and again. To work around this we mask all active threshold interrupts
1022  * in the interrupt handler and start a timer. In this timer we poll the
1023  * interrupt status and only if the interrupt is inactive we unmask it again.
1024  */
1025 static void ams_unmask_worker(struct work_struct *work)
1026 {
1027 	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1028 	unsigned int status, unmask;
1029 
1030 	spin_lock_irq(&ams->intr_lock);
1031 
1032 	status = readl(ams->base + AMS_ISR_0);
1033 
1034 	/* Clear those bits which are not active anymore */
1035 	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1036 
1037 	/* Clear status of disabled alarm */
1038 	unmask |= ams->intr_mask;
1039 
1040 	ams->current_masked_alarm &= status;
1041 
1042 	/* Also clear those which are masked out anyway */
1043 	ams->current_masked_alarm &= ~ams->intr_mask;
1044 
1045 	/* Clear the interrupts before we unmask them */
1046 	writel(unmask, ams->base + AMS_ISR_0);
1047 
1048 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1049 
1050 	spin_unlock_irq(&ams->intr_lock);
1051 
1052 	/* If still pending some alarm re-trigger the timer */
1053 	if (ams->current_masked_alarm)
1054 		schedule_delayed_work(&ams->ams_unmask_work,
1055 				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1056 }
1057 
1058 static irqreturn_t ams_irq(int irq, void *data)
1059 {
1060 	struct iio_dev *indio_dev = data;
1061 	struct ams *ams = iio_priv(indio_dev);
1062 	u32 isr0;
1063 
1064 	spin_lock(&ams->intr_lock);
1065 
1066 	isr0 = readl(ams->base + AMS_ISR_0);
1067 
1068 	/* Only process alarms that are not masked */
1069 	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1070 	if (!isr0) {
1071 		spin_unlock(&ams->intr_lock);
1072 		return IRQ_NONE;
1073 	}
1074 
1075 	/* Clear interrupt */
1076 	writel(isr0, ams->base + AMS_ISR_0);
1077 
1078 	/* Mask the alarm interrupts until cleared */
1079 	ams->current_masked_alarm |= isr0;
1080 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1081 
1082 	ams_handle_events(indio_dev, isr0);
1083 
1084 	schedule_delayed_work(&ams->ams_unmask_work,
1085 			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1086 
1087 	spin_unlock(&ams->intr_lock);
1088 
1089 	return IRQ_HANDLED;
1090 }
1091 
1092 static const struct iio_event_spec ams_temp_events[] = {
1093 	{
1094 		.type = IIO_EV_TYPE_THRESH,
1095 		.dir = IIO_EV_DIR_RISING,
1096 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1097 	},
1098 };
1099 
1100 static const struct iio_event_spec ams_voltage_events[] = {
1101 	{
1102 		.type = IIO_EV_TYPE_THRESH,
1103 		.dir = IIO_EV_DIR_RISING,
1104 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1105 	},
1106 	{
1107 		.type = IIO_EV_TYPE_THRESH,
1108 		.dir = IIO_EV_DIR_FALLING,
1109 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1110 	},
1111 	{
1112 		.type = IIO_EV_TYPE_THRESH,
1113 		.dir = IIO_EV_DIR_EITHER,
1114 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1115 	},
1116 };
1117 
1118 static const struct iio_chan_spec ams_ps_channels[] = {
1119 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1120 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
1121 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
1122 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
1123 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
1124 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
1125 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
1126 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
1127 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
1128 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
1129 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
1130 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
1131 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
1132 };
1133 
1134 static const struct iio_chan_spec ams_pl_channels[] = {
1135 	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1136 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
1137 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
1138 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
1139 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
1140 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
1141 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
1142 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
1143 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
1144 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
1145 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
1146 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
1147 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
1148 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
1149 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
1150 	AMS_PL_AUX_CHAN_VOLTAGE(0),
1151 	AMS_PL_AUX_CHAN_VOLTAGE(1),
1152 	AMS_PL_AUX_CHAN_VOLTAGE(2),
1153 	AMS_PL_AUX_CHAN_VOLTAGE(3),
1154 	AMS_PL_AUX_CHAN_VOLTAGE(4),
1155 	AMS_PL_AUX_CHAN_VOLTAGE(5),
1156 	AMS_PL_AUX_CHAN_VOLTAGE(6),
1157 	AMS_PL_AUX_CHAN_VOLTAGE(7),
1158 	AMS_PL_AUX_CHAN_VOLTAGE(8),
1159 	AMS_PL_AUX_CHAN_VOLTAGE(9),
1160 	AMS_PL_AUX_CHAN_VOLTAGE(10),
1161 	AMS_PL_AUX_CHAN_VOLTAGE(11),
1162 	AMS_PL_AUX_CHAN_VOLTAGE(12),
1163 	AMS_PL_AUX_CHAN_VOLTAGE(13),
1164 	AMS_PL_AUX_CHAN_VOLTAGE(14),
1165 	AMS_PL_AUX_CHAN_VOLTAGE(15),
1166 };
1167 
1168 static const struct iio_chan_spec ams_ctrl_channels[] = {
1169 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
1170 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
1171 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
1172 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
1173 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
1174 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
1175 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
1176 };
1177 
1178 static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1179 			    struct iio_chan_spec *channels, int num_channels)
1180 {
1181 	struct iio_chan_spec *chan;
1182 	struct fwnode_handle *child;
1183 	unsigned int reg, ext_chan;
1184 	int ret;
1185 
1186 	fwnode_for_each_child_node(chan_node, child) {
1187 		ret = fwnode_property_read_u32(child, "reg", &reg);
1188 		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1189 			continue;
1190 
1191 		chan = &channels[num_channels];
1192 		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1193 		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1194 
1195 		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1196 			chan->scan_type.sign = 's';
1197 
1198 		num_channels++;
1199 	}
1200 
1201 	return num_channels;
1202 }
1203 
1204 static void ams_iounmap_ps(void *data)
1205 {
1206 	struct ams *ams = data;
1207 
1208 	iounmap(ams->ps_base);
1209 }
1210 
1211 static void ams_iounmap_pl(void *data)
1212 {
1213 	struct ams *ams = data;
1214 
1215 	iounmap(ams->pl_base);
1216 }
1217 
1218 static int ams_init_module(struct iio_dev *indio_dev,
1219 			   struct fwnode_handle *fwnode,
1220 			   struct iio_chan_spec *channels)
1221 {
1222 	struct device *dev = indio_dev->dev.parent;
1223 	struct ams *ams = iio_priv(indio_dev);
1224 	int num_channels = 0;
1225 	int ret;
1226 
1227 	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1228 		ams->ps_base = fwnode_iomap(fwnode, 0);
1229 		if (!ams->ps_base)
1230 			return -ENXIO;
1231 		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1232 		if (ret < 0)
1233 			return ret;
1234 
1235 		/* add PS channels to iio device channels */
1236 		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1237 		num_channels = ARRAY_SIZE(ams_ps_channels);
1238 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1239 		ams->pl_base = fwnode_iomap(fwnode, 0);
1240 		if (!ams->pl_base)
1241 			return -ENXIO;
1242 
1243 		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1244 		if (ret < 0)
1245 			return ret;
1246 
1247 		/* Copy only first 10 fix channels */
1248 		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1249 		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1250 		num_channels = ams_get_ext_chan(fwnode, channels,
1251 						num_channels);
1252 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1253 		/* add AMS channels to iio device channels */
1254 		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1255 		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1256 	} else {
1257 		return -EINVAL;
1258 	}
1259 
1260 	return num_channels;
1261 }
1262 
1263 static int ams_parse_firmware(struct iio_dev *indio_dev)
1264 {
1265 	struct ams *ams = iio_priv(indio_dev);
1266 	struct iio_chan_spec *ams_channels, *dev_channels;
1267 	struct device *dev = indio_dev->dev.parent;
1268 	struct fwnode_handle *child = NULL;
1269 	struct fwnode_handle *fwnode = dev_fwnode(dev);
1270 	size_t ams_size;
1271 	int ret, ch_cnt = 0, i, rising_off, falling_off;
1272 	unsigned int num_channels = 0;
1273 
1274 	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1275 		ARRAY_SIZE(ams_ctrl_channels);
1276 
1277 	/* Initialize buffer for channel specification */
1278 	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1279 	if (!ams_channels)
1280 		return -ENOMEM;
1281 
1282 	if (fwnode_device_is_available(fwnode)) {
1283 		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1284 		if (ret < 0)
1285 			return ret;
1286 
1287 		num_channels += ret;
1288 	}
1289 
1290 	fwnode_for_each_child_node(fwnode, child) {
1291 		if (fwnode_device_is_available(child)) {
1292 			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1293 			if (ret < 0) {
1294 				fwnode_handle_put(child);
1295 				return ret;
1296 			}
1297 
1298 			num_channels += ret;
1299 		}
1300 	}
1301 
1302 	for (i = 0; i < num_channels; i++) {
1303 		ams_channels[i].channel = ch_cnt++;
1304 
1305 		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1306 			/* set threshold to max and min for each channel */
1307 			falling_off =
1308 				ams_get_alarm_offset(ams_channels[i].scan_index,
1309 						     IIO_EV_DIR_FALLING);
1310 			rising_off =
1311 				ams_get_alarm_offset(ams_channels[i].scan_index,
1312 						     IIO_EV_DIR_RISING);
1313 			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1314 				writel(AMS_ALARM_THR_MIN,
1315 				       ams->pl_base + falling_off);
1316 				writel(AMS_ALARM_THR_MAX,
1317 				       ams->pl_base + rising_off);
1318 			} else {
1319 				writel(AMS_ALARM_THR_MIN,
1320 				       ams->ps_base + falling_off);
1321 				writel(AMS_ALARM_THR_MAX,
1322 				       ams->ps_base + rising_off);
1323 			}
1324 		}
1325 	}
1326 
1327 	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1328 					   sizeof(*dev_channels), GFP_KERNEL);
1329 	if (!dev_channels)
1330 		return -ENOMEM;
1331 
1332 	indio_dev->channels = dev_channels;
1333 	indio_dev->num_channels = num_channels;
1334 
1335 	return 0;
1336 }
1337 
1338 static const struct iio_info iio_ams_info = {
1339 	.read_raw = &ams_read_raw,
1340 	.read_event_config = &ams_read_event_config,
1341 	.write_event_config = &ams_write_event_config,
1342 	.read_event_value = &ams_read_event_value,
1343 	.write_event_value = &ams_write_event_value,
1344 };
1345 
1346 static const struct of_device_id ams_of_match_table[] = {
1347 	{ .compatible = "xlnx,zynqmp-ams" },
1348 	{ }
1349 };
1350 MODULE_DEVICE_TABLE(of, ams_of_match_table);
1351 
1352 static int ams_probe(struct platform_device *pdev)
1353 {
1354 	struct iio_dev *indio_dev;
1355 	struct ams *ams;
1356 	int ret;
1357 	int irq;
1358 
1359 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1360 	if (!indio_dev)
1361 		return -ENOMEM;
1362 
1363 	ams = iio_priv(indio_dev);
1364 	mutex_init(&ams->lock);
1365 	spin_lock_init(&ams->intr_lock);
1366 
1367 	indio_dev->name = "xilinx-ams";
1368 
1369 	indio_dev->info = &iio_ams_info;
1370 	indio_dev->modes = INDIO_DIRECT_MODE;
1371 
1372 	ams->base = devm_platform_ioremap_resource(pdev, 0);
1373 	if (IS_ERR(ams->base))
1374 		return PTR_ERR(ams->base);
1375 
1376 	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1377 	if (IS_ERR(ams->clk))
1378 		return PTR_ERR(ams->clk);
1379 
1380 	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1381 					   ams_unmask_worker);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	ret = ams_parse_firmware(indio_dev);
1386 	if (ret)
1387 		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1388 
1389 	ret = ams_init_device(ams);
1390 	if (ret)
1391 		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1392 
1393 	ams_enable_channel_sequence(indio_dev);
1394 
1395 	irq = platform_get_irq(pdev, 0);
1396 	if (irq < 0)
1397 		return irq;
1398 
1399 	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1400 			       indio_dev);
1401 	if (ret < 0)
1402 		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1403 
1404 	platform_set_drvdata(pdev, indio_dev);
1405 
1406 	return devm_iio_device_register(&pdev->dev, indio_dev);
1407 }
1408 
1409 static int ams_suspend(struct device *dev)
1410 {
1411 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1412 
1413 	clk_disable_unprepare(ams->clk);
1414 
1415 	return 0;
1416 }
1417 
1418 static int ams_resume(struct device *dev)
1419 {
1420 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1421 
1422 	return clk_prepare_enable(ams->clk);
1423 }
1424 
1425 static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1426 
1427 static struct platform_driver ams_driver = {
1428 	.probe = ams_probe,
1429 	.driver = {
1430 		.name = "xilinx-ams",
1431 		.pm = pm_sleep_ptr(&ams_pm_ops),
1432 		.of_match_table = ams_of_match_table,
1433 	},
1434 };
1435 module_platform_driver(ams_driver);
1436 
1437 MODULE_LICENSE("GPL v2");
1438 MODULE_AUTHOR("Xilinx, Inc.");
1439