1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments TSC2046 SPI ADC driver 4 * 5 * Copyright (c) 2021 Oleksij Rempel <kernel@pengutronix.de>, Pengutronix 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/cleanup.h> 10 #include <linux/delay.h> 11 #include <linux/module.h> 12 #include <linux/regulator/consumer.h> 13 #include <linux/spi/spi.h> 14 #include <linux/units.h> 15 16 #include <linux/unaligned.h> 17 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/trigger_consumer.h> 20 #include <linux/iio/triggered_buffer.h> 21 #include <linux/iio/trigger.h> 22 23 /* 24 * The PENIRQ of TSC2046 controller is implemented as level shifter attached to 25 * the X+ line. If voltage of the X+ line reaches a specific level the IRQ will 26 * be activated or deactivated. 27 * To make this kind of IRQ reusable as trigger following additions were 28 * implemented: 29 * - rate limiting: 30 * For typical touchscreen use case, we need to trigger about each 10ms. 31 * - hrtimer: 32 * Continue triggering at least once after the IRQ was deactivated. Then 33 * deactivate this trigger to stop sampling in order to reduce power 34 * consumption. 35 */ 36 37 #define TI_TSC2046_NAME "tsc2046" 38 39 /* This driver doesn't aim at the peak continuous sample rate */ 40 #define TI_TSC2046_MAX_SAMPLE_RATE 125000 41 #define TI_TSC2046_SAMPLE_BITS \ 42 BITS_PER_TYPE(struct tsc2046_adc_atom) 43 #define TI_TSC2046_MAX_CLK_FREQ \ 44 (TI_TSC2046_MAX_SAMPLE_RATE * TI_TSC2046_SAMPLE_BITS) 45 46 #define TI_TSC2046_SAMPLE_INTERVAL_US 10000 47 48 #define TI_TSC2046_START BIT(7) 49 #define TI_TSC2046_ADDR GENMASK(6, 4) 50 #define TI_TSC2046_ADDR_TEMP1 7 51 #define TI_TSC2046_ADDR_AUX 6 52 #define TI_TSC2046_ADDR_X 5 53 #define TI_TSC2046_ADDR_Z2 4 54 #define TI_TSC2046_ADDR_Z1 3 55 #define TI_TSC2046_ADDR_VBAT 2 56 #define TI_TSC2046_ADDR_Y 1 57 #define TI_TSC2046_ADDR_TEMP0 0 58 59 /* 60 * The mode bit sets the resolution of the ADC. With this bit low, the next 61 * conversion has 12-bit resolution, whereas with this bit high, the next 62 * conversion has 8-bit resolution. This driver is optimized for 12-bit mode. 63 * So, for this driver, this bit should stay zero. 64 */ 65 #define TI_TSC2046_8BIT_MODE BIT(3) 66 67 /* 68 * SER/DFR - The SER/DFR bit controls the reference mode, either single-ended 69 * (high) or differential (low). 70 */ 71 #define TI_TSC2046_SER BIT(2) 72 73 /* 74 * If VREF_ON and ADC_ON are both zero, then the chip operates in 75 * auto-wake/suspend mode. In most case this bits should stay zero. 76 */ 77 #define TI_TSC2046_PD1_VREF_ON BIT(1) 78 #define TI_TSC2046_PD0_ADC_ON BIT(0) 79 80 /* 81 * All supported devices can do 8 or 12bit resolution. This driver 82 * supports only 12bit mode, here we have a 16bit data transfer, where 83 * the MSB and the 3 LSB are 0. 84 */ 85 #define TI_TSC2046_DATA_12BIT GENMASK(14, 3) 86 87 #define TI_TSC2046_MAX_CHAN 8 88 #define TI_TSC2046_MIN_POLL_CNT 3 89 #define TI_TSC2046_EXT_POLL_CNT 3 90 #define TI_TSC2046_POLL_CNT \ 91 (TI_TSC2046_MIN_POLL_CNT + TI_TSC2046_EXT_POLL_CNT) 92 #define TI_TSC2046_INT_VREF 2500 93 94 /* Represents a HW sample */ 95 struct tsc2046_adc_atom { 96 /* 97 * Command transmitted to the controller. This field is empty on the RX 98 * buffer. 99 */ 100 u8 cmd; 101 /* 102 * Data received from the controller. This field is empty for the TX 103 * buffer 104 */ 105 __be16 data; 106 } __packed; 107 108 /* Layout of atomic buffers within big buffer */ 109 struct tsc2046_adc_group_layout { 110 /* Group offset within the SPI RX buffer */ 111 unsigned int offset; 112 /* 113 * Amount of tsc2046_adc_atom structs within the same command gathered 114 * within same group. 115 */ 116 unsigned int count; 117 /* 118 * Settling samples (tsc2046_adc_atom structs) which should be skipped 119 * before good samples will start. 120 */ 121 unsigned int skip; 122 }; 123 124 struct tsc2046_adc_dcfg { 125 const struct iio_chan_spec *channels; 126 unsigned int num_channels; 127 }; 128 129 struct tsc2046_adc_ch_cfg { 130 unsigned int settling_time_us; 131 unsigned int oversampling_ratio; 132 }; 133 134 enum tsc2046_state { 135 TSC2046_STATE_SHUTDOWN, 136 TSC2046_STATE_STANDBY, 137 TSC2046_STATE_POLL, 138 TSC2046_STATE_POLL_IRQ_DISABLE, 139 TSC2046_STATE_ENABLE_IRQ, 140 }; 141 142 struct tsc2046_adc_priv { 143 struct spi_device *spi; 144 const struct tsc2046_adc_dcfg *dcfg; 145 bool internal_vref; 146 147 struct iio_trigger *trig; 148 struct hrtimer trig_timer; 149 enum tsc2046_state state; 150 int poll_cnt; 151 spinlock_t state_lock; 152 153 struct spi_transfer xfer; 154 struct spi_message msg; 155 156 struct { 157 /* Scan data for each channel */ 158 u16 data[TI_TSC2046_MAX_CHAN]; 159 /* Timestamp */ 160 s64 ts __aligned(8); 161 } scan_buf; 162 163 /* 164 * Lock to protect the layout and the SPI transfer buffer. 165 * tsc2046_adc_group_layout can be changed within update_scan_mode(), 166 * in this case the l[] and tx/rx buffer will be out of sync to each 167 * other. 168 */ 169 struct mutex slock; 170 struct tsc2046_adc_group_layout l[TI_TSC2046_MAX_CHAN]; 171 struct tsc2046_adc_atom *rx; 172 struct tsc2046_adc_atom *tx; 173 174 unsigned int count; 175 unsigned int groups; 176 u32 effective_speed_hz; 177 u32 scan_interval_us; 178 u32 time_per_scan_us; 179 u32 time_per_bit_ns; 180 unsigned int vref_mv; 181 182 struct tsc2046_adc_ch_cfg ch_cfg[TI_TSC2046_MAX_CHAN]; 183 }; 184 185 #define TI_TSC2046_V_CHAN(index, bits, name) \ 186 { \ 187 .type = IIO_VOLTAGE, \ 188 .indexed = 1, \ 189 .channel = index, \ 190 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 191 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 192 .datasheet_name = "#name", \ 193 .scan_index = index, \ 194 .scan_type = { \ 195 .sign = 'u', \ 196 .realbits = bits, \ 197 .storagebits = 16, \ 198 .endianness = IIO_CPU, \ 199 }, \ 200 } 201 202 #define DECLARE_TI_TSC2046_8_CHANNELS(name, bits) \ 203 const struct iio_chan_spec name ## _channels[] = { \ 204 TI_TSC2046_V_CHAN(0, bits, TEMP0), \ 205 TI_TSC2046_V_CHAN(1, bits, Y), \ 206 TI_TSC2046_V_CHAN(2, bits, VBAT), \ 207 TI_TSC2046_V_CHAN(3, bits, Z1), \ 208 TI_TSC2046_V_CHAN(4, bits, Z2), \ 209 TI_TSC2046_V_CHAN(5, bits, X), \ 210 TI_TSC2046_V_CHAN(6, bits, AUX), \ 211 TI_TSC2046_V_CHAN(7, bits, TEMP1), \ 212 IIO_CHAN_SOFT_TIMESTAMP(8), \ 213 } 214 215 static DECLARE_TI_TSC2046_8_CHANNELS(tsc2046_adc, 12); 216 217 static const struct tsc2046_adc_dcfg tsc2046_adc_dcfg_tsc2046e = { 218 .channels = tsc2046_adc_channels, 219 .num_channels = ARRAY_SIZE(tsc2046_adc_channels), 220 }; 221 222 /* 223 * Convert time to a number of samples which can be transferred within this 224 * time. 225 */ 226 static unsigned int tsc2046_adc_time_to_count(struct tsc2046_adc_priv *priv, 227 unsigned long time) 228 { 229 unsigned int bit_count, sample_count; 230 231 bit_count = DIV_ROUND_UP(time * NSEC_PER_USEC, priv->time_per_bit_ns); 232 sample_count = DIV_ROUND_UP(bit_count, TI_TSC2046_SAMPLE_BITS); 233 234 dev_dbg(&priv->spi->dev, "Effective speed %u, time per bit: %u, count bits: %u, count samples: %u\n", 235 priv->effective_speed_hz, priv->time_per_bit_ns, 236 bit_count, sample_count); 237 238 return sample_count; 239 } 240 241 static u8 tsc2046_adc_get_cmd(struct tsc2046_adc_priv *priv, int ch_idx, 242 bool keep_power) 243 { 244 u32 pd; 245 246 /* 247 * if PD bits are 0, controller will automatically disable ADC, VREF and 248 * enable IRQ. 249 */ 250 if (keep_power) 251 pd = TI_TSC2046_PD0_ADC_ON; 252 else 253 pd = 0; 254 255 switch (ch_idx) { 256 case TI_TSC2046_ADDR_TEMP1: 257 case TI_TSC2046_ADDR_AUX: 258 case TI_TSC2046_ADDR_VBAT: 259 case TI_TSC2046_ADDR_TEMP0: 260 pd |= TI_TSC2046_SER; 261 if (priv->internal_vref) 262 pd |= TI_TSC2046_PD1_VREF_ON; 263 } 264 265 return TI_TSC2046_START | FIELD_PREP(TI_TSC2046_ADDR, ch_idx) | pd; 266 } 267 268 static u16 tsc2046_adc_get_value(struct tsc2046_adc_atom *buf) 269 { 270 return FIELD_GET(TI_TSC2046_DATA_12BIT, get_unaligned_be16(&buf->data)); 271 } 272 273 static int tsc2046_adc_read_one(struct tsc2046_adc_priv *priv, int ch_idx, 274 u32 *effective_speed_hz) 275 { 276 struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx]; 277 unsigned int val, val_normalized = 0; 278 int ret, i, count_skip = 0, max_count; 279 struct spi_transfer xfer; 280 struct spi_message msg; 281 u8 cmd; 282 283 if (!effective_speed_hz) { 284 count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us); 285 max_count = count_skip + ch->oversampling_ratio; 286 } else { 287 max_count = 1; 288 } 289 290 if (sizeof(struct tsc2046_adc_atom) * max_count > PAGE_SIZE) 291 return -ENOSPC; 292 293 struct tsc2046_adc_atom *tx_buf __free(kfree) = kcalloc(max_count, 294 sizeof(*tx_buf), 295 GFP_KERNEL); 296 if (!tx_buf) 297 return -ENOMEM; 298 299 struct tsc2046_adc_atom *rx_buf __free(kfree) = kcalloc(max_count, 300 sizeof(*rx_buf), 301 GFP_KERNEL); 302 if (!rx_buf) 303 return -ENOMEM; 304 305 /* 306 * Do not enable automatic power down on working samples. Otherwise the 307 * plates will never be completely charged. 308 */ 309 cmd = tsc2046_adc_get_cmd(priv, ch_idx, true); 310 311 for (i = 0; i < max_count - 1; i++) 312 tx_buf[i].cmd = cmd; 313 314 /* automatically power down on last sample */ 315 tx_buf[i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false); 316 317 memset(&xfer, 0, sizeof(xfer)); 318 xfer.tx_buf = tx_buf; 319 xfer.rx_buf = rx_buf; 320 xfer.len = sizeof(*tx_buf) * max_count; 321 spi_message_init_with_transfers(&msg, &xfer, 1); 322 323 /* 324 * We aren't using spi_write_then_read() because we need to be able 325 * to get hold of the effective_speed_hz from the xfer 326 */ 327 ret = spi_sync(priv->spi, &msg); 328 if (ret) { 329 dev_err_ratelimited(&priv->spi->dev, "SPI transfer failed %pe\n", 330 ERR_PTR(ret)); 331 return ret; 332 } 333 334 if (effective_speed_hz) 335 *effective_speed_hz = xfer.effective_speed_hz; 336 337 for (i = 0; i < max_count - count_skip; i++) { 338 val = tsc2046_adc_get_value(&rx_buf[count_skip + i]); 339 val_normalized += val; 340 } 341 342 return DIV_ROUND_UP(val_normalized, max_count - count_skip); 343 } 344 345 static size_t tsc2046_adc_group_set_layout(struct tsc2046_adc_priv *priv, 346 unsigned int group, 347 unsigned int ch_idx) 348 { 349 struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx]; 350 struct tsc2046_adc_group_layout *cur; 351 unsigned int max_count, count_skip; 352 unsigned int offset = 0; 353 354 if (group) 355 offset = priv->l[group - 1].offset + priv->l[group - 1].count; 356 357 count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us); 358 max_count = count_skip + ch->oversampling_ratio; 359 360 cur = &priv->l[group]; 361 cur->offset = offset; 362 cur->count = max_count; 363 cur->skip = count_skip; 364 365 return sizeof(*priv->tx) * max_count; 366 } 367 368 static void tsc2046_adc_group_set_cmd(struct tsc2046_adc_priv *priv, 369 unsigned int group, int ch_idx) 370 { 371 struct tsc2046_adc_group_layout *l = &priv->l[group]; 372 unsigned int i; 373 u8 cmd; 374 375 /* 376 * Do not enable automatic power down on working samples. Otherwise the 377 * plates will never be completely charged. 378 */ 379 cmd = tsc2046_adc_get_cmd(priv, ch_idx, true); 380 381 for (i = 0; i < l->count - 1; i++) 382 priv->tx[l->offset + i].cmd = cmd; 383 384 /* automatically power down on last sample */ 385 priv->tx[l->offset + i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false); 386 } 387 388 static u16 tsc2046_adc_get_val(struct tsc2046_adc_priv *priv, int group) 389 { 390 struct tsc2046_adc_group_layout *l; 391 unsigned int val, val_normalized = 0; 392 int valid_count, i; 393 394 l = &priv->l[group]; 395 valid_count = l->count - l->skip; 396 397 for (i = 0; i < valid_count; i++) { 398 val = tsc2046_adc_get_value(&priv->rx[l->offset + l->skip + i]); 399 val_normalized += val; 400 } 401 402 return DIV_ROUND_UP(val_normalized, valid_count); 403 } 404 405 static int tsc2046_adc_scan(struct iio_dev *indio_dev) 406 { 407 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 408 struct device *dev = &priv->spi->dev; 409 int group; 410 int ret; 411 412 ret = spi_sync(priv->spi, &priv->msg); 413 if (ret < 0) { 414 dev_err_ratelimited(dev, "SPI transfer failed: %pe\n", ERR_PTR(ret)); 415 return ret; 416 } 417 418 for (group = 0; group < priv->groups; group++) 419 priv->scan_buf.data[group] = tsc2046_adc_get_val(priv, group); 420 421 ret = iio_push_to_buffers_with_timestamp(indio_dev, &priv->scan_buf, 422 iio_get_time_ns(indio_dev)); 423 /* If the consumer is kfifo, we may get a EBUSY here - ignore it. */ 424 if (ret < 0 && ret != -EBUSY) { 425 dev_err_ratelimited(dev, "Failed to push scan buffer %pe\n", 426 ERR_PTR(ret)); 427 428 return ret; 429 } 430 431 return 0; 432 } 433 434 static irqreturn_t tsc2046_adc_trigger_handler(int irq, void *p) 435 { 436 struct iio_poll_func *pf = p; 437 struct iio_dev *indio_dev = pf->indio_dev; 438 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 439 440 mutex_lock(&priv->slock); 441 tsc2046_adc_scan(indio_dev); 442 mutex_unlock(&priv->slock); 443 444 iio_trigger_notify_done(indio_dev->trig); 445 446 return IRQ_HANDLED; 447 } 448 449 static int tsc2046_adc_read_raw(struct iio_dev *indio_dev, 450 struct iio_chan_spec const *chan, 451 int *val, int *val2, long m) 452 { 453 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 454 int ret; 455 456 switch (m) { 457 case IIO_CHAN_INFO_RAW: 458 ret = tsc2046_adc_read_one(priv, chan->channel, NULL); 459 if (ret < 0) 460 return ret; 461 462 *val = ret; 463 464 return IIO_VAL_INT; 465 case IIO_CHAN_INFO_SCALE: 466 /* 467 * Note: the TSC2046 has internal voltage divider on the VBAT 468 * line. This divider can be influenced by external divider. 469 * So, it is better to use external voltage-divider driver 470 * instead, which is calculating complete chain. 471 */ 472 *val = priv->vref_mv; 473 *val2 = chan->scan_type.realbits; 474 return IIO_VAL_FRACTIONAL_LOG2; 475 } 476 477 return -EINVAL; 478 } 479 480 static int tsc2046_adc_update_scan_mode(struct iio_dev *indio_dev, 481 const unsigned long *active_scan_mask) 482 { 483 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 484 unsigned int ch_idx, group = 0; 485 size_t size; 486 487 mutex_lock(&priv->slock); 488 489 size = 0; 490 for_each_set_bit(ch_idx, active_scan_mask, ARRAY_SIZE(priv->l)) { 491 size += tsc2046_adc_group_set_layout(priv, group, ch_idx); 492 tsc2046_adc_group_set_cmd(priv, group, ch_idx); 493 group++; 494 } 495 496 priv->groups = group; 497 priv->xfer.len = size; 498 priv->time_per_scan_us = size * 8 * priv->time_per_bit_ns / NSEC_PER_USEC; 499 500 if (priv->scan_interval_us < priv->time_per_scan_us) 501 dev_warn(&priv->spi->dev, "The scan interval (%d) is less then calculated scan time (%d)\n", 502 priv->scan_interval_us, priv->time_per_scan_us); 503 504 mutex_unlock(&priv->slock); 505 506 return 0; 507 } 508 509 static const struct iio_info tsc2046_adc_info = { 510 .read_raw = tsc2046_adc_read_raw, 511 .update_scan_mode = tsc2046_adc_update_scan_mode, 512 }; 513 514 static enum hrtimer_restart tsc2046_adc_timer(struct hrtimer *hrtimer) 515 { 516 struct tsc2046_adc_priv *priv = container_of(hrtimer, 517 struct tsc2046_adc_priv, 518 trig_timer); 519 unsigned long flags; 520 521 /* 522 * This state machine should address following challenges : 523 * - the interrupt source is based on level shifter attached to the X 524 * channel of ADC. It will change the state every time we switch 525 * between channels. So, we need to disable IRQ if we do 526 * iio_trigger_poll(). 527 * - we should do iio_trigger_poll() at some reduced sample rate 528 * - we should still trigger for some amount of time after last 529 * interrupt with enabled IRQ was processed. 530 */ 531 532 spin_lock_irqsave(&priv->state_lock, flags); 533 switch (priv->state) { 534 case TSC2046_STATE_ENABLE_IRQ: 535 if (priv->poll_cnt < TI_TSC2046_POLL_CNT) { 536 priv->poll_cnt++; 537 hrtimer_start(&priv->trig_timer, 538 ns_to_ktime(priv->scan_interval_us * 539 NSEC_PER_USEC), 540 HRTIMER_MODE_REL_SOFT); 541 542 if (priv->poll_cnt >= TI_TSC2046_MIN_POLL_CNT) { 543 priv->state = TSC2046_STATE_POLL_IRQ_DISABLE; 544 enable_irq(priv->spi->irq); 545 } else { 546 priv->state = TSC2046_STATE_POLL; 547 } 548 } else { 549 priv->state = TSC2046_STATE_STANDBY; 550 enable_irq(priv->spi->irq); 551 } 552 break; 553 case TSC2046_STATE_POLL_IRQ_DISABLE: 554 disable_irq_nosync(priv->spi->irq); 555 fallthrough; 556 case TSC2046_STATE_POLL: 557 priv->state = TSC2046_STATE_ENABLE_IRQ; 558 /* iio_trigger_poll() starts hrtimer */ 559 iio_trigger_poll(priv->trig); 560 break; 561 case TSC2046_STATE_SHUTDOWN: 562 break; 563 case TSC2046_STATE_STANDBY: 564 fallthrough; 565 default: 566 dev_warn(&priv->spi->dev, "Got unexpected state: %i\n", 567 priv->state); 568 break; 569 } 570 spin_unlock_irqrestore(&priv->state_lock, flags); 571 572 return HRTIMER_NORESTART; 573 } 574 575 static irqreturn_t tsc2046_adc_irq(int irq, void *dev_id) 576 { 577 struct iio_dev *indio_dev = dev_id; 578 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 579 unsigned long flags; 580 581 hrtimer_try_to_cancel(&priv->trig_timer); 582 583 spin_lock_irqsave(&priv->state_lock, flags); 584 if (priv->state != TSC2046_STATE_SHUTDOWN) { 585 priv->state = TSC2046_STATE_ENABLE_IRQ; 586 priv->poll_cnt = 0; 587 588 /* iio_trigger_poll() starts hrtimer */ 589 disable_irq_nosync(priv->spi->irq); 590 iio_trigger_poll(priv->trig); 591 } 592 spin_unlock_irqrestore(&priv->state_lock, flags); 593 594 return IRQ_HANDLED; 595 } 596 597 static void tsc2046_adc_reenable_trigger(struct iio_trigger *trig) 598 { 599 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 600 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 601 ktime_t tim; 602 603 /* 604 * We can sample it as fast as we can, but usually we do not need so 605 * many samples. Reduce the sample rate for default (touchscreen) use 606 * case. 607 */ 608 tim = ns_to_ktime((priv->scan_interval_us - priv->time_per_scan_us) * 609 NSEC_PER_USEC); 610 hrtimer_start(&priv->trig_timer, tim, HRTIMER_MODE_REL_SOFT); 611 } 612 613 static int tsc2046_adc_set_trigger_state(struct iio_trigger *trig, bool enable) 614 { 615 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 616 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 617 unsigned long flags; 618 619 if (enable) { 620 spin_lock_irqsave(&priv->state_lock, flags); 621 if (priv->state == TSC2046_STATE_SHUTDOWN) { 622 priv->state = TSC2046_STATE_STANDBY; 623 enable_irq(priv->spi->irq); 624 } 625 spin_unlock_irqrestore(&priv->state_lock, flags); 626 } else { 627 spin_lock_irqsave(&priv->state_lock, flags); 628 629 if (priv->state == TSC2046_STATE_STANDBY || 630 priv->state == TSC2046_STATE_POLL_IRQ_DISABLE) 631 disable_irq_nosync(priv->spi->irq); 632 633 priv->state = TSC2046_STATE_SHUTDOWN; 634 spin_unlock_irqrestore(&priv->state_lock, flags); 635 636 hrtimer_cancel(&priv->trig_timer); 637 } 638 639 return 0; 640 } 641 642 static const struct iio_trigger_ops tsc2046_adc_trigger_ops = { 643 .set_trigger_state = tsc2046_adc_set_trigger_state, 644 .reenable = tsc2046_adc_reenable_trigger, 645 }; 646 647 static int tsc2046_adc_setup_spi_msg(struct tsc2046_adc_priv *priv) 648 { 649 unsigned int ch_idx; 650 size_t size; 651 int ret; 652 653 /* 654 * Make dummy read to set initial power state and get real SPI clock 655 * freq. It seems to be not important which channel is used for this 656 * case. 657 */ 658 ret = tsc2046_adc_read_one(priv, TI_TSC2046_ADDR_TEMP0, 659 &priv->effective_speed_hz); 660 if (ret < 0) 661 return ret; 662 663 /* 664 * In case SPI controller do not report effective_speed_hz, use 665 * configure value and hope it will match. 666 */ 667 if (!priv->effective_speed_hz) 668 priv->effective_speed_hz = priv->spi->max_speed_hz; 669 670 671 priv->scan_interval_us = TI_TSC2046_SAMPLE_INTERVAL_US; 672 priv->time_per_bit_ns = DIV_ROUND_UP(NSEC_PER_SEC, 673 priv->effective_speed_hz); 674 675 /* 676 * Calculate and allocate maximal size buffer if all channels are 677 * enabled. 678 */ 679 size = 0; 680 for (ch_idx = 0; ch_idx < ARRAY_SIZE(priv->l); ch_idx++) 681 size += tsc2046_adc_group_set_layout(priv, ch_idx, ch_idx); 682 683 if (size > PAGE_SIZE) { 684 dev_err(&priv->spi->dev, 685 "Calculated scan buffer is too big. Try to reduce spi-max-frequency, settling-time-us or oversampling-ratio\n"); 686 return -ENOSPC; 687 } 688 689 priv->tx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL); 690 if (!priv->tx) 691 return -ENOMEM; 692 693 priv->rx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL); 694 if (!priv->rx) 695 return -ENOMEM; 696 697 priv->xfer.tx_buf = priv->tx; 698 priv->xfer.rx_buf = priv->rx; 699 priv->xfer.len = size; 700 spi_message_init_with_transfers(&priv->msg, &priv->xfer, 1); 701 702 return 0; 703 } 704 705 static void tsc2046_adc_parse_fwnode(struct tsc2046_adc_priv *priv) 706 { 707 struct fwnode_handle *child; 708 struct device *dev = &priv->spi->dev; 709 unsigned int i; 710 711 for (i = 0; i < ARRAY_SIZE(priv->ch_cfg); i++) { 712 priv->ch_cfg[i].settling_time_us = 1; 713 priv->ch_cfg[i].oversampling_ratio = 1; 714 } 715 716 device_for_each_child_node(dev, child) { 717 u32 stl, overs, reg; 718 int ret; 719 720 ret = fwnode_property_read_u32(child, "reg", ®); 721 if (ret) { 722 dev_err(dev, "invalid reg on %pfw, err: %pe\n", child, 723 ERR_PTR(ret)); 724 continue; 725 } 726 727 if (reg >= ARRAY_SIZE(priv->ch_cfg)) { 728 dev_err(dev, "%pfw: Unsupported reg value: %i, max supported is: %zu.\n", 729 child, reg, ARRAY_SIZE(priv->ch_cfg)); 730 continue; 731 } 732 733 ret = fwnode_property_read_u32(child, "settling-time-us", &stl); 734 if (!ret) 735 priv->ch_cfg[reg].settling_time_us = stl; 736 737 ret = fwnode_property_read_u32(child, "oversampling-ratio", 738 &overs); 739 if (!ret) 740 priv->ch_cfg[reg].oversampling_ratio = overs; 741 } 742 } 743 744 static int tsc2046_adc_probe(struct spi_device *spi) 745 { 746 const struct tsc2046_adc_dcfg *dcfg; 747 struct device *dev = &spi->dev; 748 struct tsc2046_adc_priv *priv; 749 struct iio_dev *indio_dev; 750 struct iio_trigger *trig; 751 int ret; 752 753 if (spi->max_speed_hz > TI_TSC2046_MAX_CLK_FREQ) { 754 dev_err(dev, "SPI max_speed_hz is too high: %d Hz. Max supported freq is %zu Hz\n", 755 spi->max_speed_hz, TI_TSC2046_MAX_CLK_FREQ); 756 return -EINVAL; 757 } 758 759 dcfg = spi_get_device_match_data(spi); 760 if (!dcfg) 761 return -EINVAL; 762 763 spi->bits_per_word = 8; 764 spi->mode &= ~SPI_MODE_X_MASK; 765 spi->mode |= SPI_MODE_0; 766 ret = spi_setup(spi); 767 if (ret < 0) 768 return dev_err_probe(dev, ret, "Error in SPI setup\n"); 769 770 indio_dev = devm_iio_device_alloc(dev, sizeof(*priv)); 771 if (!indio_dev) 772 return -ENOMEM; 773 774 priv = iio_priv(indio_dev); 775 priv->dcfg = dcfg; 776 777 priv->spi = spi; 778 779 indio_dev->name = TI_TSC2046_NAME; 780 indio_dev->modes = INDIO_DIRECT_MODE; 781 indio_dev->channels = dcfg->channels; 782 indio_dev->num_channels = dcfg->num_channels; 783 indio_dev->info = &tsc2046_adc_info; 784 785 ret = devm_regulator_get_enable_read_voltage(dev, "vref"); 786 if (ret < 0 && ret != -ENODEV) 787 return ret; 788 789 priv->internal_vref = ret == -ENODEV; 790 priv->vref_mv = priv->internal_vref ? TI_TSC2046_INT_VREF : ret / MILLI; 791 792 tsc2046_adc_parse_fwnode(priv); 793 794 ret = tsc2046_adc_setup_spi_msg(priv); 795 if (ret) 796 return ret; 797 798 mutex_init(&priv->slock); 799 800 ret = devm_request_irq(dev, spi->irq, &tsc2046_adc_irq, 801 IRQF_NO_AUTOEN, indio_dev->name, indio_dev); 802 if (ret) 803 return ret; 804 805 trig = devm_iio_trigger_alloc(dev, "touchscreen-%s", indio_dev->name); 806 if (!trig) 807 return -ENOMEM; 808 809 priv->trig = trig; 810 iio_trigger_set_drvdata(trig, indio_dev); 811 trig->ops = &tsc2046_adc_trigger_ops; 812 813 spin_lock_init(&priv->state_lock); 814 priv->state = TSC2046_STATE_SHUTDOWN; 815 hrtimer_init(&priv->trig_timer, CLOCK_MONOTONIC, 816 HRTIMER_MODE_REL_SOFT); 817 priv->trig_timer.function = tsc2046_adc_timer; 818 819 ret = devm_iio_trigger_register(dev, trig); 820 if (ret) { 821 dev_err(dev, "failed to register trigger\n"); 822 return ret; 823 } 824 825 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, 826 &tsc2046_adc_trigger_handler, NULL); 827 if (ret) { 828 dev_err(dev, "Failed to setup triggered buffer\n"); 829 return ret; 830 } 831 832 /* set default trigger */ 833 indio_dev->trig = iio_trigger_get(priv->trig); 834 835 return devm_iio_device_register(dev, indio_dev); 836 } 837 838 static const struct of_device_id ads7950_of_table[] = { 839 { .compatible = "ti,tsc2046e-adc", .data = &tsc2046_adc_dcfg_tsc2046e }, 840 { } 841 }; 842 MODULE_DEVICE_TABLE(of, ads7950_of_table); 843 844 static const struct spi_device_id tsc2046_adc_spi_ids[] = { 845 { "tsc2046e-adc", (unsigned long)&tsc2046_adc_dcfg_tsc2046e }, 846 { } 847 }; 848 MODULE_DEVICE_TABLE(spi, tsc2046_adc_spi_ids); 849 850 static struct spi_driver tsc2046_adc_driver = { 851 .driver = { 852 .name = "tsc2046", 853 .of_match_table = ads7950_of_table, 854 }, 855 .id_table = tsc2046_adc_spi_ids, 856 .probe = tsc2046_adc_probe, 857 }; 858 module_spi_driver(tsc2046_adc_driver); 859 860 MODULE_AUTHOR("Oleksij Rempel <kernel@pengutronix.de>"); 861 MODULE_DESCRIPTION("TI TSC2046 ADC"); 862 MODULE_LICENSE("GPL v2"); 863