1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments TSC2046 SPI ADC driver 4 * 5 * Copyright (c) 2021 Oleksij Rempel <kernel@pengutronix.de>, Pengutronix 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/delay.h> 10 #include <linux/module.h> 11 #include <linux/spi/spi.h> 12 13 #include <asm/unaligned.h> 14 15 #include <linux/iio/buffer.h> 16 #include <linux/iio/trigger_consumer.h> 17 #include <linux/iio/triggered_buffer.h> 18 #include <linux/iio/trigger.h> 19 20 /* 21 * The PENIRQ of TSC2046 controller is implemented as level shifter attached to 22 * the X+ line. If voltage of the X+ line reaches a specific level the IRQ will 23 * be activated or deactivated. 24 * To make this kind of IRQ reusable as trigger following additions were 25 * implemented: 26 * - rate limiting: 27 * For typical touchscreen use case, we need to trigger about each 10ms. 28 * - hrtimer: 29 * Continue triggering at least once after the IRQ was deactivated. Then 30 * deactivate this trigger to stop sampling in order to reduce power 31 * consumption. 32 */ 33 34 #define TI_TSC2046_NAME "tsc2046" 35 36 /* This driver doesn't aim at the peak continuous sample rate */ 37 #define TI_TSC2046_MAX_SAMPLE_RATE 125000 38 #define TI_TSC2046_SAMPLE_BITS \ 39 BITS_PER_TYPE(struct tsc2046_adc_atom) 40 #define TI_TSC2046_MAX_CLK_FREQ \ 41 (TI_TSC2046_MAX_SAMPLE_RATE * TI_TSC2046_SAMPLE_BITS) 42 43 #define TI_TSC2046_SAMPLE_INTERVAL_US 10000 44 45 #define TI_TSC2046_START BIT(7) 46 #define TI_TSC2046_ADDR GENMASK(6, 4) 47 #define TI_TSC2046_ADDR_TEMP1 7 48 #define TI_TSC2046_ADDR_AUX 6 49 #define TI_TSC2046_ADDR_X 5 50 #define TI_TSC2046_ADDR_Z2 4 51 #define TI_TSC2046_ADDR_Z1 3 52 #define TI_TSC2046_ADDR_VBAT 2 53 #define TI_TSC2046_ADDR_Y 1 54 #define TI_TSC2046_ADDR_TEMP0 0 55 56 /* 57 * The mode bit sets the resolution of the ADC. With this bit low, the next 58 * conversion has 12-bit resolution, whereas with this bit high, the next 59 * conversion has 8-bit resolution. This driver is optimized for 12-bit mode. 60 * So, for this driver, this bit should stay zero. 61 */ 62 #define TI_TSC2046_8BIT_MODE BIT(3) 63 64 /* 65 * SER/DFR - The SER/DFR bit controls the reference mode, either single-ended 66 * (high) or differential (low). 67 */ 68 #define TI_TSC2046_SER BIT(2) 69 70 /* 71 * If VREF_ON and ADC_ON are both zero, then the chip operates in 72 * auto-wake/suspend mode. In most case this bits should stay zero. 73 */ 74 #define TI_TSC2046_PD1_VREF_ON BIT(1) 75 #define TI_TSC2046_PD0_ADC_ON BIT(0) 76 77 /* 78 * All supported devices can do 8 or 12bit resolution. This driver 79 * supports only 12bit mode, here we have a 16bit data transfer, where 80 * the MSB and the 3 LSB are 0. 81 */ 82 #define TI_TSC2046_DATA_12BIT GENMASK(14, 3) 83 84 #define TI_TSC2046_MAX_CHAN 8 85 #define TI_TSC2046_MIN_POLL_CNT 3 86 #define TI_TSC2046_EXT_POLL_CNT 3 87 #define TI_TSC2046_POLL_CNT \ 88 (TI_TSC2046_MIN_POLL_CNT + TI_TSC2046_EXT_POLL_CNT) 89 #define TI_TSC2046_INT_VREF 2500 90 91 /* Represents a HW sample */ 92 struct tsc2046_adc_atom { 93 /* 94 * Command transmitted to the controller. This field is empty on the RX 95 * buffer. 96 */ 97 u8 cmd; 98 /* 99 * Data received from the controller. This field is empty for the TX 100 * buffer 101 */ 102 __be16 data; 103 } __packed; 104 105 /* Layout of atomic buffers within big buffer */ 106 struct tsc2046_adc_group_layout { 107 /* Group offset within the SPI RX buffer */ 108 unsigned int offset; 109 /* 110 * Amount of tsc2046_adc_atom structs within the same command gathered 111 * within same group. 112 */ 113 unsigned int count; 114 /* 115 * Settling samples (tsc2046_adc_atom structs) which should be skipped 116 * before good samples will start. 117 */ 118 unsigned int skip; 119 }; 120 121 struct tsc2046_adc_dcfg { 122 const struct iio_chan_spec *channels; 123 unsigned int num_channels; 124 }; 125 126 struct tsc2046_adc_ch_cfg { 127 unsigned int settling_time_us; 128 unsigned int oversampling_ratio; 129 }; 130 131 enum tsc2046_state { 132 TSC2046_STATE_SHUTDOWN, 133 TSC2046_STATE_STANDBY, 134 TSC2046_STATE_POLL, 135 TSC2046_STATE_POLL_IRQ_DISABLE, 136 TSC2046_STATE_ENABLE_IRQ, 137 }; 138 139 struct tsc2046_adc_priv { 140 struct spi_device *spi; 141 const struct tsc2046_adc_dcfg *dcfg; 142 143 struct iio_trigger *trig; 144 struct hrtimer trig_timer; 145 enum tsc2046_state state; 146 int poll_cnt; 147 spinlock_t state_lock; 148 149 struct spi_transfer xfer; 150 struct spi_message msg; 151 152 struct { 153 /* Scan data for each channel */ 154 u16 data[TI_TSC2046_MAX_CHAN]; 155 /* Timestamp */ 156 s64 ts __aligned(8); 157 } scan_buf; 158 159 /* 160 * Lock to protect the layout and the SPI transfer buffer. 161 * tsc2046_adc_group_layout can be changed within update_scan_mode(), 162 * in this case the l[] and tx/rx buffer will be out of sync to each 163 * other. 164 */ 165 struct mutex slock; 166 struct tsc2046_adc_group_layout l[TI_TSC2046_MAX_CHAN]; 167 struct tsc2046_adc_atom *rx; 168 struct tsc2046_adc_atom *tx; 169 170 unsigned int count; 171 unsigned int groups; 172 u32 effective_speed_hz; 173 u32 scan_interval_us; 174 u32 time_per_scan_us; 175 u32 time_per_bit_ns; 176 177 struct tsc2046_adc_ch_cfg ch_cfg[TI_TSC2046_MAX_CHAN]; 178 }; 179 180 #define TI_TSC2046_V_CHAN(index, bits, name) \ 181 { \ 182 .type = IIO_VOLTAGE, \ 183 .indexed = 1, \ 184 .channel = index, \ 185 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 186 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 187 .datasheet_name = "#name", \ 188 .scan_index = index, \ 189 .scan_type = { \ 190 .sign = 'u', \ 191 .realbits = bits, \ 192 .storagebits = 16, \ 193 .endianness = IIO_CPU, \ 194 }, \ 195 } 196 197 #define DECLARE_TI_TSC2046_8_CHANNELS(name, bits) \ 198 const struct iio_chan_spec name ## _channels[] = { \ 199 TI_TSC2046_V_CHAN(0, bits, TEMP0), \ 200 TI_TSC2046_V_CHAN(1, bits, Y), \ 201 TI_TSC2046_V_CHAN(2, bits, VBAT), \ 202 TI_TSC2046_V_CHAN(3, bits, Z1), \ 203 TI_TSC2046_V_CHAN(4, bits, Z2), \ 204 TI_TSC2046_V_CHAN(5, bits, X), \ 205 TI_TSC2046_V_CHAN(6, bits, AUX), \ 206 TI_TSC2046_V_CHAN(7, bits, TEMP1), \ 207 IIO_CHAN_SOFT_TIMESTAMP(8), \ 208 } 209 210 static DECLARE_TI_TSC2046_8_CHANNELS(tsc2046_adc, 12); 211 212 static const struct tsc2046_adc_dcfg tsc2046_adc_dcfg_tsc2046e = { 213 .channels = tsc2046_adc_channels, 214 .num_channels = ARRAY_SIZE(tsc2046_adc_channels), 215 }; 216 217 /* 218 * Convert time to a number of samples which can be transferred within this 219 * time. 220 */ 221 static unsigned int tsc2046_adc_time_to_count(struct tsc2046_adc_priv *priv, 222 unsigned long time) 223 { 224 unsigned int bit_count, sample_count; 225 226 bit_count = DIV_ROUND_UP(time * NSEC_PER_USEC, priv->time_per_bit_ns); 227 sample_count = DIV_ROUND_UP(bit_count, TI_TSC2046_SAMPLE_BITS); 228 229 dev_dbg(&priv->spi->dev, "Effective speed %u, time per bit: %u, count bits: %u, count samples: %u\n", 230 priv->effective_speed_hz, priv->time_per_bit_ns, 231 bit_count, sample_count); 232 233 return sample_count; 234 } 235 236 static u8 tsc2046_adc_get_cmd(struct tsc2046_adc_priv *priv, int ch_idx, 237 bool keep_power) 238 { 239 u32 pd; 240 241 /* 242 * if PD bits are 0, controller will automatically disable ADC, VREF and 243 * enable IRQ. 244 */ 245 if (keep_power) 246 pd = TI_TSC2046_PD0_ADC_ON; 247 else 248 pd = 0; 249 250 switch (ch_idx) { 251 case TI_TSC2046_ADDR_TEMP1: 252 case TI_TSC2046_ADDR_AUX: 253 case TI_TSC2046_ADDR_VBAT: 254 case TI_TSC2046_ADDR_TEMP0: 255 pd |= TI_TSC2046_SER | TI_TSC2046_PD1_VREF_ON; 256 } 257 258 return TI_TSC2046_START | FIELD_PREP(TI_TSC2046_ADDR, ch_idx) | pd; 259 } 260 261 static u16 tsc2046_adc_get_value(struct tsc2046_adc_atom *buf) 262 { 263 return FIELD_GET(TI_TSC2046_DATA_12BIT, get_unaligned_be16(&buf->data)); 264 } 265 266 static int tsc2046_adc_read_one(struct tsc2046_adc_priv *priv, int ch_idx, 267 u32 *effective_speed_hz) 268 { 269 struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx]; 270 struct tsc2046_adc_atom *rx_buf, *tx_buf; 271 unsigned int val, val_normalized = 0; 272 int ret, i, count_skip = 0, max_count; 273 struct spi_transfer xfer; 274 struct spi_message msg; 275 u8 cmd; 276 277 if (!effective_speed_hz) { 278 count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us); 279 max_count = count_skip + ch->oversampling_ratio; 280 } else { 281 max_count = 1; 282 } 283 284 if (sizeof(*tx_buf) * max_count > PAGE_SIZE) 285 return -ENOSPC; 286 287 tx_buf = kcalloc(max_count, sizeof(*tx_buf), GFP_KERNEL); 288 if (!tx_buf) 289 return -ENOMEM; 290 291 rx_buf = kcalloc(max_count, sizeof(*rx_buf), GFP_KERNEL); 292 if (!rx_buf) { 293 ret = -ENOMEM; 294 goto free_tx; 295 } 296 297 /* 298 * Do not enable automatic power down on working samples. Otherwise the 299 * plates will never be completely charged. 300 */ 301 cmd = tsc2046_adc_get_cmd(priv, ch_idx, true); 302 303 for (i = 0; i < max_count - 1; i++) 304 tx_buf[i].cmd = cmd; 305 306 /* automatically power down on last sample */ 307 tx_buf[i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false); 308 309 memset(&xfer, 0, sizeof(xfer)); 310 xfer.tx_buf = tx_buf; 311 xfer.rx_buf = rx_buf; 312 xfer.len = sizeof(*tx_buf) * max_count; 313 spi_message_init_with_transfers(&msg, &xfer, 1); 314 315 /* 316 * We aren't using spi_write_then_read() because we need to be able 317 * to get hold of the effective_speed_hz from the xfer 318 */ 319 ret = spi_sync(priv->spi, &msg); 320 if (ret) { 321 dev_err_ratelimited(&priv->spi->dev, "SPI transfer failed %pe\n", 322 ERR_PTR(ret)); 323 goto free_bufs; 324 } 325 326 if (effective_speed_hz) 327 *effective_speed_hz = xfer.effective_speed_hz; 328 329 for (i = 0; i < max_count - count_skip; i++) { 330 val = tsc2046_adc_get_value(&rx_buf[count_skip + i]); 331 val_normalized += val; 332 } 333 334 ret = DIV_ROUND_UP(val_normalized, max_count - count_skip); 335 336 free_bufs: 337 kfree(rx_buf); 338 free_tx: 339 kfree(tx_buf); 340 341 return ret; 342 } 343 344 static size_t tsc2046_adc_group_set_layout(struct tsc2046_adc_priv *priv, 345 unsigned int group, 346 unsigned int ch_idx) 347 { 348 struct tsc2046_adc_ch_cfg *ch = &priv->ch_cfg[ch_idx]; 349 struct tsc2046_adc_group_layout *cur; 350 unsigned int max_count, count_skip; 351 unsigned int offset = 0; 352 353 if (group) 354 offset = priv->l[group - 1].offset + priv->l[group - 1].count; 355 356 count_skip = tsc2046_adc_time_to_count(priv, ch->settling_time_us); 357 max_count = count_skip + ch->oversampling_ratio; 358 359 cur = &priv->l[group]; 360 cur->offset = offset; 361 cur->count = max_count; 362 cur->skip = count_skip; 363 364 return sizeof(*priv->tx) * max_count; 365 } 366 367 static void tsc2046_adc_group_set_cmd(struct tsc2046_adc_priv *priv, 368 unsigned int group, int ch_idx) 369 { 370 struct tsc2046_adc_group_layout *l = &priv->l[group]; 371 unsigned int i; 372 u8 cmd; 373 374 /* 375 * Do not enable automatic power down on working samples. Otherwise the 376 * plates will never be completely charged. 377 */ 378 cmd = tsc2046_adc_get_cmd(priv, ch_idx, true); 379 380 for (i = 0; i < l->count - 1; i++) 381 priv->tx[l->offset + i].cmd = cmd; 382 383 /* automatically power down on last sample */ 384 priv->tx[l->offset + i].cmd = tsc2046_adc_get_cmd(priv, ch_idx, false); 385 } 386 387 static u16 tsc2046_adc_get_val(struct tsc2046_adc_priv *priv, int group) 388 { 389 struct tsc2046_adc_group_layout *l; 390 unsigned int val, val_normalized = 0; 391 int valid_count, i; 392 393 l = &priv->l[group]; 394 valid_count = l->count - l->skip; 395 396 for (i = 0; i < valid_count; i++) { 397 val = tsc2046_adc_get_value(&priv->rx[l->offset + l->skip + i]); 398 val_normalized += val; 399 } 400 401 return DIV_ROUND_UP(val_normalized, valid_count); 402 } 403 404 static int tsc2046_adc_scan(struct iio_dev *indio_dev) 405 { 406 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 407 struct device *dev = &priv->spi->dev; 408 int group; 409 int ret; 410 411 ret = spi_sync(priv->spi, &priv->msg); 412 if (ret < 0) { 413 dev_err_ratelimited(dev, "SPI transfer failed: %pe\n", ERR_PTR(ret)); 414 return ret; 415 } 416 417 for (group = 0; group < priv->groups; group++) 418 priv->scan_buf.data[group] = tsc2046_adc_get_val(priv, group); 419 420 ret = iio_push_to_buffers_with_timestamp(indio_dev, &priv->scan_buf, 421 iio_get_time_ns(indio_dev)); 422 /* If the consumer is kfifo, we may get a EBUSY here - ignore it. */ 423 if (ret < 0 && ret != -EBUSY) { 424 dev_err_ratelimited(dev, "Failed to push scan buffer %pe\n", 425 ERR_PTR(ret)); 426 427 return ret; 428 } 429 430 return 0; 431 } 432 433 static irqreturn_t tsc2046_adc_trigger_handler(int irq, void *p) 434 { 435 struct iio_poll_func *pf = p; 436 struct iio_dev *indio_dev = pf->indio_dev; 437 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 438 439 mutex_lock(&priv->slock); 440 tsc2046_adc_scan(indio_dev); 441 mutex_unlock(&priv->slock); 442 443 iio_trigger_notify_done(indio_dev->trig); 444 445 return IRQ_HANDLED; 446 } 447 448 static int tsc2046_adc_read_raw(struct iio_dev *indio_dev, 449 struct iio_chan_spec const *chan, 450 int *val, int *val2, long m) 451 { 452 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 453 int ret; 454 455 switch (m) { 456 case IIO_CHAN_INFO_RAW: 457 ret = tsc2046_adc_read_one(priv, chan->channel, NULL); 458 if (ret < 0) 459 return ret; 460 461 *val = ret; 462 463 return IIO_VAL_INT; 464 case IIO_CHAN_INFO_SCALE: 465 /* 466 * Note: the TSC2046 has internal voltage divider on the VBAT 467 * line. This divider can be influenced by external divider. 468 * So, it is better to use external voltage-divider driver 469 * instead, which is calculating complete chain. 470 */ 471 *val = TI_TSC2046_INT_VREF; 472 *val2 = chan->scan_type.realbits; 473 return IIO_VAL_FRACTIONAL_LOG2; 474 } 475 476 return -EINVAL; 477 } 478 479 static int tsc2046_adc_update_scan_mode(struct iio_dev *indio_dev, 480 const unsigned long *active_scan_mask) 481 { 482 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 483 unsigned int ch_idx, group = 0; 484 size_t size; 485 486 mutex_lock(&priv->slock); 487 488 size = 0; 489 for_each_set_bit(ch_idx, active_scan_mask, ARRAY_SIZE(priv->l)) { 490 size += tsc2046_adc_group_set_layout(priv, group, ch_idx); 491 tsc2046_adc_group_set_cmd(priv, group, ch_idx); 492 group++; 493 } 494 495 priv->groups = group; 496 priv->xfer.len = size; 497 priv->time_per_scan_us = size * 8 * priv->time_per_bit_ns / NSEC_PER_USEC; 498 499 if (priv->scan_interval_us < priv->time_per_scan_us) 500 dev_warn(&priv->spi->dev, "The scan interval (%d) is less then calculated scan time (%d)\n", 501 priv->scan_interval_us, priv->time_per_scan_us); 502 503 mutex_unlock(&priv->slock); 504 505 return 0; 506 } 507 508 static const struct iio_info tsc2046_adc_info = { 509 .read_raw = tsc2046_adc_read_raw, 510 .update_scan_mode = tsc2046_adc_update_scan_mode, 511 }; 512 513 static enum hrtimer_restart tsc2046_adc_timer(struct hrtimer *hrtimer) 514 { 515 struct tsc2046_adc_priv *priv = container_of(hrtimer, 516 struct tsc2046_adc_priv, 517 trig_timer); 518 unsigned long flags; 519 520 /* 521 * This state machine should address following challenges : 522 * - the interrupt source is based on level shifter attached to the X 523 * channel of ADC. It will change the state every time we switch 524 * between channels. So, we need to disable IRQ if we do 525 * iio_trigger_poll(). 526 * - we should do iio_trigger_poll() at some reduced sample rate 527 * - we should still trigger for some amount of time after last 528 * interrupt with enabled IRQ was processed. 529 */ 530 531 spin_lock_irqsave(&priv->state_lock, flags); 532 switch (priv->state) { 533 case TSC2046_STATE_ENABLE_IRQ: 534 if (priv->poll_cnt < TI_TSC2046_POLL_CNT) { 535 priv->poll_cnt++; 536 hrtimer_start(&priv->trig_timer, 537 ns_to_ktime(priv->scan_interval_us * 538 NSEC_PER_USEC), 539 HRTIMER_MODE_REL_SOFT); 540 541 if (priv->poll_cnt >= TI_TSC2046_MIN_POLL_CNT) { 542 priv->state = TSC2046_STATE_POLL_IRQ_DISABLE; 543 enable_irq(priv->spi->irq); 544 } else { 545 priv->state = TSC2046_STATE_POLL; 546 } 547 } else { 548 priv->state = TSC2046_STATE_STANDBY; 549 enable_irq(priv->spi->irq); 550 } 551 break; 552 case TSC2046_STATE_POLL_IRQ_DISABLE: 553 disable_irq_nosync(priv->spi->irq); 554 fallthrough; 555 case TSC2046_STATE_POLL: 556 priv->state = TSC2046_STATE_ENABLE_IRQ; 557 /* iio_trigger_poll() starts hrtimer */ 558 iio_trigger_poll(priv->trig); 559 break; 560 case TSC2046_STATE_SHUTDOWN: 561 break; 562 case TSC2046_STATE_STANDBY: 563 fallthrough; 564 default: 565 dev_warn(&priv->spi->dev, "Got unexpected state: %i\n", 566 priv->state); 567 break; 568 } 569 spin_unlock_irqrestore(&priv->state_lock, flags); 570 571 return HRTIMER_NORESTART; 572 } 573 574 static irqreturn_t tsc2046_adc_irq(int irq, void *dev_id) 575 { 576 struct iio_dev *indio_dev = dev_id; 577 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 578 unsigned long flags; 579 580 hrtimer_try_to_cancel(&priv->trig_timer); 581 582 spin_lock_irqsave(&priv->state_lock, flags); 583 if (priv->state != TSC2046_STATE_SHUTDOWN) { 584 priv->state = TSC2046_STATE_ENABLE_IRQ; 585 priv->poll_cnt = 0; 586 587 /* iio_trigger_poll() starts hrtimer */ 588 disable_irq_nosync(priv->spi->irq); 589 iio_trigger_poll(priv->trig); 590 } 591 spin_unlock_irqrestore(&priv->state_lock, flags); 592 593 return IRQ_HANDLED; 594 } 595 596 static void tsc2046_adc_reenable_trigger(struct iio_trigger *trig) 597 { 598 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 599 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 600 ktime_t tim; 601 602 /* 603 * We can sample it as fast as we can, but usually we do not need so 604 * many samples. Reduce the sample rate for default (touchscreen) use 605 * case. 606 */ 607 tim = ns_to_ktime((priv->scan_interval_us - priv->time_per_scan_us) * 608 NSEC_PER_USEC); 609 hrtimer_start(&priv->trig_timer, tim, HRTIMER_MODE_REL_SOFT); 610 } 611 612 static int tsc2046_adc_set_trigger_state(struct iio_trigger *trig, bool enable) 613 { 614 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 615 struct tsc2046_adc_priv *priv = iio_priv(indio_dev); 616 unsigned long flags; 617 618 if (enable) { 619 spin_lock_irqsave(&priv->state_lock, flags); 620 if (priv->state == TSC2046_STATE_SHUTDOWN) { 621 priv->state = TSC2046_STATE_STANDBY; 622 enable_irq(priv->spi->irq); 623 } 624 spin_unlock_irqrestore(&priv->state_lock, flags); 625 } else { 626 spin_lock_irqsave(&priv->state_lock, flags); 627 628 if (priv->state == TSC2046_STATE_STANDBY || 629 priv->state == TSC2046_STATE_POLL_IRQ_DISABLE) 630 disable_irq_nosync(priv->spi->irq); 631 632 priv->state = TSC2046_STATE_SHUTDOWN; 633 spin_unlock_irqrestore(&priv->state_lock, flags); 634 635 hrtimer_cancel(&priv->trig_timer); 636 } 637 638 return 0; 639 } 640 641 static const struct iio_trigger_ops tsc2046_adc_trigger_ops = { 642 .set_trigger_state = tsc2046_adc_set_trigger_state, 643 .reenable = tsc2046_adc_reenable_trigger, 644 }; 645 646 static int tsc2046_adc_setup_spi_msg(struct tsc2046_adc_priv *priv) 647 { 648 unsigned int ch_idx; 649 size_t size; 650 int ret; 651 652 /* 653 * Make dummy read to set initial power state and get real SPI clock 654 * freq. It seems to be not important which channel is used for this 655 * case. 656 */ 657 ret = tsc2046_adc_read_one(priv, TI_TSC2046_ADDR_TEMP0, 658 &priv->effective_speed_hz); 659 if (ret < 0) 660 return ret; 661 662 /* 663 * In case SPI controller do not report effective_speed_hz, use 664 * configure value and hope it will match. 665 */ 666 if (!priv->effective_speed_hz) 667 priv->effective_speed_hz = priv->spi->max_speed_hz; 668 669 670 priv->scan_interval_us = TI_TSC2046_SAMPLE_INTERVAL_US; 671 priv->time_per_bit_ns = DIV_ROUND_UP(NSEC_PER_SEC, 672 priv->effective_speed_hz); 673 674 /* 675 * Calculate and allocate maximal size buffer if all channels are 676 * enabled. 677 */ 678 size = 0; 679 for (ch_idx = 0; ch_idx < ARRAY_SIZE(priv->l); ch_idx++) 680 size += tsc2046_adc_group_set_layout(priv, ch_idx, ch_idx); 681 682 if (size > PAGE_SIZE) { 683 dev_err(&priv->spi->dev, 684 "Calculated scan buffer is too big. Try to reduce spi-max-frequency, settling-time-us or oversampling-ratio\n"); 685 return -ENOSPC; 686 } 687 688 priv->tx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL); 689 if (!priv->tx) 690 return -ENOMEM; 691 692 priv->rx = devm_kzalloc(&priv->spi->dev, size, GFP_KERNEL); 693 if (!priv->rx) 694 return -ENOMEM; 695 696 priv->xfer.tx_buf = priv->tx; 697 priv->xfer.rx_buf = priv->rx; 698 priv->xfer.len = size; 699 spi_message_init_with_transfers(&priv->msg, &priv->xfer, 1); 700 701 return 0; 702 } 703 704 static void tsc2046_adc_parse_fwnode(struct tsc2046_adc_priv *priv) 705 { 706 struct fwnode_handle *child; 707 struct device *dev = &priv->spi->dev; 708 unsigned int i; 709 710 for (i = 0; i < ARRAY_SIZE(priv->ch_cfg); i++) { 711 priv->ch_cfg[i].settling_time_us = 1; 712 priv->ch_cfg[i].oversampling_ratio = 1; 713 } 714 715 device_for_each_child_node(dev, child) { 716 u32 stl, overs, reg; 717 int ret; 718 719 ret = fwnode_property_read_u32(child, "reg", ®); 720 if (ret) { 721 dev_err(dev, "invalid reg on %pfw, err: %pe\n", child, 722 ERR_PTR(ret)); 723 continue; 724 } 725 726 if (reg >= ARRAY_SIZE(priv->ch_cfg)) { 727 dev_err(dev, "%pfw: Unsupported reg value: %i, max supported is: %zu.\n", 728 child, reg, ARRAY_SIZE(priv->ch_cfg)); 729 continue; 730 } 731 732 ret = fwnode_property_read_u32(child, "settling-time-us", &stl); 733 if (!ret) 734 priv->ch_cfg[reg].settling_time_us = stl; 735 736 ret = fwnode_property_read_u32(child, "oversampling-ratio", 737 &overs); 738 if (!ret) 739 priv->ch_cfg[reg].oversampling_ratio = overs; 740 } 741 } 742 743 static int tsc2046_adc_probe(struct spi_device *spi) 744 { 745 const struct tsc2046_adc_dcfg *dcfg; 746 struct device *dev = &spi->dev; 747 struct tsc2046_adc_priv *priv; 748 struct iio_dev *indio_dev; 749 struct iio_trigger *trig; 750 int ret; 751 752 if (spi->max_speed_hz > TI_TSC2046_MAX_CLK_FREQ) { 753 dev_err(dev, "SPI max_speed_hz is too high: %d Hz. Max supported freq is %zu Hz\n", 754 spi->max_speed_hz, TI_TSC2046_MAX_CLK_FREQ); 755 return -EINVAL; 756 } 757 758 dcfg = device_get_match_data(dev); 759 if (!dcfg) 760 return -EINVAL; 761 762 spi->bits_per_word = 8; 763 spi->mode &= ~SPI_MODE_X_MASK; 764 spi->mode |= SPI_MODE_0; 765 ret = spi_setup(spi); 766 if (ret < 0) 767 return dev_err_probe(dev, ret, "Error in SPI setup\n"); 768 769 indio_dev = devm_iio_device_alloc(dev, sizeof(*priv)); 770 if (!indio_dev) 771 return -ENOMEM; 772 773 priv = iio_priv(indio_dev); 774 priv->dcfg = dcfg; 775 776 priv->spi = spi; 777 778 indio_dev->name = TI_TSC2046_NAME; 779 indio_dev->modes = INDIO_DIRECT_MODE; 780 indio_dev->channels = dcfg->channels; 781 indio_dev->num_channels = dcfg->num_channels; 782 indio_dev->info = &tsc2046_adc_info; 783 784 tsc2046_adc_parse_fwnode(priv); 785 786 ret = tsc2046_adc_setup_spi_msg(priv); 787 if (ret) 788 return ret; 789 790 mutex_init(&priv->slock); 791 792 ret = devm_request_irq(dev, spi->irq, &tsc2046_adc_irq, 793 IRQF_NO_AUTOEN, indio_dev->name, indio_dev); 794 if (ret) 795 return ret; 796 797 trig = devm_iio_trigger_alloc(dev, "touchscreen-%s", indio_dev->name); 798 if (!trig) 799 return -ENOMEM; 800 801 priv->trig = trig; 802 iio_trigger_set_drvdata(trig, indio_dev); 803 trig->ops = &tsc2046_adc_trigger_ops; 804 805 spin_lock_init(&priv->state_lock); 806 priv->state = TSC2046_STATE_SHUTDOWN; 807 hrtimer_init(&priv->trig_timer, CLOCK_MONOTONIC, 808 HRTIMER_MODE_REL_SOFT); 809 priv->trig_timer.function = tsc2046_adc_timer; 810 811 ret = devm_iio_trigger_register(dev, trig); 812 if (ret) { 813 dev_err(dev, "failed to register trigger\n"); 814 return ret; 815 } 816 817 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, 818 &tsc2046_adc_trigger_handler, NULL); 819 if (ret) { 820 dev_err(dev, "Failed to setup triggered buffer\n"); 821 return ret; 822 } 823 824 /* set default trigger */ 825 indio_dev->trig = iio_trigger_get(priv->trig); 826 827 return devm_iio_device_register(dev, indio_dev); 828 } 829 830 static const struct of_device_id ads7950_of_table[] = { 831 { .compatible = "ti,tsc2046e-adc", .data = &tsc2046_adc_dcfg_tsc2046e }, 832 { } 833 }; 834 MODULE_DEVICE_TABLE(of, ads7950_of_table); 835 836 static struct spi_driver tsc2046_adc_driver = { 837 .driver = { 838 .name = "tsc2046", 839 .of_match_table = ads7950_of_table, 840 }, 841 .probe = tsc2046_adc_probe, 842 }; 843 module_spi_driver(tsc2046_adc_driver); 844 845 MODULE_AUTHOR("Oleksij Rempel <kernel@pengutronix.de>"); 846 MODULE_DESCRIPTION("TI TSC2046 ADC"); 847 MODULE_LICENSE("GPL v2"); 848