xref: /linux/drivers/iio/adc/stm32-dfsdm-core.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part the core part STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/iio/iio.h>
11 #include <linux/iio/sysfs.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 
20 #include "stm32-dfsdm.h"
21 
22 struct stm32_dfsdm_dev_data {
23 	unsigned int num_filters;
24 	unsigned int num_channels;
25 	const struct regmap_config *regmap_cfg;
26 };
27 
28 #define STM32H7_DFSDM_NUM_FILTERS	4
29 #define STM32H7_DFSDM_NUM_CHANNELS	8
30 #define STM32MP1_DFSDM_NUM_FILTERS	6
31 #define STM32MP1_DFSDM_NUM_CHANNELS	8
32 
33 static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
34 {
35 	if (reg < DFSDM_FILTER_BASE_ADR)
36 		return false;
37 
38 	/*
39 	 * Mask is done on register to avoid to list registers of all
40 	 * filter instances.
41 	 */
42 	switch (reg & DFSDM_FILTER_REG_MASK) {
43 	case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
44 	case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
45 	case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
46 	case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
47 		return true;
48 	}
49 
50 	return false;
51 }
52 
53 static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
54 	.reg_bits = 32,
55 	.val_bits = 32,
56 	.reg_stride = sizeof(u32),
57 	.max_register = 0x2B8,
58 	.volatile_reg = stm32_dfsdm_volatile_reg,
59 	.fast_io = true,
60 };
61 
62 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
63 	.num_filters = STM32H7_DFSDM_NUM_FILTERS,
64 	.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
65 	.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
66 };
67 
68 static const struct regmap_config stm32mp1_dfsdm_regmap_cfg = {
69 	.reg_bits = 32,
70 	.val_bits = 32,
71 	.reg_stride = sizeof(u32),
72 	.max_register = 0x7fc,
73 	.volatile_reg = stm32_dfsdm_volatile_reg,
74 	.fast_io = true,
75 };
76 
77 static const struct stm32_dfsdm_dev_data stm32mp1_dfsdm_data = {
78 	.num_filters = STM32MP1_DFSDM_NUM_FILTERS,
79 	.num_channels = STM32MP1_DFSDM_NUM_CHANNELS,
80 	.regmap_cfg = &stm32mp1_dfsdm_regmap_cfg,
81 };
82 
83 struct dfsdm_priv {
84 	struct platform_device *pdev; /* platform device */
85 
86 	struct stm32_dfsdm dfsdm; /* common data exported for all instances */
87 
88 	unsigned int spi_clk_out_div; /* SPI clkout divider value */
89 	atomic_t n_active_ch;	/* number of current active channels */
90 
91 	struct clk *clk; /* DFSDM clock */
92 	struct clk *aclk; /* audio clock */
93 };
94 
95 static inline struct dfsdm_priv *to_stm32_dfsdm_priv(struct stm32_dfsdm *dfsdm)
96 {
97 	return container_of(dfsdm, struct dfsdm_priv, dfsdm);
98 }
99 
100 static int stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm *dfsdm)
101 {
102 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
103 	int ret;
104 
105 	ret = clk_prepare_enable(priv->clk);
106 	if (ret || !priv->aclk)
107 		return ret;
108 
109 	ret = clk_prepare_enable(priv->aclk);
110 	if (ret)
111 		clk_disable_unprepare(priv->clk);
112 
113 	return ret;
114 }
115 
116 static void stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm *dfsdm)
117 {
118 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
119 
120 	if (priv->aclk)
121 		clk_disable_unprepare(priv->aclk);
122 	clk_disable_unprepare(priv->clk);
123 }
124 
125 /**
126  * stm32_dfsdm_start_dfsdm - start global dfsdm interface.
127  *
128  * Enable interface if n_active_ch is not null.
129  * @dfsdm: Handle used to retrieve dfsdm context.
130  */
131 int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
132 {
133 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
134 	struct device *dev = &priv->pdev->dev;
135 	unsigned int clk_div = priv->spi_clk_out_div, clk_src;
136 	int ret;
137 
138 	if (atomic_inc_return(&priv->n_active_ch) == 1) {
139 		ret = pm_runtime_get_sync(dev);
140 		if (ret < 0) {
141 			pm_runtime_put_noidle(dev);
142 			goto error_ret;
143 		}
144 
145 		/* select clock source, e.g. 0 for "dfsdm" or 1 for "audio" */
146 		clk_src = priv->aclk ? 1 : 0;
147 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
148 					 DFSDM_CHCFGR1_CKOUTSRC_MASK,
149 					 DFSDM_CHCFGR1_CKOUTSRC(clk_src));
150 		if (ret < 0)
151 			goto pm_put;
152 
153 		/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
154 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
155 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
156 					 DFSDM_CHCFGR1_CKOUTDIV(clk_div));
157 		if (ret < 0)
158 			goto pm_put;
159 
160 		/* Global enable of DFSDM interface */
161 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
162 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
163 					 DFSDM_CHCFGR1_DFSDMEN(1));
164 		if (ret < 0)
165 			goto pm_put;
166 	}
167 
168 	dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
169 		atomic_read(&priv->n_active_ch));
170 
171 	return 0;
172 
173 pm_put:
174 	pm_runtime_put_sync(dev);
175 error_ret:
176 	atomic_dec(&priv->n_active_ch);
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);
181 
182 /**
183  * stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
184  *
185  * Disable interface if n_active_ch is null
186  * @dfsdm: Handle used to retrieve dfsdm context.
187  */
188 int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
189 {
190 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
191 	int ret;
192 
193 	if (atomic_dec_and_test(&priv->n_active_ch)) {
194 		/* Global disable of DFSDM interface */
195 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
196 					 DFSDM_CHCFGR1_DFSDMEN_MASK,
197 					 DFSDM_CHCFGR1_DFSDMEN(0));
198 		if (ret < 0)
199 			return ret;
200 
201 		/* Stop SPI CLKOUT */
202 		ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
203 					 DFSDM_CHCFGR1_CKOUTDIV_MASK,
204 					 DFSDM_CHCFGR1_CKOUTDIV(0));
205 		if (ret < 0)
206 			return ret;
207 
208 		pm_runtime_put_sync(&priv->pdev->dev);
209 	}
210 	dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
211 		atomic_read(&priv->n_active_ch));
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);
216 
217 static int stm32_dfsdm_parse_of(struct platform_device *pdev,
218 				struct dfsdm_priv *priv)
219 {
220 	struct device_node *node = pdev->dev.of_node;
221 	struct resource *res;
222 	unsigned long clk_freq, divider;
223 	unsigned int spi_freq, rem;
224 	int ret;
225 
226 	if (!node)
227 		return -EINVAL;
228 
229 	priv->dfsdm.base = devm_platform_get_and_ioremap_resource(pdev, 0,
230 							&res);
231 	if (IS_ERR(priv->dfsdm.base))
232 		return PTR_ERR(priv->dfsdm.base);
233 
234 	priv->dfsdm.phys_base = res->start;
235 
236 	/*
237 	 * "dfsdm" clock is mandatory for DFSDM peripheral clocking.
238 	 * "dfsdm" or "audio" clocks can be used as source clock for
239 	 * the SPI clock out signal and internal processing, depending
240 	 * on use case.
241 	 */
242 	priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
243 	if (IS_ERR(priv->clk))
244 		return dev_err_probe(&pdev->dev, PTR_ERR(priv->clk),
245 				     "Failed to get clock\n");
246 
247 	priv->aclk = devm_clk_get(&pdev->dev, "audio");
248 	if (IS_ERR(priv->aclk))
249 		priv->aclk = NULL;
250 
251 	if (priv->aclk)
252 		clk_freq = clk_get_rate(priv->aclk);
253 	else
254 		clk_freq = clk_get_rate(priv->clk);
255 
256 	/* SPI clock out frequency */
257 	ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
258 				   &spi_freq);
259 	if (ret < 0) {
260 		/* No SPI master mode */
261 		return 0;
262 	}
263 
264 	divider = div_u64_rem(clk_freq, spi_freq, &rem);
265 	/* Round up divider when ckout isn't precise, not to exceed spi_freq */
266 	if (rem)
267 		divider++;
268 
269 	/* programmable divider is in range of [2:256] */
270 	if (divider < 2 || divider > 256) {
271 		dev_err(&pdev->dev, "spi-max-frequency not achievable\n");
272 		return -EINVAL;
273 	}
274 
275 	/* SPI clock output divider is: divider = CKOUTDIV + 1 */
276 	priv->spi_clk_out_div = divider - 1;
277 	priv->dfsdm.spi_master_freq = clk_freq / (priv->spi_clk_out_div + 1);
278 
279 	if (rem) {
280 		dev_warn(&pdev->dev, "SPI clock not accurate\n");
281 		dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
282 			 clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
283 	}
284 
285 	return 0;
286 };
287 
288 static const struct of_device_id stm32_dfsdm_of_match[] = {
289 	{
290 		.compatible = "st,stm32h7-dfsdm",
291 		.data = &stm32h7_dfsdm_data,
292 	},
293 	{
294 		.compatible = "st,stm32mp1-dfsdm",
295 		.data = &stm32mp1_dfsdm_data,
296 	},
297 	{}
298 };
299 MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);
300 
301 static int stm32_dfsdm_probe(struct platform_device *pdev)
302 {
303 	struct dfsdm_priv *priv;
304 	const struct stm32_dfsdm_dev_data *dev_data;
305 	struct stm32_dfsdm *dfsdm;
306 	int ret;
307 
308 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
309 	if (!priv)
310 		return -ENOMEM;
311 
312 	priv->pdev = pdev;
313 
314 	dev_data = of_device_get_match_data(&pdev->dev);
315 
316 	dfsdm = &priv->dfsdm;
317 	dfsdm->fl_list = devm_kcalloc(&pdev->dev, dev_data->num_filters,
318 				      sizeof(*dfsdm->fl_list), GFP_KERNEL);
319 	if (!dfsdm->fl_list)
320 		return -ENOMEM;
321 
322 	dfsdm->num_fls = dev_data->num_filters;
323 	dfsdm->ch_list = devm_kcalloc(&pdev->dev, dev_data->num_channels,
324 				      sizeof(*dfsdm->ch_list),
325 				      GFP_KERNEL);
326 	if (!dfsdm->ch_list)
327 		return -ENOMEM;
328 	dfsdm->num_chs = dev_data->num_channels;
329 
330 	ret = stm32_dfsdm_parse_of(pdev, priv);
331 	if (ret < 0)
332 		return ret;
333 
334 	dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
335 						  dfsdm->base,
336 						  dev_data->regmap_cfg);
337 	if (IS_ERR(dfsdm->regmap)) {
338 		ret = PTR_ERR(dfsdm->regmap);
339 		dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
340 			__func__, ret);
341 		return ret;
342 	}
343 
344 	platform_set_drvdata(pdev, dfsdm);
345 
346 	ret = stm32_dfsdm_clk_prepare_enable(dfsdm);
347 	if (ret) {
348 		dev_err(&pdev->dev, "Failed to start clock\n");
349 		return ret;
350 	}
351 
352 	pm_runtime_get_noresume(&pdev->dev);
353 	pm_runtime_set_active(&pdev->dev);
354 	pm_runtime_enable(&pdev->dev);
355 
356 	ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
357 	if (ret)
358 		goto pm_put;
359 
360 	pm_runtime_put(&pdev->dev);
361 
362 	return 0;
363 
364 pm_put:
365 	pm_runtime_disable(&pdev->dev);
366 	pm_runtime_set_suspended(&pdev->dev);
367 	pm_runtime_put_noidle(&pdev->dev);
368 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
369 
370 	return ret;
371 }
372 
373 static int stm32_dfsdm_core_remove(struct platform_device *pdev)
374 {
375 	struct stm32_dfsdm *dfsdm = platform_get_drvdata(pdev);
376 
377 	pm_runtime_get_sync(&pdev->dev);
378 	of_platform_depopulate(&pdev->dev);
379 	pm_runtime_disable(&pdev->dev);
380 	pm_runtime_set_suspended(&pdev->dev);
381 	pm_runtime_put_noidle(&pdev->dev);
382 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
383 
384 	return 0;
385 }
386 
387 static int __maybe_unused stm32_dfsdm_core_suspend(struct device *dev)
388 {
389 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
390 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
391 	int ret;
392 
393 	ret = pm_runtime_force_suspend(dev);
394 	if (ret)
395 		return ret;
396 
397 	/* Balance devm_regmap_init_mmio_clk() clk_prepare() */
398 	clk_unprepare(priv->clk);
399 
400 	return pinctrl_pm_select_sleep_state(dev);
401 }
402 
403 static int __maybe_unused stm32_dfsdm_core_resume(struct device *dev)
404 {
405 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
406 	struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
407 	int ret;
408 
409 	ret = pinctrl_pm_select_default_state(dev);
410 	if (ret)
411 		return ret;
412 
413 	ret = clk_prepare(priv->clk);
414 	if (ret)
415 		return ret;
416 
417 	return pm_runtime_force_resume(dev);
418 }
419 
420 static int __maybe_unused stm32_dfsdm_core_runtime_suspend(struct device *dev)
421 {
422 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
423 
424 	stm32_dfsdm_clk_disable_unprepare(dfsdm);
425 
426 	return 0;
427 }
428 
429 static int __maybe_unused stm32_dfsdm_core_runtime_resume(struct device *dev)
430 {
431 	struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
432 
433 	return stm32_dfsdm_clk_prepare_enable(dfsdm);
434 }
435 
436 static const struct dev_pm_ops stm32_dfsdm_core_pm_ops = {
437 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dfsdm_core_suspend,
438 				stm32_dfsdm_core_resume)
439 	SET_RUNTIME_PM_OPS(stm32_dfsdm_core_runtime_suspend,
440 			   stm32_dfsdm_core_runtime_resume,
441 			   NULL)
442 };
443 
444 static struct platform_driver stm32_dfsdm_driver = {
445 	.probe = stm32_dfsdm_probe,
446 	.remove = stm32_dfsdm_core_remove,
447 	.driver = {
448 		.name = "stm32-dfsdm",
449 		.of_match_table = stm32_dfsdm_of_match,
450 		.pm = &stm32_dfsdm_core_pm_ops,
451 	},
452 };
453 
454 module_platform_driver(stm32_dfsdm_driver);
455 
456 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
457 MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
458 MODULE_LICENSE("GPL v2");
459