xref: /linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include "stm32-dfsdm.h"
28 
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30 
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34 
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37 
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41 
42 /* Max sample resolutions */
43 #define DFSDM_MAX_RES BIT(31)
44 #define DFSDM_DATA_RES BIT(23)
45 
46 /* Filter configuration */
47 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
48 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
49 			    DFSDM_CR1_JSCAN_MASK)
50 
51 enum sd_converter_type {
52 	DFSDM_AUDIO,
53 	DFSDM_IIO,
54 };
55 
56 struct stm32_dfsdm_dev_data {
57 	int type;
58 	int (*init)(struct iio_dev *indio_dev);
59 	unsigned int num_channels;
60 	const struct regmap_config *regmap_cfg;
61 };
62 
63 struct stm32_dfsdm_adc {
64 	struct stm32_dfsdm *dfsdm;
65 	const struct stm32_dfsdm_dev_data *dev_data;
66 	unsigned int fl_id;
67 	unsigned int nconv;
68 	unsigned long smask;
69 
70 	/* ADC specific */
71 	unsigned int oversamp;
72 	struct iio_hw_consumer *hwc;
73 	struct completion completion;
74 	u32 *buffer;
75 
76 	/* Audio specific */
77 	unsigned int spi_freq;  /* SPI bus clock frequency */
78 	unsigned int sample_freq; /* Sample frequency after filter decimation */
79 	int (*cb)(const void *data, size_t size, void *cb_priv);
80 	void *cb_priv;
81 
82 	/* DMA */
83 	u8 *rx_buf;
84 	unsigned int bufi; /* Buffer current position */
85 	unsigned int buf_sz; /* Buffer size */
86 	struct dma_chan	*dma_chan;
87 	dma_addr_t dma_buf;
88 };
89 
90 struct stm32_dfsdm_str2field {
91 	const char	*name;
92 	unsigned int	val;
93 };
94 
95 /* DFSDM channel serial interface type */
96 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
97 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
98 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
99 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
100 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
101 	{},
102 };
103 
104 /* DFSDM channel clock source */
105 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
106 	/* External SPI clock (CLKIN x) */
107 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
108 	/* Internal SPI clock (CLKOUT) */
109 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
110 	/* Internal SPI clock divided by 2 (falling edge) */
111 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
112 	/* Internal SPI clock divided by 2 (falling edge) */
113 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
114 	{},
115 };
116 
117 static int stm32_dfsdm_str2val(const char *str,
118 			       const struct stm32_dfsdm_str2field *list)
119 {
120 	const struct stm32_dfsdm_str2field *p = list;
121 
122 	for (p = list; p && p->name; p++)
123 		if (!strcmp(p->name, str))
124 			return p->val;
125 
126 	return -EINVAL;
127 }
128 
129 /**
130  * struct stm32_dfsdm_trig_info - DFSDM trigger info
131  * @name:		name of the trigger, corresponding to its source
132  * @jextsel:		trigger signal selection
133  */
134 struct stm32_dfsdm_trig_info {
135 	const char *name;
136 	unsigned int jextsel;
137 };
138 
139 /* hardware injected trigger enable, edge selection */
140 enum stm32_dfsdm_jexten {
141 	STM32_DFSDM_JEXTEN_DISABLED,
142 	STM32_DFSDM_JEXTEN_RISING_EDGE,
143 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
144 	STM32_DFSDM_EXTEN_BOTH_EDGES,
145 };
146 
147 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
148 	{ TIM1_TRGO, 0 },
149 	{ TIM1_TRGO2, 1 },
150 	{ TIM8_TRGO, 2 },
151 	{ TIM8_TRGO2, 3 },
152 	{ TIM3_TRGO, 4 },
153 	{ TIM4_TRGO, 5 },
154 	{ TIM16_OC1, 6 },
155 	{ TIM6_TRGO, 7 },
156 	{ TIM7_TRGO, 8 },
157 	{ LPTIM1_OUT, 26 },
158 	{ LPTIM2_OUT, 27 },
159 	{ LPTIM3_OUT, 28 },
160 	{},
161 };
162 
163 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
164 				   struct iio_trigger *trig)
165 {
166 	int i;
167 
168 	/* lookup triggers registered by stm32 timer trigger driver */
169 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
170 		/**
171 		 * Checking both stm32 timer trigger type and trig name
172 		 * should be safe against arbitrary trigger names.
173 		 */
174 		if ((is_stm32_timer_trigger(trig) ||
175 		     is_stm32_lptim_trigger(trig)) &&
176 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
177 			return stm32_dfsdm_trigs[i].jextsel;
178 		}
179 	}
180 
181 	return -EINVAL;
182 }
183 
184 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
185 				unsigned int fast, unsigned int oversamp)
186 {
187 	unsigned int i, d, fosr, iosr;
188 	u64 res;
189 	s64 delta;
190 	unsigned int m = 1;	/* multiplication factor */
191 	unsigned int p = fl->ford;	/* filter order (ford) */
192 
193 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
194 	/*
195 	 * This function tries to compute filter oversampling and integrator
196 	 * oversampling, base on oversampling ratio requested by user.
197 	 *
198 	 * Decimation d depends on the filter order and the oversampling ratios.
199 	 * ford: filter order
200 	 * fosr: filter over sampling ratio
201 	 * iosr: integrator over sampling ratio
202 	 */
203 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
204 		m = 2;
205 		p = 2;
206 	}
207 
208 	/*
209 	 * Look for filter and integrator oversampling ratios which allows
210 	 * to reach 24 bits data output resolution.
211 	 * Leave as soon as if exact resolution if reached.
212 	 * Otherwise the higher resolution below 32 bits is kept.
213 	 */
214 	fl->res = 0;
215 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
216 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
217 			if (fast)
218 				d = fosr * iosr;
219 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
220 				d = fosr * (iosr + 3) + 2;
221 			else
222 				d = fosr * (iosr - 1 + p) + p;
223 
224 			if (d > oversamp)
225 				break;
226 			else if (d != oversamp)
227 				continue;
228 			/*
229 			 * Check resolution (limited to signed 32 bits)
230 			 *   res <= 2^31
231 			 * Sincx filters:
232 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
233 			 * FastSinc filter
234 			 *   res = m * fosr^p x iosr (with m=2, p=2)
235 			 */
236 			res = fosr;
237 			for (i = p - 1; i > 0; i--) {
238 				res = res * (u64)fosr;
239 				if (res > DFSDM_MAX_RES)
240 					break;
241 			}
242 			if (res > DFSDM_MAX_RES)
243 				continue;
244 			res = res * (u64)m * (u64)iosr;
245 			if (res > DFSDM_MAX_RES)
246 				continue;
247 
248 			delta = res - DFSDM_DATA_RES;
249 
250 			if (res >= fl->res) {
251 				fl->res = res;
252 				fl->fosr = fosr;
253 				fl->iosr = iosr;
254 				fl->fast = fast;
255 				pr_debug("%s: fosr = %d, iosr = %d\n",
256 					 __func__, fl->fosr, fl->iosr);
257 			}
258 
259 			if (!delta)
260 				return 0;
261 		}
262 	}
263 
264 	if (!fl->res)
265 		return -EINVAL;
266 
267 	return 0;
268 }
269 
270 static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
271 {
272 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
273 	struct regmap *regmap = adc->dfsdm->regmap;
274 	const struct iio_chan_spec *chan;
275 	unsigned int bit;
276 	int ret;
277 
278 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
279 		chan = indio_dev->channels + bit;
280 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
281 					 DFSDM_CHCFGR1_CHEN_MASK,
282 					 DFSDM_CHCFGR1_CHEN(1));
283 		if (ret < 0)
284 			return ret;
285 	}
286 
287 	return 0;
288 }
289 
290 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
291 {
292 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
293 	struct regmap *regmap = adc->dfsdm->regmap;
294 	const struct iio_chan_spec *chan;
295 	unsigned int bit;
296 
297 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
298 		chan = indio_dev->channels + bit;
299 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
300 				   DFSDM_CHCFGR1_CHEN_MASK,
301 				   DFSDM_CHCFGR1_CHEN(0));
302 	}
303 }
304 
305 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
306 				      struct stm32_dfsdm_channel *ch)
307 {
308 	unsigned int id = ch->id;
309 	struct regmap *regmap = dfsdm->regmap;
310 	int ret;
311 
312 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
313 				 DFSDM_CHCFGR1_SITP_MASK,
314 				 DFSDM_CHCFGR1_SITP(ch->type));
315 	if (ret < 0)
316 		return ret;
317 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
318 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
319 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
320 	if (ret < 0)
321 		return ret;
322 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
323 				  DFSDM_CHCFGR1_CHINSEL_MASK,
324 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
325 }
326 
327 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
328 				    unsigned int fl_id,
329 				    struct iio_trigger *trig)
330 {
331 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
332 	int ret;
333 
334 	/* Enable filter */
335 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
336 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
337 	if (ret < 0)
338 		return ret;
339 
340 	/* Nothing more to do for injected (scan mode/triggered) conversions */
341 	if (adc->nconv > 1 || trig)
342 		return 0;
343 
344 	/* Software start (single or continuous) regular conversion */
345 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
346 				  DFSDM_CR1_RSWSTART_MASK,
347 				  DFSDM_CR1_RSWSTART(1));
348 }
349 
350 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
351 				    unsigned int fl_id)
352 {
353 	/* Disable conversion */
354 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
355 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
356 }
357 
358 static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
359 				       unsigned int fl_id,
360 				       struct iio_trigger *trig)
361 {
362 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
363 	struct regmap *regmap = adc->dfsdm->regmap;
364 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
365 	int ret;
366 
367 	if (trig) {
368 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
369 		if (ret < 0)
370 			return ret;
371 
372 		/* set trigger source and polarity (default to rising edge) */
373 		jextsel = ret;
374 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
375 	}
376 
377 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
378 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
379 				 DFSDM_CR1_JEXTSEL(jextsel) |
380 				 DFSDM_CR1_JEXTEN(jexten));
381 	if (ret < 0)
382 		return ret;
383 
384 	return 0;
385 }
386 
387 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
388 					unsigned int fl_id,
389 					struct iio_trigger *trig)
390 {
391 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
392 	struct regmap *regmap = adc->dfsdm->regmap;
393 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
394 	u32 cr1;
395 	const struct iio_chan_spec *chan;
396 	unsigned int bit, jchg = 0;
397 	int ret;
398 
399 	/* Average integrator oversampling */
400 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
401 				 DFSDM_FCR_IOSR(fl->iosr - 1));
402 	if (ret)
403 		return ret;
404 
405 	/* Filter order and Oversampling */
406 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
407 				 DFSDM_FCR_FOSR(fl->fosr - 1));
408 	if (ret)
409 		return ret;
410 
411 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
412 				 DFSDM_FCR_FORD(fl->ford));
413 	if (ret)
414 		return ret;
415 
416 	ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
417 	if (ret)
418 		return ret;
419 
420 	/*
421 	 * DFSDM modes configuration W.R.T audio/iio type modes
422 	 * ----------------------------------------------------------------
423 	 * Modes         | regular |  regular     | injected | injected   |
424 	 *               |         |  continuous  |          | + scan     |
425 	 * --------------|---------|--------------|----------|------------|
426 	 * single conv   |    x    |              |          |            |
427 	 * (1 chan)      |         |              |          |            |
428 	 * --------------|---------|--------------|----------|------------|
429 	 * 1 Audio chan	 |         | sample freq  |          |            |
430 	 *               |         | or sync_mode |          |            |
431 	 * --------------|---------|--------------|----------|------------|
432 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
433 	 *               |         | or sync_mode |          |            |
434 	 * --------------|---------|--------------|----------|------------|
435 	 * 2+ IIO chans  |         |              |          | trigger or |
436 	 *               |         |              |          | sync_mode  |
437 	 * ----------------------------------------------------------------
438 	 */
439 	if (adc->nconv == 1 && !trig) {
440 		bit = __ffs(adc->smask);
441 		chan = indio_dev->channels + bit;
442 
443 		/* Use regular conversion for single channel without trigger */
444 		cr1 = DFSDM_CR1_RCH(chan->channel);
445 
446 		/* Continuous conversions triggered by SPI clk in buffer mode */
447 		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
448 			cr1 |= DFSDM_CR1_RCONT(1);
449 
450 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
451 	} else {
452 		/* Use injected conversion for multiple channels */
453 		for_each_set_bit(bit, &adc->smask,
454 				 sizeof(adc->smask) * BITS_PER_BYTE) {
455 			chan = indio_dev->channels + bit;
456 			jchg |= BIT(chan->channel);
457 		}
458 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
459 		if (ret < 0)
460 			return ret;
461 
462 		/* Use scan mode for multiple channels */
463 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
464 
465 		/*
466 		 * Continuous conversions not supported in injected mode,
467 		 * either use:
468 		 * - conversions in sync with filter 0
469 		 * - triggered conversions
470 		 */
471 		if (!fl->sync_mode && !trig)
472 			return -EINVAL;
473 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
474 	}
475 
476 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
477 				  cr1);
478 }
479 
480 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
481 					struct iio_dev *indio_dev,
482 					struct iio_chan_spec *ch)
483 {
484 	struct stm32_dfsdm_channel *df_ch;
485 	const char *of_str;
486 	int chan_idx = ch->scan_index;
487 	int ret, val;
488 
489 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
490 					 "st,adc-channels", chan_idx,
491 					 &ch->channel);
492 	if (ret < 0) {
493 		dev_err(&indio_dev->dev,
494 			" Error parsing 'st,adc-channels' for idx %d\n",
495 			chan_idx);
496 		return ret;
497 	}
498 	if (ch->channel >= dfsdm->num_chs) {
499 		dev_err(&indio_dev->dev,
500 			" Error bad channel number %d (max = %d)\n",
501 			ch->channel, dfsdm->num_chs);
502 		return -EINVAL;
503 	}
504 
505 	ret = of_property_read_string_index(indio_dev->dev.of_node,
506 					    "st,adc-channel-names", chan_idx,
507 					    &ch->datasheet_name);
508 	if (ret < 0) {
509 		dev_err(&indio_dev->dev,
510 			" Error parsing 'st,adc-channel-names' for idx %d\n",
511 			chan_idx);
512 		return ret;
513 	}
514 
515 	df_ch =  &dfsdm->ch_list[ch->channel];
516 	df_ch->id = ch->channel;
517 
518 	ret = of_property_read_string_index(indio_dev->dev.of_node,
519 					    "st,adc-channel-types", chan_idx,
520 					    &of_str);
521 	if (!ret) {
522 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
523 		if (val < 0)
524 			return val;
525 	} else {
526 		val = 0;
527 	}
528 	df_ch->type = val;
529 
530 	ret = of_property_read_string_index(indio_dev->dev.of_node,
531 					    "st,adc-channel-clk-src", chan_idx,
532 					    &of_str);
533 	if (!ret) {
534 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
535 		if (val < 0)
536 			return val;
537 	} else {
538 		val = 0;
539 	}
540 	df_ch->src = val;
541 
542 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
543 					 "st,adc-alt-channel", chan_idx,
544 					 &df_ch->alt_si);
545 	if (ret < 0)
546 		df_ch->alt_si = 0;
547 
548 	return 0;
549 }
550 
551 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
552 					  uintptr_t priv,
553 					  const struct iio_chan_spec *chan,
554 					  char *buf)
555 {
556 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
557 
558 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
559 }
560 
561 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
562 				   unsigned int sample_freq,
563 				   unsigned int spi_freq)
564 {
565 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
566 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
567 	unsigned int oversamp;
568 	int ret;
569 
570 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
571 	if (spi_freq % sample_freq)
572 		dev_dbg(&indio_dev->dev,
573 			"Rate not accurate. requested (%u), actual (%u)\n",
574 			sample_freq, spi_freq / oversamp);
575 
576 	ret = stm32_dfsdm_set_osrs(fl, 0, oversamp);
577 	if (ret < 0) {
578 		dev_err(&indio_dev->dev, "No filter parameters that match!\n");
579 		return ret;
580 	}
581 	adc->sample_freq = spi_freq / oversamp;
582 	adc->oversamp = oversamp;
583 
584 	return 0;
585 }
586 
587 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
588 					  uintptr_t priv,
589 					  const struct iio_chan_spec *chan,
590 					  const char *buf, size_t len)
591 {
592 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
593 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
594 	unsigned int sample_freq = adc->sample_freq;
595 	unsigned int spi_freq;
596 	int ret;
597 
598 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
599 	/* If DFSDM is master on SPI, SPI freq can not be updated */
600 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
601 		return -EPERM;
602 
603 	ret = kstrtoint(buf, 0, &spi_freq);
604 	if (ret)
605 		return ret;
606 
607 	if (!spi_freq)
608 		return -EINVAL;
609 
610 	if (sample_freq) {
611 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
612 		if (ret < 0)
613 			return ret;
614 	}
615 	adc->spi_freq = spi_freq;
616 
617 	return len;
618 }
619 
620 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
621 				  struct iio_trigger *trig)
622 {
623 	struct regmap *regmap = adc->dfsdm->regmap;
624 	int ret;
625 
626 	ret = stm32_dfsdm_start_channel(adc);
627 	if (ret < 0)
628 		return ret;
629 
630 	ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
631 	if (ret < 0)
632 		goto stop_channels;
633 
634 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
635 	if (ret < 0)
636 		goto filter_unconfigure;
637 
638 	return 0;
639 
640 filter_unconfigure:
641 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
642 			   DFSDM_CR1_CFG_MASK, 0);
643 stop_channels:
644 	stm32_dfsdm_stop_channel(adc);
645 
646 	return ret;
647 }
648 
649 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
650 {
651 	struct regmap *regmap = adc->dfsdm->regmap;
652 
653 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
654 
655 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
656 			   DFSDM_CR1_CFG_MASK, 0);
657 
658 	stm32_dfsdm_stop_channel(adc);
659 }
660 
661 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
662 				     unsigned int val)
663 {
664 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
665 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
666 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
667 
668 	/*
669 	 * DMA cyclic transfers are used, buffer is split into two periods.
670 	 * There should be :
671 	 * - always one buffer (period) DMA is working on
672 	 * - one buffer (period) driver pushed to ASoC side.
673 	 */
674 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
675 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
676 
677 	return 0;
678 }
679 
680 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
681 {
682 	struct dma_tx_state state;
683 	enum dma_status status;
684 
685 	status = dmaengine_tx_status(adc->dma_chan,
686 				     adc->dma_chan->cookie,
687 				     &state);
688 	if (status == DMA_IN_PROGRESS) {
689 		/* Residue is size in bytes from end of buffer */
690 		unsigned int i = adc->buf_sz - state.residue;
691 		unsigned int size;
692 
693 		/* Return available bytes */
694 		if (i >= adc->bufi)
695 			size = i - adc->bufi;
696 		else
697 			size = adc->buf_sz + i - adc->bufi;
698 
699 		return size;
700 	}
701 
702 	return 0;
703 }
704 
705 static irqreturn_t stm32_dfsdm_adc_trigger_handler(int irq, void *p)
706 {
707 	struct iio_poll_func *pf = p;
708 	struct iio_dev *indio_dev = pf->indio_dev;
709 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
710 	int available = stm32_dfsdm_adc_dma_residue(adc);
711 
712 	while (available >= indio_dev->scan_bytes) {
713 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
714 
715 		iio_push_to_buffers_with_timestamp(indio_dev, buffer,
716 						   pf->timestamp);
717 		available -= indio_dev->scan_bytes;
718 		adc->bufi += indio_dev->scan_bytes;
719 		if (adc->bufi >= adc->buf_sz)
720 			adc->bufi = 0;
721 	}
722 
723 	iio_trigger_notify_done(indio_dev->trig);
724 
725 	return IRQ_HANDLED;
726 }
727 
728 static void stm32_dfsdm_dma_buffer_done(void *data)
729 {
730 	struct iio_dev *indio_dev = data;
731 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
732 	int available = stm32_dfsdm_adc_dma_residue(adc);
733 	size_t old_pos;
734 
735 	if (indio_dev->currentmode & INDIO_BUFFER_TRIGGERED) {
736 		iio_trigger_poll_chained(indio_dev->trig);
737 		return;
738 	}
739 
740 	/*
741 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
742 	 * offers only an interface to push data samples per samples.
743 	 * For this reason IIO buffer interface is not used and interface is
744 	 * bypassed using a private callback registered by ASoC.
745 	 * This should be a temporary solution waiting a cyclic DMA engine
746 	 * support in IIO.
747 	 */
748 
749 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
750 		adc->bufi, available);
751 	old_pos = adc->bufi;
752 
753 	while (available >= indio_dev->scan_bytes) {
754 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
755 
756 		/* Mask 8 LSB that contains the channel ID */
757 		*buffer = (*buffer & 0xFFFFFF00) << 8;
758 		available -= indio_dev->scan_bytes;
759 		adc->bufi += indio_dev->scan_bytes;
760 		if (adc->bufi >= adc->buf_sz) {
761 			if (adc->cb)
762 				adc->cb(&adc->rx_buf[old_pos],
763 					 adc->buf_sz - old_pos, adc->cb_priv);
764 			adc->bufi = 0;
765 			old_pos = 0;
766 		}
767 		/* regular iio buffer without trigger */
768 		if (adc->dev_data->type == DFSDM_IIO)
769 			iio_push_to_buffers(indio_dev, buffer);
770 	}
771 	if (adc->cb)
772 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
773 			adc->cb_priv);
774 }
775 
776 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
777 {
778 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
779 	struct dma_slave_config config = {
780 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
781 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
782 	};
783 	struct dma_async_tx_descriptor *desc;
784 	dma_cookie_t cookie;
785 	int ret;
786 
787 	if (!adc->dma_chan)
788 		return -EINVAL;
789 
790 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
791 		adc->buf_sz, adc->buf_sz / 2);
792 
793 	if (adc->nconv == 1 && !indio_dev->trig)
794 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
795 	else
796 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
797 	ret = dmaengine_slave_config(adc->dma_chan, &config);
798 	if (ret)
799 		return ret;
800 
801 	/* Prepare a DMA cyclic transaction */
802 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
803 					 adc->dma_buf,
804 					 adc->buf_sz, adc->buf_sz / 2,
805 					 DMA_DEV_TO_MEM,
806 					 DMA_PREP_INTERRUPT);
807 	if (!desc)
808 		return -EBUSY;
809 
810 	desc->callback = stm32_dfsdm_dma_buffer_done;
811 	desc->callback_param = indio_dev;
812 
813 	cookie = dmaengine_submit(desc);
814 	ret = dma_submit_error(cookie);
815 	if (ret)
816 		goto err_stop_dma;
817 
818 	/* Issue pending DMA requests */
819 	dma_async_issue_pending(adc->dma_chan);
820 
821 	if (adc->nconv == 1 && !indio_dev->trig) {
822 		/* Enable regular DMA transfer*/
823 		ret = regmap_update_bits(adc->dfsdm->regmap,
824 					 DFSDM_CR1(adc->fl_id),
825 					 DFSDM_CR1_RDMAEN_MASK,
826 					 DFSDM_CR1_RDMAEN_MASK);
827 	} else {
828 		/* Enable injected DMA transfer*/
829 		ret = regmap_update_bits(adc->dfsdm->regmap,
830 					 DFSDM_CR1(adc->fl_id),
831 					 DFSDM_CR1_JDMAEN_MASK,
832 					 DFSDM_CR1_JDMAEN_MASK);
833 	}
834 
835 	if (ret < 0)
836 		goto err_stop_dma;
837 
838 	return 0;
839 
840 err_stop_dma:
841 	dmaengine_terminate_all(adc->dma_chan);
842 
843 	return ret;
844 }
845 
846 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
847 {
848 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
849 
850 	if (!adc->dma_chan)
851 		return;
852 
853 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
854 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
855 	dmaengine_terminate_all(adc->dma_chan);
856 }
857 
858 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
859 					const unsigned long *scan_mask)
860 {
861 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
862 
863 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
864 	adc->smask = *scan_mask;
865 
866 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
867 
868 	return 0;
869 }
870 
871 static int __stm32_dfsdm_postenable(struct iio_dev *indio_dev)
872 {
873 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
874 	int ret;
875 
876 	/* Reset adc buffer index */
877 	adc->bufi = 0;
878 
879 	if (adc->hwc) {
880 		ret = iio_hw_consumer_enable(adc->hwc);
881 		if (ret < 0)
882 			return ret;
883 	}
884 
885 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
886 	if (ret < 0)
887 		goto err_stop_hwc;
888 
889 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
890 	if (ret) {
891 		dev_err(&indio_dev->dev, "Can't start DMA\n");
892 		goto stop_dfsdm;
893 	}
894 
895 	ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
896 	if (ret) {
897 		dev_err(&indio_dev->dev, "Can't start conversion\n");
898 		goto err_stop_dma;
899 	}
900 
901 	return 0;
902 
903 err_stop_dma:
904 	stm32_dfsdm_adc_dma_stop(indio_dev);
905 stop_dfsdm:
906 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
907 err_stop_hwc:
908 	if (adc->hwc)
909 		iio_hw_consumer_disable(adc->hwc);
910 
911 	return ret;
912 }
913 
914 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
915 {
916 	int ret;
917 
918 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
919 		ret = iio_triggered_buffer_postenable(indio_dev);
920 		if (ret < 0)
921 			return ret;
922 	}
923 
924 	ret = __stm32_dfsdm_postenable(indio_dev);
925 	if (ret < 0)
926 		goto err_predisable;
927 
928 	return 0;
929 
930 err_predisable:
931 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
932 		iio_triggered_buffer_predisable(indio_dev);
933 
934 	return ret;
935 }
936 
937 static void __stm32_dfsdm_predisable(struct iio_dev *indio_dev)
938 {
939 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
940 
941 	stm32_dfsdm_stop_conv(adc);
942 
943 	stm32_dfsdm_adc_dma_stop(indio_dev);
944 
945 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
946 
947 	if (adc->hwc)
948 		iio_hw_consumer_disable(adc->hwc);
949 }
950 
951 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
952 {
953 	__stm32_dfsdm_predisable(indio_dev);
954 
955 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
956 		iio_triggered_buffer_predisable(indio_dev);
957 
958 	return 0;
959 }
960 
961 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
962 	.postenable = &stm32_dfsdm_postenable,
963 	.predisable = &stm32_dfsdm_predisable,
964 };
965 
966 /**
967  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
968  *                             DMA transfer period is achieved.
969  *
970  * @iio_dev: Handle to IIO device.
971  * @cb: Pointer to callback function:
972  *      - data: pointer to data buffer
973  *      - size: size in byte of the data buffer
974  *      - private: pointer to consumer private structure.
975  * @private: Pointer to consumer private structure.
976  */
977 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
978 			    int (*cb)(const void *data, size_t size,
979 				      void *private),
980 			    void *private)
981 {
982 	struct stm32_dfsdm_adc *adc;
983 
984 	if (!iio_dev)
985 		return -EINVAL;
986 	adc = iio_priv(iio_dev);
987 
988 	adc->cb = cb;
989 	adc->cb_priv = private;
990 
991 	return 0;
992 }
993 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
994 
995 /**
996  * stm32_dfsdm_release_buff_cb - unregister buffer callback
997  *
998  * @iio_dev: Handle to IIO device.
999  */
1000 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1001 {
1002 	struct stm32_dfsdm_adc *adc;
1003 
1004 	if (!iio_dev)
1005 		return -EINVAL;
1006 	adc = iio_priv(iio_dev);
1007 
1008 	adc->cb = NULL;
1009 	adc->cb_priv = NULL;
1010 
1011 	return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1014 
1015 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1016 				   const struct iio_chan_spec *chan, int *res)
1017 {
1018 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1019 	long timeout;
1020 	int ret;
1021 
1022 	reinit_completion(&adc->completion);
1023 
1024 	adc->buffer = res;
1025 
1026 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1027 	if (ret < 0)
1028 		return ret;
1029 
1030 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1031 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1032 	if (ret < 0)
1033 		goto stop_dfsdm;
1034 
1035 	adc->nconv = 1;
1036 	adc->smask = BIT(chan->scan_index);
1037 	ret = stm32_dfsdm_start_conv(adc, NULL);
1038 	if (ret < 0) {
1039 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1040 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1041 		goto stop_dfsdm;
1042 	}
1043 
1044 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1045 							    DFSDM_TIMEOUT);
1046 
1047 	/* Mask IRQ for regular conversion achievement*/
1048 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1049 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1050 
1051 	if (timeout == 0)
1052 		ret = -ETIMEDOUT;
1053 	else if (timeout < 0)
1054 		ret = timeout;
1055 	else
1056 		ret = IIO_VAL_INT;
1057 
1058 	stm32_dfsdm_stop_conv(adc);
1059 
1060 stop_dfsdm:
1061 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1062 
1063 	return ret;
1064 }
1065 
1066 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1067 				 struct iio_chan_spec const *chan,
1068 				 int val, int val2, long mask)
1069 {
1070 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1071 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1072 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1073 	unsigned int spi_freq;
1074 	int ret = -EINVAL;
1075 
1076 	switch (mask) {
1077 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1078 		ret = iio_device_claim_direct_mode(indio_dev);
1079 		if (ret)
1080 			return ret;
1081 		ret = stm32_dfsdm_set_osrs(fl, 0, val);
1082 		if (!ret)
1083 			adc->oversamp = val;
1084 		iio_device_release_direct_mode(indio_dev);
1085 		return ret;
1086 
1087 	case IIO_CHAN_INFO_SAMP_FREQ:
1088 		if (!val)
1089 			return -EINVAL;
1090 
1091 		ret = iio_device_claim_direct_mode(indio_dev);
1092 		if (ret)
1093 			return ret;
1094 
1095 		switch (ch->src) {
1096 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1097 			spi_freq = adc->dfsdm->spi_master_freq;
1098 			break;
1099 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1100 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1101 			spi_freq = adc->dfsdm->spi_master_freq / 2;
1102 			break;
1103 		default:
1104 			spi_freq = adc->spi_freq;
1105 		}
1106 
1107 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1108 		iio_device_release_direct_mode(indio_dev);
1109 		return ret;
1110 	}
1111 
1112 	return -EINVAL;
1113 }
1114 
1115 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1116 				struct iio_chan_spec const *chan, int *val,
1117 				int *val2, long mask)
1118 {
1119 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1120 	int ret;
1121 
1122 	switch (mask) {
1123 	case IIO_CHAN_INFO_RAW:
1124 		ret = iio_device_claim_direct_mode(indio_dev);
1125 		if (ret)
1126 			return ret;
1127 		ret = iio_hw_consumer_enable(adc->hwc);
1128 		if (ret < 0) {
1129 			dev_err(&indio_dev->dev,
1130 				"%s: IIO enable failed (channel %d)\n",
1131 				__func__, chan->channel);
1132 			iio_device_release_direct_mode(indio_dev);
1133 			return ret;
1134 		}
1135 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1136 		iio_hw_consumer_disable(adc->hwc);
1137 		if (ret < 0) {
1138 			dev_err(&indio_dev->dev,
1139 				"%s: Conversion failed (channel %d)\n",
1140 				__func__, chan->channel);
1141 			iio_device_release_direct_mode(indio_dev);
1142 			return ret;
1143 		}
1144 		iio_device_release_direct_mode(indio_dev);
1145 		return IIO_VAL_INT;
1146 
1147 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1148 		*val = adc->oversamp;
1149 
1150 		return IIO_VAL_INT;
1151 
1152 	case IIO_CHAN_INFO_SAMP_FREQ:
1153 		*val = adc->sample_freq;
1154 
1155 		return IIO_VAL_INT;
1156 	}
1157 
1158 	return -EINVAL;
1159 }
1160 
1161 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1162 					struct iio_trigger *trig)
1163 {
1164 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1165 }
1166 
1167 static const struct iio_info stm32_dfsdm_info_audio = {
1168 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1169 	.read_raw = stm32_dfsdm_read_raw,
1170 	.write_raw = stm32_dfsdm_write_raw,
1171 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1172 };
1173 
1174 static const struct iio_info stm32_dfsdm_info_adc = {
1175 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1176 	.read_raw = stm32_dfsdm_read_raw,
1177 	.write_raw = stm32_dfsdm_write_raw,
1178 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1179 	.validate_trigger = stm32_dfsdm_validate_trigger,
1180 };
1181 
1182 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1183 {
1184 	struct stm32_dfsdm_adc *adc = arg;
1185 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1186 	struct regmap *regmap = adc->dfsdm->regmap;
1187 	unsigned int status, int_en;
1188 
1189 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1190 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1191 
1192 	if (status & DFSDM_ISR_REOCF_MASK) {
1193 		/* Read the data register clean the IRQ status */
1194 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1195 		complete(&adc->completion);
1196 	}
1197 
1198 	if (status & DFSDM_ISR_ROVRF_MASK) {
1199 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1200 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1201 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1202 				   DFSDM_ICR_CLRROVRF_MASK,
1203 				   DFSDM_ICR_CLRROVRF_MASK);
1204 	}
1205 
1206 	return IRQ_HANDLED;
1207 }
1208 
1209 /*
1210  * Define external info for SPI Frequency and audio sampling rate that can be
1211  * configured by ASoC driver through consumer.h API
1212  */
1213 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1214 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1215 	{
1216 		.name = "spi_clk_freq",
1217 		.shared = IIO_SHARED_BY_TYPE,
1218 		.read = dfsdm_adc_audio_get_spiclk,
1219 		.write = dfsdm_adc_audio_set_spiclk,
1220 	},
1221 	{},
1222 };
1223 
1224 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1225 {
1226 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1227 
1228 	if (adc->dma_chan) {
1229 		dma_free_coherent(adc->dma_chan->device->dev,
1230 				  DFSDM_DMA_BUFFER_SIZE,
1231 				  adc->rx_buf, adc->dma_buf);
1232 		dma_release_channel(adc->dma_chan);
1233 	}
1234 }
1235 
1236 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
1237 {
1238 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1239 
1240 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1241 	if (!adc->dma_chan)
1242 		return -EINVAL;
1243 
1244 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1245 					 DFSDM_DMA_BUFFER_SIZE,
1246 					 &adc->dma_buf, GFP_KERNEL);
1247 	if (!adc->rx_buf) {
1248 		dma_release_channel(adc->dma_chan);
1249 		return -ENOMEM;
1250 	}
1251 
1252 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1253 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1254 
1255 	return 0;
1256 }
1257 
1258 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1259 					 struct iio_chan_spec *ch)
1260 {
1261 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1262 	int ret;
1263 
1264 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1265 	if (ret < 0)
1266 		return ret;
1267 
1268 	ch->type = IIO_VOLTAGE;
1269 	ch->indexed = 1;
1270 
1271 	/*
1272 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1273 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1274 	 */
1275 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1276 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1277 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1278 
1279 	if (adc->dev_data->type == DFSDM_AUDIO) {
1280 		ch->scan_type.sign = 's';
1281 		ch->ext_info = dfsdm_adc_audio_ext_info;
1282 	} else {
1283 		ch->scan_type.sign = 'u';
1284 	}
1285 	ch->scan_type.realbits = 24;
1286 	ch->scan_type.storagebits = 32;
1287 
1288 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1289 					  &adc->dfsdm->ch_list[ch->channel]);
1290 }
1291 
1292 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
1293 {
1294 	struct iio_chan_spec *ch;
1295 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1296 	struct stm32_dfsdm_channel *d_ch;
1297 	int ret;
1298 
1299 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1300 	if (!ch)
1301 		return -ENOMEM;
1302 
1303 	ch->scan_index = 0;
1304 
1305 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1306 	if (ret < 0) {
1307 		dev_err(&indio_dev->dev, "Channels init failed\n");
1308 		return ret;
1309 	}
1310 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1311 
1312 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1313 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1314 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1315 
1316 	indio_dev->num_channels = 1;
1317 	indio_dev->channels = ch;
1318 
1319 	return stm32_dfsdm_dma_request(indio_dev);
1320 }
1321 
1322 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1323 {
1324 	struct iio_chan_spec *ch;
1325 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1326 	int num_ch;
1327 	int ret, chan_idx;
1328 
1329 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1330 	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1331 				   adc->oversamp);
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1336 					     "st,adc-channels");
1337 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1338 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1339 		return num_ch < 0 ? num_ch : -EINVAL;
1340 	}
1341 
1342 	/* Bind to SD modulator IIO device */
1343 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1344 	if (IS_ERR(adc->hwc))
1345 		return -EPROBE_DEFER;
1346 
1347 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1348 			  GFP_KERNEL);
1349 	if (!ch)
1350 		return -ENOMEM;
1351 
1352 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1353 		ch[chan_idx].scan_index = chan_idx;
1354 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1355 		if (ret < 0) {
1356 			dev_err(&indio_dev->dev, "Channels init failed\n");
1357 			return ret;
1358 		}
1359 	}
1360 
1361 	indio_dev->num_channels = num_ch;
1362 	indio_dev->channels = ch;
1363 
1364 	init_completion(&adc->completion);
1365 
1366 	/* Optionally request DMA */
1367 	if (stm32_dfsdm_dma_request(indio_dev)) {
1368 		dev_dbg(&indio_dev->dev, "No DMA support\n");
1369 		return 0;
1370 	}
1371 
1372 	ret = iio_triggered_buffer_setup(indio_dev,
1373 					 &iio_pollfunc_store_time,
1374 					 &stm32_dfsdm_adc_trigger_handler,
1375 					 &stm32_dfsdm_buffer_setup_ops);
1376 	if (ret) {
1377 		stm32_dfsdm_dma_release(indio_dev);
1378 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1379 		return ret;
1380 	}
1381 
1382 	/* lptimer/timer hardware triggers */
1383 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1384 
1385 	return 0;
1386 }
1387 
1388 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1389 	.type = DFSDM_IIO,
1390 	.init = stm32_dfsdm_adc_init,
1391 };
1392 
1393 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1394 	.type = DFSDM_AUDIO,
1395 	.init = stm32_dfsdm_audio_init,
1396 };
1397 
1398 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1399 	{
1400 		.compatible = "st,stm32-dfsdm-adc",
1401 		.data = &stm32h7_dfsdm_adc_data,
1402 	},
1403 	{
1404 		.compatible = "st,stm32-dfsdm-dmic",
1405 		.data = &stm32h7_dfsdm_audio_data,
1406 	},
1407 	{}
1408 };
1409 
1410 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1411 {
1412 	struct device *dev = &pdev->dev;
1413 	struct stm32_dfsdm_adc *adc;
1414 	struct device_node *np = dev->of_node;
1415 	const struct stm32_dfsdm_dev_data *dev_data;
1416 	struct iio_dev *iio;
1417 	char *name;
1418 	int ret, irq, val;
1419 
1420 	dev_data = of_device_get_match_data(dev);
1421 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1422 	if (!iio) {
1423 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1424 		return -ENOMEM;
1425 	}
1426 
1427 	adc = iio_priv(iio);
1428 	adc->dfsdm = dev_get_drvdata(dev->parent);
1429 
1430 	iio->dev.parent = dev;
1431 	iio->dev.of_node = np;
1432 	iio->modes = INDIO_DIRECT_MODE;
1433 
1434 	platform_set_drvdata(pdev, adc);
1435 
1436 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1437 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1438 		dev_err(dev, "Missing or bad reg property\n");
1439 		return -EINVAL;
1440 	}
1441 
1442 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1443 	if (!name)
1444 		return -ENOMEM;
1445 	if (dev_data->type == DFSDM_AUDIO) {
1446 		iio->info = &stm32_dfsdm_info_audio;
1447 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1448 	} else {
1449 		iio->info = &stm32_dfsdm_info_adc;
1450 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1451 	}
1452 	iio->name = name;
1453 
1454 	/*
1455 	 * In a first step IRQs generated for channels are not treated.
1456 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1457 	 */
1458 	irq = platform_get_irq(pdev, 0);
1459 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1460 			       0, pdev->name, adc);
1461 	if (ret < 0) {
1462 		dev_err(dev, "Failed to request IRQ\n");
1463 		return ret;
1464 	}
1465 
1466 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1467 	if (ret < 0) {
1468 		dev_err(dev, "Failed to set filter order\n");
1469 		return ret;
1470 	}
1471 
1472 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1473 
1474 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1475 	if (!ret)
1476 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1477 
1478 	adc->dev_data = dev_data;
1479 	ret = dev_data->init(iio);
1480 	if (ret < 0)
1481 		return ret;
1482 
1483 	ret = iio_device_register(iio);
1484 	if (ret < 0)
1485 		goto err_cleanup;
1486 
1487 	if (dev_data->type == DFSDM_AUDIO) {
1488 		ret = of_platform_populate(np, NULL, NULL, dev);
1489 		if (ret < 0) {
1490 			dev_err(dev, "Failed to find an audio DAI\n");
1491 			goto err_unregister;
1492 		}
1493 	}
1494 
1495 	return 0;
1496 
1497 err_unregister:
1498 	iio_device_unregister(iio);
1499 err_cleanup:
1500 	stm32_dfsdm_dma_release(iio);
1501 
1502 	return ret;
1503 }
1504 
1505 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1506 {
1507 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1508 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1509 
1510 	if (adc->dev_data->type == DFSDM_AUDIO)
1511 		of_platform_depopulate(&pdev->dev);
1512 	iio_device_unregister(indio_dev);
1513 	stm32_dfsdm_dma_release(indio_dev);
1514 
1515 	return 0;
1516 }
1517 
1518 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1519 {
1520 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1521 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1522 
1523 	if (iio_buffer_enabled(indio_dev))
1524 		__stm32_dfsdm_predisable(indio_dev);
1525 
1526 	return 0;
1527 }
1528 
1529 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1530 {
1531 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1532 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1533 	const struct iio_chan_spec *chan;
1534 	struct stm32_dfsdm_channel *ch;
1535 	int i, ret;
1536 
1537 	/* restore channels configuration */
1538 	for (i = 0; i < indio_dev->num_channels; i++) {
1539 		chan = indio_dev->channels + i;
1540 		ch = &adc->dfsdm->ch_list[chan->channel];
1541 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	if (iio_buffer_enabled(indio_dev))
1547 		__stm32_dfsdm_postenable(indio_dev);
1548 
1549 	return 0;
1550 }
1551 
1552 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1553 			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1554 
1555 static struct platform_driver stm32_dfsdm_adc_driver = {
1556 	.driver = {
1557 		.name = "stm32-dfsdm-adc",
1558 		.of_match_table = stm32_dfsdm_adc_match,
1559 		.pm = &stm32_dfsdm_adc_pm_ops,
1560 	},
1561 	.probe = stm32_dfsdm_adc_probe,
1562 	.remove = stm32_dfsdm_adc_remove,
1563 };
1564 module_platform_driver(stm32_dfsdm_adc_driver);
1565 
1566 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1567 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1568 MODULE_LICENSE("GPL v2");
1569