xref: /linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "stm32-dfsdm.h"
23 
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
25 
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
29 
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING  100
32 
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
36 
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
40 
41 enum sd_converter_type {
42 	DFSDM_AUDIO,
43 	DFSDM_IIO,
44 };
45 
46 struct stm32_dfsdm_dev_data {
47 	int type;
48 	int (*init)(struct iio_dev *indio_dev);
49 	unsigned int num_channels;
50 	const struct regmap_config *regmap_cfg;
51 };
52 
53 struct stm32_dfsdm_adc {
54 	struct stm32_dfsdm *dfsdm;
55 	const struct stm32_dfsdm_dev_data *dev_data;
56 	unsigned int fl_id;
57 
58 	/* ADC specific */
59 	unsigned int oversamp;
60 	struct iio_hw_consumer *hwc;
61 	struct completion completion;
62 	u32 *buffer;
63 
64 	/* Audio specific */
65 	unsigned int spi_freq;  /* SPI bus clock frequency */
66 	unsigned int sample_freq; /* Sample frequency after filter decimation */
67 	int (*cb)(const void *data, size_t size, void *cb_priv);
68 	void *cb_priv;
69 
70 	/* DMA */
71 	u8 *rx_buf;
72 	unsigned int bufi; /* Buffer current position */
73 	unsigned int buf_sz; /* Buffer size */
74 	struct dma_chan	*dma_chan;
75 	dma_addr_t dma_buf;
76 };
77 
78 struct stm32_dfsdm_str2field {
79 	const char	*name;
80 	unsigned int	val;
81 };
82 
83 /* DFSDM channel serial interface type */
84 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
85 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
86 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
87 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
88 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
89 	{},
90 };
91 
92 /* DFSDM channel clock source */
93 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
94 	/* External SPI clock (CLKIN x) */
95 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
96 	/* Internal SPI clock (CLKOUT) */
97 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
98 	/* Internal SPI clock divided by 2 (falling edge) */
99 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
100 	/* Internal SPI clock divided by 2 (falling edge) */
101 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
102 	{},
103 };
104 
105 static int stm32_dfsdm_str2val(const char *str,
106 			       const struct stm32_dfsdm_str2field *list)
107 {
108 	const struct stm32_dfsdm_str2field *p = list;
109 
110 	for (p = list; p && p->name; p++)
111 		if (!strcmp(p->name, str))
112 			return p->val;
113 
114 	return -EINVAL;
115 }
116 
117 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
118 				unsigned int fast, unsigned int oversamp)
119 {
120 	unsigned int i, d, fosr, iosr;
121 	u64 res;
122 	s64 delta;
123 	unsigned int m = 1;	/* multiplication factor */
124 	unsigned int p = fl->ford;	/* filter order (ford) */
125 
126 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
127 	/*
128 	 * This function tries to compute filter oversampling and integrator
129 	 * oversampling, base on oversampling ratio requested by user.
130 	 *
131 	 * Decimation d depends on the filter order and the oversampling ratios.
132 	 * ford: filter order
133 	 * fosr: filter over sampling ratio
134 	 * iosr: integrator over sampling ratio
135 	 */
136 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
137 		m = 2;
138 		p = 2;
139 	}
140 
141 	/*
142 	 * Look for filter and integrator oversampling ratios which allows
143 	 * to reach 24 bits data output resolution.
144 	 * Leave as soon as if exact resolution if reached.
145 	 * Otherwise the higher resolution below 32 bits is kept.
146 	 */
147 	fl->res = 0;
148 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
149 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
150 			if (fast)
151 				d = fosr * iosr;
152 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
153 				d = fosr * (iosr + 3) + 2;
154 			else
155 				d = fosr * (iosr - 1 + p) + p;
156 
157 			if (d > oversamp)
158 				break;
159 			else if (d != oversamp)
160 				continue;
161 			/*
162 			 * Check resolution (limited to signed 32 bits)
163 			 *   res <= 2^31
164 			 * Sincx filters:
165 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
166 			 * FastSinc filter
167 			 *   res = m * fosr^p x iosr (with m=2, p=2)
168 			 */
169 			res = fosr;
170 			for (i = p - 1; i > 0; i--) {
171 				res = res * (u64)fosr;
172 				if (res > DFSDM_MAX_RES)
173 					break;
174 			}
175 			if (res > DFSDM_MAX_RES)
176 				continue;
177 			res = res * (u64)m * (u64)iosr;
178 			if (res > DFSDM_MAX_RES)
179 				continue;
180 
181 			delta = res - DFSDM_DATA_RES;
182 
183 			if (res >= fl->res) {
184 				fl->res = res;
185 				fl->fosr = fosr;
186 				fl->iosr = iosr;
187 				fl->fast = fast;
188 				pr_debug("%s: fosr = %d, iosr = %d\n",
189 					 __func__, fl->fosr, fl->iosr);
190 			}
191 
192 			if (!delta)
193 				return 0;
194 		}
195 	}
196 
197 	if (!fl->res)
198 		return -EINVAL;
199 
200 	return 0;
201 }
202 
203 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
204 				     unsigned int ch_id)
205 {
206 	return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
207 				  DFSDM_CHCFGR1_CHEN_MASK,
208 				  DFSDM_CHCFGR1_CHEN(1));
209 }
210 
211 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
212 				     unsigned int ch_id)
213 {
214 	regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
215 			   DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
216 }
217 
218 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
219 				      struct stm32_dfsdm_channel *ch)
220 {
221 	unsigned int id = ch->id;
222 	struct regmap *regmap = dfsdm->regmap;
223 	int ret;
224 
225 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
226 				 DFSDM_CHCFGR1_SITP_MASK,
227 				 DFSDM_CHCFGR1_SITP(ch->type));
228 	if (ret < 0)
229 		return ret;
230 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
231 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
232 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
233 	if (ret < 0)
234 		return ret;
235 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
236 				  DFSDM_CHCFGR1_CHINSEL_MASK,
237 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
238 }
239 
240 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
241 				    unsigned int fl_id)
242 {
243 	int ret;
244 
245 	/* Enable filter */
246 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
247 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
248 	if (ret < 0)
249 		return ret;
250 
251 	/* Start conversion */
252 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
253 				  DFSDM_CR1_RSWSTART_MASK,
254 				  DFSDM_CR1_RSWSTART(1));
255 }
256 
257 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, unsigned int fl_id)
258 {
259 	/* Disable conversion */
260 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
261 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
262 }
263 
264 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
265 					unsigned int fl_id, unsigned int ch_id)
266 {
267 	struct regmap *regmap = dfsdm->regmap;
268 	struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
269 	int ret;
270 
271 	/* Average integrator oversampling */
272 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
273 				 DFSDM_FCR_IOSR(fl->iosr - 1));
274 	if (ret)
275 		return ret;
276 
277 	/* Filter order and Oversampling */
278 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
279 				 DFSDM_FCR_FOSR(fl->fosr - 1));
280 	if (ret)
281 		return ret;
282 
283 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
284 				 DFSDM_FCR_FORD(fl->ford));
285 	if (ret)
286 		return ret;
287 
288 	/* No scan mode supported for the moment */
289 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
290 				 DFSDM_CR1_RCH(ch_id));
291 	if (ret)
292 		return ret;
293 
294 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
295 				  DFSDM_CR1_RSYNC_MASK,
296 				  DFSDM_CR1_RSYNC(fl->sync_mode));
297 }
298 
299 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
300 					struct iio_dev *indio_dev,
301 					struct iio_chan_spec *ch)
302 {
303 	struct stm32_dfsdm_channel *df_ch;
304 	const char *of_str;
305 	int chan_idx = ch->scan_index;
306 	int ret, val;
307 
308 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
309 					 "st,adc-channels", chan_idx,
310 					 &ch->channel);
311 	if (ret < 0) {
312 		dev_err(&indio_dev->dev,
313 			" Error parsing 'st,adc-channels' for idx %d\n",
314 			chan_idx);
315 		return ret;
316 	}
317 	if (ch->channel >= dfsdm->num_chs) {
318 		dev_err(&indio_dev->dev,
319 			" Error bad channel number %d (max = %d)\n",
320 			ch->channel, dfsdm->num_chs);
321 		return -EINVAL;
322 	}
323 
324 	ret = of_property_read_string_index(indio_dev->dev.of_node,
325 					    "st,adc-channel-names", chan_idx,
326 					    &ch->datasheet_name);
327 	if (ret < 0) {
328 		dev_err(&indio_dev->dev,
329 			" Error parsing 'st,adc-channel-names' for idx %d\n",
330 			chan_idx);
331 		return ret;
332 	}
333 
334 	df_ch =  &dfsdm->ch_list[ch->channel];
335 	df_ch->id = ch->channel;
336 
337 	ret = of_property_read_string_index(indio_dev->dev.of_node,
338 					    "st,adc-channel-types", chan_idx,
339 					    &of_str);
340 	if (!ret) {
341 		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
342 		if (val < 0)
343 			return val;
344 	} else {
345 		val = 0;
346 	}
347 	df_ch->type = val;
348 
349 	ret = of_property_read_string_index(indio_dev->dev.of_node,
350 					    "st,adc-channel-clk-src", chan_idx,
351 					    &of_str);
352 	if (!ret) {
353 		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
354 		if (val < 0)
355 			return val;
356 	} else {
357 		val = 0;
358 	}
359 	df_ch->src = val;
360 
361 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
362 					 "st,adc-alt-channel", chan_idx,
363 					 &df_ch->alt_si);
364 	if (ret < 0)
365 		df_ch->alt_si = 0;
366 
367 	return 0;
368 }
369 
370 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
371 					  uintptr_t priv,
372 					  const struct iio_chan_spec *chan,
373 					  char *buf)
374 {
375 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
376 
377 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
378 }
379 
380 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
381 					  uintptr_t priv,
382 					  const struct iio_chan_spec *chan,
383 					  const char *buf, size_t len)
384 {
385 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
386 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
387 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
388 	unsigned int sample_freq = adc->sample_freq;
389 	unsigned int spi_freq;
390 	int ret;
391 
392 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
393 	/* If DFSDM is master on SPI, SPI freq can not be updated */
394 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
395 		return -EPERM;
396 
397 	ret = kstrtoint(buf, 0, &spi_freq);
398 	if (ret)
399 		return ret;
400 
401 	if (!spi_freq)
402 		return -EINVAL;
403 
404 	if (sample_freq) {
405 		if (spi_freq % sample_freq)
406 			dev_warn(&indio_dev->dev,
407 				 "Sampling rate not accurate (%d)\n",
408 				 spi_freq / (spi_freq / sample_freq));
409 
410 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
411 		if (ret < 0) {
412 			dev_err(&indio_dev->dev,
413 				"No filter parameters that match!\n");
414 			return ret;
415 		}
416 	}
417 	adc->spi_freq = spi_freq;
418 
419 	return len;
420 }
421 
422 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
423 				  const struct iio_chan_spec *chan,
424 				  bool dma)
425 {
426 	struct regmap *regmap = adc->dfsdm->regmap;
427 	int ret;
428 	unsigned int dma_en = 0, cont_en = 0;
429 
430 	ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
431 	if (ret < 0)
432 		return ret;
433 
434 	ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
435 					   chan->channel);
436 	if (ret < 0)
437 		goto stop_channels;
438 
439 	if (dma) {
440 		/* Enable DMA transfer*/
441 		dma_en =  DFSDM_CR1_RDMAEN(1);
442 		/* Enable conversion triggered by SPI clock*/
443 		cont_en = DFSDM_CR1_RCONT(1);
444 	}
445 	/* Enable DMA transfer*/
446 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
447 				 DFSDM_CR1_RDMAEN_MASK, dma_en);
448 	if (ret < 0)
449 		goto stop_channels;
450 
451 	/* Enable conversion triggered by SPI clock*/
452 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
453 				 DFSDM_CR1_RCONT_MASK, cont_en);
454 	if (ret < 0)
455 		goto stop_channels;
456 
457 	ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
458 	if (ret < 0)
459 		goto stop_channels;
460 
461 	return 0;
462 
463 stop_channels:
464 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
465 			   DFSDM_CR1_RDMAEN_MASK, 0);
466 
467 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
468 			   DFSDM_CR1_RCONT_MASK, 0);
469 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
470 
471 	return ret;
472 }
473 
474 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
475 				  const struct iio_chan_spec *chan)
476 {
477 	struct regmap *regmap = adc->dfsdm->regmap;
478 
479 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
480 
481 	/* Clean conversion options */
482 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
483 			   DFSDM_CR1_RDMAEN_MASK, 0);
484 
485 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
486 			   DFSDM_CR1_RCONT_MASK, 0);
487 
488 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
489 }
490 
491 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
492 				     unsigned int val)
493 {
494 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
495 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
496 
497 	/*
498 	 * DMA cyclic transfers are used, buffer is split into two periods.
499 	 * There should be :
500 	 * - always one buffer (period) DMA is working on
501 	 * - one buffer (period) driver pushed to ASoC side.
502 	 */
503 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
504 	adc->buf_sz = watermark * 2;
505 
506 	return 0;
507 }
508 
509 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
510 {
511 	struct dma_tx_state state;
512 	enum dma_status status;
513 
514 	status = dmaengine_tx_status(adc->dma_chan,
515 				     adc->dma_chan->cookie,
516 				     &state);
517 	if (status == DMA_IN_PROGRESS) {
518 		/* Residue is size in bytes from end of buffer */
519 		unsigned int i = adc->buf_sz - state.residue;
520 		unsigned int size;
521 
522 		/* Return available bytes */
523 		if (i >= adc->bufi)
524 			size = i - adc->bufi;
525 		else
526 			size = adc->buf_sz + i - adc->bufi;
527 
528 		return size;
529 	}
530 
531 	return 0;
532 }
533 
534 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
535 {
536 	struct iio_dev *indio_dev = data;
537 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
538 	int available = stm32_dfsdm_adc_dma_residue(adc);
539 	size_t old_pos;
540 
541 	/*
542 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
543 	 * offers only an interface to push data samples per samples.
544 	 * For this reason IIO buffer interface is not used and interface is
545 	 * bypassed using a private callback registered by ASoC.
546 	 * This should be a temporary solution waiting a cyclic DMA engine
547 	 * support in IIO.
548 	 */
549 
550 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
551 		adc->bufi, available);
552 	old_pos = adc->bufi;
553 
554 	while (available >= indio_dev->scan_bytes) {
555 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
556 
557 		/* Mask 8 LSB that contains the channel ID */
558 		*buffer = (*buffer & 0xFFFFFF00) << 8;
559 		available -= indio_dev->scan_bytes;
560 		adc->bufi += indio_dev->scan_bytes;
561 		if (adc->bufi >= adc->buf_sz) {
562 			if (adc->cb)
563 				adc->cb(&adc->rx_buf[old_pos],
564 					 adc->buf_sz - old_pos, adc->cb_priv);
565 			adc->bufi = 0;
566 			old_pos = 0;
567 		}
568 	}
569 	if (adc->cb)
570 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
571 			adc->cb_priv);
572 }
573 
574 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
575 {
576 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
577 	struct dma_async_tx_descriptor *desc;
578 	dma_cookie_t cookie;
579 	int ret;
580 
581 	if (!adc->dma_chan)
582 		return -EINVAL;
583 
584 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
585 		adc->buf_sz, adc->buf_sz / 2);
586 
587 	/* Prepare a DMA cyclic transaction */
588 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
589 					 adc->dma_buf,
590 					 adc->buf_sz, adc->buf_sz / 2,
591 					 DMA_DEV_TO_MEM,
592 					 DMA_PREP_INTERRUPT);
593 	if (!desc)
594 		return -EBUSY;
595 
596 	desc->callback = stm32_dfsdm_audio_dma_buffer_done;
597 	desc->callback_param = indio_dev;
598 
599 	cookie = dmaengine_submit(desc);
600 	ret = dma_submit_error(cookie);
601 	if (ret) {
602 		dmaengine_terminate_all(adc->dma_chan);
603 		return ret;
604 	}
605 
606 	/* Issue pending DMA requests */
607 	dma_async_issue_pending(adc->dma_chan);
608 
609 	return 0;
610 }
611 
612 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
613 {
614 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
615 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
616 	int ret;
617 
618 	/* Reset adc buffer index */
619 	adc->bufi = 0;
620 
621 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
622 	if (ret < 0)
623 		return ret;
624 
625 	ret = stm32_dfsdm_start_conv(adc, chan, true);
626 	if (ret) {
627 		dev_err(&indio_dev->dev, "Can't start conversion\n");
628 		goto stop_dfsdm;
629 	}
630 
631 	if (adc->dma_chan) {
632 		ret = stm32_dfsdm_adc_dma_start(indio_dev);
633 		if (ret) {
634 			dev_err(&indio_dev->dev, "Can't start DMA\n");
635 			goto err_stop_conv;
636 		}
637 	}
638 
639 	return 0;
640 
641 err_stop_conv:
642 	stm32_dfsdm_stop_conv(adc, chan);
643 stop_dfsdm:
644 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
645 
646 	return ret;
647 }
648 
649 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
650 {
651 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
652 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
653 
654 	if (adc->dma_chan)
655 		dmaengine_terminate_all(adc->dma_chan);
656 
657 	stm32_dfsdm_stop_conv(adc, chan);
658 
659 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
660 
661 	return 0;
662 }
663 
664 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
665 	.postenable = &stm32_dfsdm_postenable,
666 	.predisable = &stm32_dfsdm_predisable,
667 };
668 
669 /**
670  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
671  *                             DMA transfer period is achieved.
672  *
673  * @iio_dev: Handle to IIO device.
674  * @cb: Pointer to callback function:
675  *      - data: pointer to data buffer
676  *      - size: size in byte of the data buffer
677  *      - private: pointer to consumer private structure.
678  * @private: Pointer to consumer private structure.
679  */
680 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
681 			    int (*cb)(const void *data, size_t size,
682 				      void *private),
683 			    void *private)
684 {
685 	struct stm32_dfsdm_adc *adc;
686 
687 	if (!iio_dev)
688 		return -EINVAL;
689 	adc = iio_priv(iio_dev);
690 
691 	adc->cb = cb;
692 	adc->cb_priv = private;
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
697 
698 /**
699  * stm32_dfsdm_release_buff_cb - unregister buffer callback
700  *
701  * @iio_dev: Handle to IIO device.
702  */
703 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
704 {
705 	struct stm32_dfsdm_adc *adc;
706 
707 	if (!iio_dev)
708 		return -EINVAL;
709 	adc = iio_priv(iio_dev);
710 
711 	adc->cb = NULL;
712 	adc->cb_priv = NULL;
713 
714 	return 0;
715 }
716 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
717 
718 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
719 				   const struct iio_chan_spec *chan, int *res)
720 {
721 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
722 	long timeout;
723 	int ret;
724 
725 	reinit_completion(&adc->completion);
726 
727 	adc->buffer = res;
728 
729 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
730 	if (ret < 0)
731 		return ret;
732 
733 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
734 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
735 	if (ret < 0)
736 		goto stop_dfsdm;
737 
738 	ret = stm32_dfsdm_start_conv(adc, chan, false);
739 	if (ret < 0) {
740 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
741 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
742 		goto stop_dfsdm;
743 	}
744 
745 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
746 							    DFSDM_TIMEOUT);
747 
748 	/* Mask IRQ for regular conversion achievement*/
749 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
750 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
751 
752 	if (timeout == 0)
753 		ret = -ETIMEDOUT;
754 	else if (timeout < 0)
755 		ret = timeout;
756 	else
757 		ret = IIO_VAL_INT;
758 
759 	stm32_dfsdm_stop_conv(adc, chan);
760 
761 stop_dfsdm:
762 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
763 
764 	return ret;
765 }
766 
767 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
768 				 struct iio_chan_spec const *chan,
769 				 int val, int val2, long mask)
770 {
771 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
772 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
773 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
774 	unsigned int spi_freq;
775 	int ret = -EINVAL;
776 
777 	switch (mask) {
778 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
779 		ret = stm32_dfsdm_set_osrs(fl, 0, val);
780 		if (!ret)
781 			adc->oversamp = val;
782 
783 		return ret;
784 
785 	case IIO_CHAN_INFO_SAMP_FREQ:
786 		if (!val)
787 			return -EINVAL;
788 
789 		switch (ch->src) {
790 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
791 			spi_freq = adc->dfsdm->spi_master_freq;
792 			break;
793 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
794 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
795 			spi_freq = adc->dfsdm->spi_master_freq / 2;
796 			break;
797 		default:
798 			spi_freq = adc->spi_freq;
799 		}
800 
801 		if (spi_freq % val)
802 			dev_warn(&indio_dev->dev,
803 				 "Sampling rate not accurate (%d)\n",
804 				 spi_freq / (spi_freq / val));
805 
806 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
807 		if (ret < 0) {
808 			dev_err(&indio_dev->dev,
809 				"Not able to find parameter that match!\n");
810 			return ret;
811 		}
812 		adc->sample_freq = val;
813 
814 		return 0;
815 	}
816 
817 	return -EINVAL;
818 }
819 
820 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
821 				struct iio_chan_spec const *chan, int *val,
822 				int *val2, long mask)
823 {
824 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
825 	int ret;
826 
827 	switch (mask) {
828 	case IIO_CHAN_INFO_RAW:
829 		ret = iio_hw_consumer_enable(adc->hwc);
830 		if (ret < 0) {
831 			dev_err(&indio_dev->dev,
832 				"%s: IIO enable failed (channel %d)\n",
833 				__func__, chan->channel);
834 			return ret;
835 		}
836 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
837 		iio_hw_consumer_disable(adc->hwc);
838 		if (ret < 0) {
839 			dev_err(&indio_dev->dev,
840 				"%s: Conversion failed (channel %d)\n",
841 				__func__, chan->channel);
842 			return ret;
843 		}
844 		return IIO_VAL_INT;
845 
846 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
847 		*val = adc->oversamp;
848 
849 		return IIO_VAL_INT;
850 
851 	case IIO_CHAN_INFO_SAMP_FREQ:
852 		*val = adc->sample_freq;
853 
854 		return IIO_VAL_INT;
855 	}
856 
857 	return -EINVAL;
858 }
859 
860 static const struct iio_info stm32_dfsdm_info_audio = {
861 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
862 	.read_raw = stm32_dfsdm_read_raw,
863 	.write_raw = stm32_dfsdm_write_raw,
864 };
865 
866 static const struct iio_info stm32_dfsdm_info_adc = {
867 	.read_raw = stm32_dfsdm_read_raw,
868 	.write_raw = stm32_dfsdm_write_raw,
869 };
870 
871 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
872 {
873 	struct stm32_dfsdm_adc *adc = arg;
874 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
875 	struct regmap *regmap = adc->dfsdm->regmap;
876 	unsigned int status, int_en;
877 
878 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
879 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
880 
881 	if (status & DFSDM_ISR_REOCF_MASK) {
882 		/* Read the data register clean the IRQ status */
883 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
884 		complete(&adc->completion);
885 	}
886 
887 	if (status & DFSDM_ISR_ROVRF_MASK) {
888 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
889 			dev_warn(&indio_dev->dev, "Overrun detected\n");
890 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
891 				   DFSDM_ICR_CLRROVRF_MASK,
892 				   DFSDM_ICR_CLRROVRF_MASK);
893 	}
894 
895 	return IRQ_HANDLED;
896 }
897 
898 /*
899  * Define external info for SPI Frequency and audio sampling rate that can be
900  * configured by ASoC driver through consumer.h API
901  */
902 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
903 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
904 	{
905 		.name = "spi_clk_freq",
906 		.shared = IIO_SHARED_BY_TYPE,
907 		.read = dfsdm_adc_audio_get_spiclk,
908 		.write = dfsdm_adc_audio_set_spiclk,
909 	},
910 	{},
911 };
912 
913 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
914 {
915 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
916 
917 	if (adc->dma_chan) {
918 		dma_free_coherent(adc->dma_chan->device->dev,
919 				  DFSDM_DMA_BUFFER_SIZE,
920 				  adc->rx_buf, adc->dma_buf);
921 		dma_release_channel(adc->dma_chan);
922 	}
923 }
924 
925 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
926 {
927 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
928 	struct dma_slave_config config = {
929 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
930 			DFSDM_RDATAR(adc->fl_id),
931 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
932 	};
933 	int ret;
934 
935 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
936 	if (!adc->dma_chan)
937 		return -EINVAL;
938 
939 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
940 					 DFSDM_DMA_BUFFER_SIZE,
941 					 &adc->dma_buf, GFP_KERNEL);
942 	if (!adc->rx_buf) {
943 		ret = -ENOMEM;
944 		goto err_release;
945 	}
946 
947 	ret = dmaengine_slave_config(adc->dma_chan, &config);
948 	if (ret)
949 		goto err_free;
950 
951 	return 0;
952 
953 err_free:
954 	dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
955 			  adc->rx_buf, adc->dma_buf);
956 err_release:
957 	dma_release_channel(adc->dma_chan);
958 
959 	return ret;
960 }
961 
962 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
963 					 struct iio_chan_spec *ch)
964 {
965 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
966 	int ret;
967 
968 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
969 	if (ret < 0)
970 		return ret;
971 
972 	ch->type = IIO_VOLTAGE;
973 	ch->indexed = 1;
974 
975 	/*
976 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
977 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
978 	 */
979 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
980 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
981 
982 	if (adc->dev_data->type == DFSDM_AUDIO) {
983 		ch->scan_type.sign = 's';
984 		ch->ext_info = dfsdm_adc_audio_ext_info;
985 	} else {
986 		ch->scan_type.sign = 'u';
987 	}
988 	ch->scan_type.realbits = 24;
989 	ch->scan_type.storagebits = 32;
990 
991 	return stm32_dfsdm_chan_configure(adc->dfsdm,
992 					  &adc->dfsdm->ch_list[ch->channel]);
993 }
994 
995 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
996 {
997 	struct iio_chan_spec *ch;
998 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
999 	struct stm32_dfsdm_channel *d_ch;
1000 	int ret;
1001 
1002 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1003 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1004 
1005 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1006 	if (!ch)
1007 		return -ENOMEM;
1008 
1009 	ch->scan_index = 0;
1010 
1011 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1012 	if (ret < 0) {
1013 		dev_err(&indio_dev->dev, "Channels init failed\n");
1014 		return ret;
1015 	}
1016 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1017 
1018 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1019 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1020 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1021 
1022 	indio_dev->num_channels = 1;
1023 	indio_dev->channels = ch;
1024 
1025 	return stm32_dfsdm_dma_request(indio_dev);
1026 }
1027 
1028 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1029 {
1030 	struct iio_chan_spec *ch;
1031 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1032 	int num_ch;
1033 	int ret, chan_idx;
1034 
1035 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1036 	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1037 				   adc->oversamp);
1038 	if (ret < 0)
1039 		return ret;
1040 
1041 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1042 					     "st,adc-channels");
1043 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1044 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1045 		return num_ch < 0 ? num_ch : -EINVAL;
1046 	}
1047 
1048 	/* Bind to SD modulator IIO device */
1049 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1050 	if (IS_ERR(adc->hwc))
1051 		return -EPROBE_DEFER;
1052 
1053 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1054 			  GFP_KERNEL);
1055 	if (!ch)
1056 		return -ENOMEM;
1057 
1058 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1059 		ch[chan_idx].scan_index = chan_idx;
1060 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1061 		if (ret < 0) {
1062 			dev_err(&indio_dev->dev, "Channels init failed\n");
1063 			return ret;
1064 		}
1065 	}
1066 
1067 	indio_dev->num_channels = num_ch;
1068 	indio_dev->channels = ch;
1069 
1070 	init_completion(&adc->completion);
1071 
1072 	return 0;
1073 }
1074 
1075 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1076 	.type = DFSDM_IIO,
1077 	.init = stm32_dfsdm_adc_init,
1078 };
1079 
1080 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1081 	.type = DFSDM_AUDIO,
1082 	.init = stm32_dfsdm_audio_init,
1083 };
1084 
1085 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1086 	{
1087 		.compatible = "st,stm32-dfsdm-adc",
1088 		.data = &stm32h7_dfsdm_adc_data,
1089 	},
1090 	{
1091 		.compatible = "st,stm32-dfsdm-dmic",
1092 		.data = &stm32h7_dfsdm_audio_data,
1093 	},
1094 	{}
1095 };
1096 
1097 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1098 {
1099 	struct device *dev = &pdev->dev;
1100 	struct stm32_dfsdm_adc *adc;
1101 	struct device_node *np = dev->of_node;
1102 	const struct stm32_dfsdm_dev_data *dev_data;
1103 	struct iio_dev *iio;
1104 	char *name;
1105 	int ret, irq, val;
1106 
1107 
1108 	dev_data = of_device_get_match_data(dev);
1109 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1110 	if (!iio) {
1111 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1112 		return -ENOMEM;
1113 	}
1114 
1115 	adc = iio_priv(iio);
1116 	adc->dfsdm = dev_get_drvdata(dev->parent);
1117 
1118 	iio->dev.parent = dev;
1119 	iio->dev.of_node = np;
1120 	iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1121 
1122 	platform_set_drvdata(pdev, adc);
1123 
1124 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1125 	if (ret != 0) {
1126 		dev_err(dev, "Missing reg property\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1131 	if (!name)
1132 		return -ENOMEM;
1133 	if (dev_data->type == DFSDM_AUDIO) {
1134 		iio->info = &stm32_dfsdm_info_audio;
1135 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1136 	} else {
1137 		iio->info = &stm32_dfsdm_info_adc;
1138 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1139 	}
1140 	iio->name = name;
1141 
1142 	/*
1143 	 * In a first step IRQs generated for channels are not treated.
1144 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1145 	 */
1146 	irq = platform_get_irq(pdev, 0);
1147 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1148 			       0, pdev->name, adc);
1149 	if (ret < 0) {
1150 		dev_err(dev, "Failed to request IRQ\n");
1151 		return ret;
1152 	}
1153 
1154 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1155 	if (ret < 0) {
1156 		dev_err(dev, "Failed to set filter order\n");
1157 		return ret;
1158 	}
1159 
1160 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1161 
1162 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1163 	if (!ret)
1164 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1165 
1166 	adc->dev_data = dev_data;
1167 	ret = dev_data->init(iio);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	ret = iio_device_register(iio);
1172 	if (ret < 0)
1173 		goto err_cleanup;
1174 
1175 	dev_err(dev, "of_platform_populate\n");
1176 	if (dev_data->type == DFSDM_AUDIO) {
1177 		ret = of_platform_populate(np, NULL, NULL, dev);
1178 		if (ret < 0) {
1179 			dev_err(dev, "Failed to find an audio DAI\n");
1180 			goto err_unregister;
1181 		}
1182 	}
1183 
1184 	return 0;
1185 
1186 err_unregister:
1187 	iio_device_unregister(iio);
1188 err_cleanup:
1189 	stm32_dfsdm_dma_release(iio);
1190 
1191 	return ret;
1192 }
1193 
1194 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1195 {
1196 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1197 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1198 
1199 	if (adc->dev_data->type == DFSDM_AUDIO)
1200 		of_platform_depopulate(&pdev->dev);
1201 	iio_device_unregister(indio_dev);
1202 	stm32_dfsdm_dma_release(indio_dev);
1203 
1204 	return 0;
1205 }
1206 
1207 static struct platform_driver stm32_dfsdm_adc_driver = {
1208 	.driver = {
1209 		.name = "stm32-dfsdm-adc",
1210 		.of_match_table = stm32_dfsdm_adc_match,
1211 	},
1212 	.probe = stm32_dfsdm_adc_probe,
1213 	.remove = stm32_dfsdm_adc_remove,
1214 };
1215 module_platform_driver(stm32_dfsdm_adc_driver);
1216 
1217 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1218 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1219 MODULE_LICENSE("GPL v2");
1220