xref: /linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision 3253aba3408aa4eb2e4e09365eede3e63ef7536b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/slab.h>
27 
28 #include "stm32-dfsdm.h"
29 
30 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
31 
32 /* Conversion timeout */
33 #define DFSDM_TIMEOUT_US 100000
34 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
35 
36 /* Oversampling attribute default */
37 #define DFSDM_DEFAULT_OVERSAMPLING  100
38 
39 /* Oversampling max values */
40 #define DFSDM_MAX_INT_OVERSAMPLING 256
41 #define DFSDM_MAX_FL_OVERSAMPLING 1024
42 
43 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
44 #define DFSDM_DATA_MAX BIT(30)
45 /*
46  * Data are output as two's complement data in a 24 bit field.
47  * Data from filters are in the range +/-2^(n-1)
48  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
49  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
50  * So, the resolution of samples from filter is actually limited to 23 bits
51  */
52 #define DFSDM_DATA_RES 24
53 
54 /* Filter configuration */
55 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
56 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
57 			    DFSDM_CR1_JSCAN_MASK)
58 
59 enum sd_converter_type {
60 	DFSDM_AUDIO,
61 	DFSDM_IIO,
62 };
63 
64 struct stm32_dfsdm_dev_data {
65 	int type;
66 	int (*init)(struct device *dev, struct iio_dev *indio_dev);
67 	unsigned int num_channels;
68 	const struct regmap_config *regmap_cfg;
69 };
70 
71 struct stm32_dfsdm_adc {
72 	struct stm32_dfsdm *dfsdm;
73 	const struct stm32_dfsdm_dev_data *dev_data;
74 	unsigned int fl_id;
75 	unsigned int nconv;
76 	unsigned long smask;
77 
78 	/* ADC specific */
79 	unsigned int oversamp;
80 	struct iio_hw_consumer *hwc;
81 	struct completion completion;
82 	u32 *buffer;
83 
84 	/* Audio specific */
85 	unsigned int spi_freq;  /* SPI bus clock frequency */
86 	unsigned int sample_freq; /* Sample frequency after filter decimation */
87 	int (*cb)(const void *data, size_t size, void *cb_priv);
88 	void *cb_priv;
89 
90 	/* DMA */
91 	u8 *rx_buf;
92 	unsigned int bufi; /* Buffer current position */
93 	unsigned int buf_sz; /* Buffer size */
94 	struct dma_chan	*dma_chan;
95 	dma_addr_t dma_buf;
96 };
97 
98 struct stm32_dfsdm_str2field {
99 	const char	*name;
100 	unsigned int	val;
101 };
102 
103 /* DFSDM channel serial interface type */
104 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
105 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
106 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
107 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
108 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
109 	{},
110 };
111 
112 /* DFSDM channel clock source */
113 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
114 	/* External SPI clock (CLKIN x) */
115 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
116 	/* Internal SPI clock (CLKOUT) */
117 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
118 	/* Internal SPI clock divided by 2 (falling edge) */
119 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
120 	/* Internal SPI clock divided by 2 (falling edge) */
121 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
122 	{},
123 };
124 
125 static int stm32_dfsdm_str2val(const char *str,
126 			       const struct stm32_dfsdm_str2field *list)
127 {
128 	const struct stm32_dfsdm_str2field *p = list;
129 
130 	for (p = list; p && p->name; p++)
131 		if (!strcmp(p->name, str))
132 			return p->val;
133 
134 	return -EINVAL;
135 }
136 
137 /**
138  * struct stm32_dfsdm_trig_info - DFSDM trigger info
139  * @name:		name of the trigger, corresponding to its source
140  * @jextsel:		trigger signal selection
141  */
142 struct stm32_dfsdm_trig_info {
143 	const char *name;
144 	unsigned int jextsel;
145 };
146 
147 /* hardware injected trigger enable, edge selection */
148 enum stm32_dfsdm_jexten {
149 	STM32_DFSDM_JEXTEN_DISABLED,
150 	STM32_DFSDM_JEXTEN_RISING_EDGE,
151 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
152 	STM32_DFSDM_EXTEN_BOTH_EDGES,
153 };
154 
155 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
156 	{ TIM1_TRGO, 0 },
157 	{ TIM1_TRGO2, 1 },
158 	{ TIM8_TRGO, 2 },
159 	{ TIM8_TRGO2, 3 },
160 	{ TIM3_TRGO, 4 },
161 	{ TIM4_TRGO, 5 },
162 	{ TIM16_OC1, 6 },
163 	{ TIM6_TRGO, 7 },
164 	{ TIM7_TRGO, 8 },
165 	{ LPTIM1_OUT, 26 },
166 	{ LPTIM2_OUT, 27 },
167 	{ LPTIM3_OUT, 28 },
168 	{},
169 };
170 
171 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
172 				   struct iio_trigger *trig)
173 {
174 	int i;
175 
176 	/* lookup triggers registered by stm32 timer trigger driver */
177 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
178 		/**
179 		 * Checking both stm32 timer trigger type and trig name
180 		 * should be safe against arbitrary trigger names.
181 		 */
182 		if ((is_stm32_timer_trigger(trig) ||
183 		     is_stm32_lptim_trigger(trig)) &&
184 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
185 			return stm32_dfsdm_trigs[i].jextsel;
186 		}
187 	}
188 
189 	return -EINVAL;
190 }
191 
192 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
193 				    unsigned int fast, unsigned int oversamp)
194 {
195 	unsigned int i, d, fosr, iosr;
196 	u64 res, max;
197 	int bits, shift;
198 	unsigned int m = 1;	/* multiplication factor */
199 	unsigned int p = fl->ford;	/* filter order (ford) */
200 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
201 
202 	pr_debug("Requested oversampling: %d\n", oversamp);
203 	/*
204 	 * This function tries to compute filter oversampling and integrator
205 	 * oversampling, base on oversampling ratio requested by user.
206 	 *
207 	 * Decimation d depends on the filter order and the oversampling ratios.
208 	 * ford: filter order
209 	 * fosr: filter over sampling ratio
210 	 * iosr: integrator over sampling ratio
211 	 */
212 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
213 		m = 2;
214 		p = 2;
215 	}
216 
217 	/*
218 	 * Look for filter and integrator oversampling ratios which allows
219 	 * to maximize data output resolution.
220 	 */
221 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
222 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
223 			if (fast)
224 				d = fosr * iosr;
225 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
226 				d = fosr * (iosr + 3) + 2;
227 			else
228 				d = fosr * (iosr - 1 + p) + p;
229 
230 			if (d > oversamp)
231 				break;
232 			else if (d != oversamp)
233 				continue;
234 			/*
235 			 * Check resolution (limited to signed 32 bits)
236 			 *   res <= 2^31
237 			 * Sincx filters:
238 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
239 			 * FastSinc filter
240 			 *   res = m * fosr^p x iosr (with m=2, p=2)
241 			 */
242 			res = fosr;
243 			for (i = p - 1; i > 0; i--) {
244 				res = res * (u64)fosr;
245 				if (res > DFSDM_DATA_MAX)
246 					break;
247 			}
248 			if (res > DFSDM_DATA_MAX)
249 				continue;
250 
251 			res = res * (u64)m * (u64)iosr;
252 			if (res > DFSDM_DATA_MAX)
253 				continue;
254 
255 			if (res >= flo->res) {
256 				flo->res = res;
257 				flo->fosr = fosr;
258 				flo->iosr = iosr;
259 
260 				bits = fls(flo->res);
261 				/* 8 LBSs in data register contain chan info */
262 				max = flo->res << 8;
263 
264 				/* if resolution is not a power of two */
265 				if (flo->res > BIT(bits - 1))
266 					bits++;
267 				else
268 					max--;
269 
270 				shift = DFSDM_DATA_RES - bits;
271 				/*
272 				 * Compute right/left shift
273 				 * Right shift is performed by hardware
274 				 * when transferring samples to data register.
275 				 * Left shift is done by software on buffer
276 				 */
277 				if (shift > 0) {
278 					/* Resolution is lower than 24 bits */
279 					flo->rshift = 0;
280 					flo->lshift = shift;
281 				} else {
282 					/*
283 					 * If resolution is 24 bits or more,
284 					 * max positive value may be ambiguous
285 					 * (equal to max negative value as sign
286 					 * bit is dropped).
287 					 * Reduce resolution to 23 bits (rshift)
288 					 * to keep the sign on bit 23 and treat
289 					 * saturation before rescaling on 24
290 					 * bits (lshift).
291 					 */
292 					flo->rshift = 1 - shift;
293 					flo->lshift = 1;
294 					max >>= flo->rshift;
295 				}
296 				flo->max = (s32)max;
297 				flo->bits = bits;
298 
299 				pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
300 					 fast, flo->fosr, flo->iosr,
301 					 flo->res, bits, flo->rshift,
302 					 flo->lshift);
303 			}
304 		}
305 	}
306 
307 	if (!flo->res)
308 		return -EINVAL;
309 
310 	return 0;
311 }
312 
313 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
314 					unsigned int oversamp)
315 {
316 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
317 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
318 	int ret0, ret1;
319 
320 	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
321 	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
322 
323 	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
324 	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
325 	if (ret0 < 0 && ret1 < 0) {
326 		dev_err(&indio_dev->dev,
327 			"Filter parameters not found: errors %d/%d\n",
328 			ret0, ret1);
329 		return -EINVAL;
330 	}
331 
332 	return 0;
333 }
334 
335 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
336 {
337 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
338 	struct regmap *regmap = adc->dfsdm->regmap;
339 	const struct iio_chan_spec *chan;
340 	unsigned int bit;
341 	int ret;
342 
343 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
344 		chan = indio_dev->channels + bit;
345 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
346 					 DFSDM_CHCFGR1_CHEN_MASK,
347 					 DFSDM_CHCFGR1_CHEN(1));
348 		if (ret < 0)
349 			return ret;
350 	}
351 
352 	return 0;
353 }
354 
355 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
356 {
357 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
358 	struct regmap *regmap = adc->dfsdm->regmap;
359 	const struct iio_chan_spec *chan;
360 	unsigned int bit;
361 
362 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
363 		chan = indio_dev->channels + bit;
364 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
365 				   DFSDM_CHCFGR1_CHEN_MASK,
366 				   DFSDM_CHCFGR1_CHEN(0));
367 	}
368 }
369 
370 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
371 				      struct stm32_dfsdm_channel *ch)
372 {
373 	unsigned int id = ch->id;
374 	struct regmap *regmap = dfsdm->regmap;
375 	int ret;
376 
377 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
378 				 DFSDM_CHCFGR1_SITP_MASK,
379 				 DFSDM_CHCFGR1_SITP(ch->type));
380 	if (ret < 0)
381 		return ret;
382 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
383 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
384 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
385 	if (ret < 0)
386 		return ret;
387 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
388 				  DFSDM_CHCFGR1_CHINSEL_MASK,
389 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
390 }
391 
392 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
393 				    unsigned int fl_id,
394 				    struct iio_trigger *trig)
395 {
396 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
397 	int ret;
398 
399 	/* Enable filter */
400 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
401 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
402 	if (ret < 0)
403 		return ret;
404 
405 	/* Nothing more to do for injected (scan mode/triggered) conversions */
406 	if (adc->nconv > 1 || trig)
407 		return 0;
408 
409 	/* Software start (single or continuous) regular conversion */
410 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
411 				  DFSDM_CR1_RSWSTART_MASK,
412 				  DFSDM_CR1_RSWSTART(1));
413 }
414 
415 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
416 				    unsigned int fl_id)
417 {
418 	/* Disable conversion */
419 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
420 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
421 }
422 
423 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
424 				       unsigned int fl_id,
425 				       struct iio_trigger *trig)
426 {
427 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
428 	struct regmap *regmap = adc->dfsdm->regmap;
429 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
430 	int ret;
431 
432 	if (trig) {
433 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
434 		if (ret < 0)
435 			return ret;
436 
437 		/* set trigger source and polarity (default to rising edge) */
438 		jextsel = ret;
439 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
440 	}
441 
442 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
443 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
444 				 DFSDM_CR1_JEXTSEL(jextsel) |
445 				 DFSDM_CR1_JEXTEN(jexten));
446 	if (ret < 0)
447 		return ret;
448 
449 	return 0;
450 }
451 
452 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
453 					  unsigned int fl_id,
454 					  struct iio_trigger *trig)
455 {
456 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
457 	struct regmap *regmap = adc->dfsdm->regmap;
458 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
459 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
460 	const struct iio_chan_spec *chan;
461 	unsigned int bit;
462 	int ret;
463 
464 	fl->fast = 0;
465 
466 	/*
467 	 * In continuous mode, use fast mode configuration,
468 	 * if it provides a better resolution.
469 	 */
470 	if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
471 		if (fl->flo[1].res >= fl->flo[0].res) {
472 			fl->fast = 1;
473 			flo = &fl->flo[1];
474 		}
475 	}
476 
477 	if (!flo->res)
478 		return -EINVAL;
479 
480 	dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
481 		min(flo->bits, (u32)DFSDM_DATA_RES - 1));
482 
483 	for_each_set_bit(bit, &adc->smask,
484 			 sizeof(adc->smask) * BITS_PER_BYTE) {
485 		chan = indio_dev->channels + bit;
486 
487 		ret = regmap_update_bits(regmap,
488 					 DFSDM_CHCFGR2(chan->channel),
489 					 DFSDM_CHCFGR2_DTRBS_MASK,
490 					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
491 		if (ret)
492 			return ret;
493 	}
494 
495 	return 0;
496 }
497 
498 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
499 					unsigned int fl_id,
500 					struct iio_trigger *trig)
501 {
502 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
503 	struct regmap *regmap = adc->dfsdm->regmap;
504 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
505 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
506 	u32 cr1;
507 	const struct iio_chan_spec *chan;
508 	unsigned int bit, jchg = 0;
509 	int ret;
510 
511 	/* Average integrator oversampling */
512 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
513 				 DFSDM_FCR_IOSR(flo->iosr - 1));
514 	if (ret)
515 		return ret;
516 
517 	/* Filter order and Oversampling */
518 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
519 				 DFSDM_FCR_FOSR(flo->fosr - 1));
520 	if (ret)
521 		return ret;
522 
523 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
524 				 DFSDM_FCR_FORD(fl->ford));
525 	if (ret)
526 		return ret;
527 
528 	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
529 	if (ret)
530 		return ret;
531 
532 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
533 				 DFSDM_CR1_FAST_MASK,
534 				 DFSDM_CR1_FAST(fl->fast));
535 	if (ret)
536 		return ret;
537 
538 	/*
539 	 * DFSDM modes configuration W.R.T audio/iio type modes
540 	 * ----------------------------------------------------------------
541 	 * Modes         | regular |  regular     | injected | injected   |
542 	 *               |         |  continuous  |          | + scan     |
543 	 * --------------|---------|--------------|----------|------------|
544 	 * single conv   |    x    |              |          |            |
545 	 * (1 chan)      |         |              |          |            |
546 	 * --------------|---------|--------------|----------|------------|
547 	 * 1 Audio chan	 |         | sample freq  |          |            |
548 	 *               |         | or sync_mode |          |            |
549 	 * --------------|---------|--------------|----------|------------|
550 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
551 	 *               |         | or sync_mode |          |            |
552 	 * --------------|---------|--------------|----------|------------|
553 	 * 2+ IIO chans  |         |              |          | trigger or |
554 	 *               |         |              |          | sync_mode  |
555 	 * ----------------------------------------------------------------
556 	 */
557 	if (adc->nconv == 1 && !trig) {
558 		bit = __ffs(adc->smask);
559 		chan = indio_dev->channels + bit;
560 
561 		/* Use regular conversion for single channel without trigger */
562 		cr1 = DFSDM_CR1_RCH(chan->channel);
563 
564 		/* Continuous conversions triggered by SPI clk in buffer mode */
565 		if (iio_buffer_enabled(indio_dev))
566 			cr1 |= DFSDM_CR1_RCONT(1);
567 
568 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
569 	} else {
570 		/* Use injected conversion for multiple channels */
571 		for_each_set_bit(bit, &adc->smask,
572 				 sizeof(adc->smask) * BITS_PER_BYTE) {
573 			chan = indio_dev->channels + bit;
574 			jchg |= BIT(chan->channel);
575 		}
576 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
577 		if (ret < 0)
578 			return ret;
579 
580 		/* Use scan mode for multiple channels */
581 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
582 
583 		/*
584 		 * Continuous conversions not supported in injected mode,
585 		 * either use:
586 		 * - conversions in sync with filter 0
587 		 * - triggered conversions
588 		 */
589 		if (!fl->sync_mode && !trig)
590 			return -EINVAL;
591 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
592 	}
593 
594 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
595 				  cr1);
596 }
597 
598 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
599 					struct iio_dev *indio_dev,
600 					struct iio_chan_spec *ch)
601 {
602 	struct stm32_dfsdm_channel *df_ch;
603 	const char *of_str;
604 	int chan_idx = ch->scan_index;
605 	int ret, val;
606 
607 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
608 					 "st,adc-channels", chan_idx,
609 					 &ch->channel);
610 	if (ret < 0) {
611 		dev_err(&indio_dev->dev,
612 			" Error parsing 'st,adc-channels' for idx %d\n",
613 			chan_idx);
614 		return ret;
615 	}
616 	if (ch->channel >= dfsdm->num_chs) {
617 		dev_err(&indio_dev->dev,
618 			" Error bad channel number %d (max = %d)\n",
619 			ch->channel, dfsdm->num_chs);
620 		return -EINVAL;
621 	}
622 
623 	ret = of_property_read_string_index(indio_dev->dev.of_node,
624 					    "st,adc-channel-names", chan_idx,
625 					    &ch->datasheet_name);
626 	if (ret < 0) {
627 		dev_err(&indio_dev->dev,
628 			" Error parsing 'st,adc-channel-names' for idx %d\n",
629 			chan_idx);
630 		return ret;
631 	}
632 
633 	df_ch =  &dfsdm->ch_list[ch->channel];
634 	df_ch->id = ch->channel;
635 
636 	ret = of_property_read_string_index(indio_dev->dev.of_node,
637 					    "st,adc-channel-types", chan_idx,
638 					    &of_str);
639 	if (!ret) {
640 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
641 		if (val < 0)
642 			return val;
643 	} else {
644 		val = 0;
645 	}
646 	df_ch->type = val;
647 
648 	ret = of_property_read_string_index(indio_dev->dev.of_node,
649 					    "st,adc-channel-clk-src", chan_idx,
650 					    &of_str);
651 	if (!ret) {
652 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
653 		if (val < 0)
654 			return val;
655 	} else {
656 		val = 0;
657 	}
658 	df_ch->src = val;
659 
660 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
661 					 "st,adc-alt-channel", chan_idx,
662 					 &df_ch->alt_si);
663 	if (ret < 0)
664 		df_ch->alt_si = 0;
665 
666 	return 0;
667 }
668 
669 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
670 					  uintptr_t priv,
671 					  const struct iio_chan_spec *chan,
672 					  char *buf)
673 {
674 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
675 
676 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
677 }
678 
679 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
680 				   unsigned int sample_freq,
681 				   unsigned int spi_freq)
682 {
683 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
684 	unsigned int oversamp;
685 	int ret;
686 
687 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
688 	if (spi_freq % sample_freq)
689 		dev_dbg(&indio_dev->dev,
690 			"Rate not accurate. requested (%u), actual (%u)\n",
691 			sample_freq, spi_freq / oversamp);
692 
693 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
694 	if (ret < 0)
695 		return ret;
696 
697 	adc->sample_freq = spi_freq / oversamp;
698 	adc->oversamp = oversamp;
699 
700 	return 0;
701 }
702 
703 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
704 					  uintptr_t priv,
705 					  const struct iio_chan_spec *chan,
706 					  const char *buf, size_t len)
707 {
708 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
709 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
710 	unsigned int sample_freq = adc->sample_freq;
711 	unsigned int spi_freq;
712 	int ret;
713 
714 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
715 	/* If DFSDM is master on SPI, SPI freq can not be updated */
716 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
717 		return -EPERM;
718 
719 	ret = kstrtoint(buf, 0, &spi_freq);
720 	if (ret)
721 		return ret;
722 
723 	if (!spi_freq)
724 		return -EINVAL;
725 
726 	if (sample_freq) {
727 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
728 		if (ret < 0)
729 			return ret;
730 	}
731 	adc->spi_freq = spi_freq;
732 
733 	return len;
734 }
735 
736 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
737 				  struct iio_trigger *trig)
738 {
739 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
740 	struct regmap *regmap = adc->dfsdm->regmap;
741 	int ret;
742 
743 	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
744 	if (ret < 0)
745 		return ret;
746 
747 	ret = stm32_dfsdm_start_channel(indio_dev);
748 	if (ret < 0)
749 		return ret;
750 
751 	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
752 	if (ret < 0)
753 		goto stop_channels;
754 
755 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
756 	if (ret < 0)
757 		goto filter_unconfigure;
758 
759 	return 0;
760 
761 filter_unconfigure:
762 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
763 			   DFSDM_CR1_CFG_MASK, 0);
764 stop_channels:
765 	stm32_dfsdm_stop_channel(indio_dev);
766 
767 	return ret;
768 }
769 
770 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
771 {
772 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
773 	struct regmap *regmap = adc->dfsdm->regmap;
774 
775 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
776 
777 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
778 			   DFSDM_CR1_CFG_MASK, 0);
779 
780 	stm32_dfsdm_stop_channel(indio_dev);
781 }
782 
783 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
784 				     unsigned int val)
785 {
786 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
787 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
788 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
789 
790 	/*
791 	 * DMA cyclic transfers are used, buffer is split into two periods.
792 	 * There should be :
793 	 * - always one buffer (period) DMA is working on
794 	 * - one buffer (period) driver pushed to ASoC side.
795 	 */
796 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
797 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
798 
799 	return 0;
800 }
801 
802 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
803 {
804 	struct dma_tx_state state;
805 	enum dma_status status;
806 
807 	status = dmaengine_tx_status(adc->dma_chan,
808 				     adc->dma_chan->cookie,
809 				     &state);
810 	if (status == DMA_IN_PROGRESS) {
811 		/* Residue is size in bytes from end of buffer */
812 		unsigned int i = adc->buf_sz - state.residue;
813 		unsigned int size;
814 
815 		/* Return available bytes */
816 		if (i >= adc->bufi)
817 			size = i - adc->bufi;
818 		else
819 			size = adc->buf_sz + i - adc->bufi;
820 
821 		return size;
822 	}
823 
824 	return 0;
825 }
826 
827 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
828 					    s32 *buffer)
829 {
830 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
831 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
832 	unsigned int i = adc->nconv;
833 	s32 *ptr = buffer;
834 
835 	while (i--) {
836 		/* Mask 8 LSB that contains the channel ID */
837 		*ptr &= 0xFFFFFF00;
838 		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
839 		if (*ptr > flo->max)
840 			*ptr -= 1;
841 		/*
842 		 * Samples from filter are retrieved with 23 bits resolution
843 		 * or less. Shift left to align MSB on 24 bits.
844 		 */
845 		*ptr <<= flo->lshift;
846 
847 		ptr++;
848 	}
849 }
850 
851 static void stm32_dfsdm_dma_buffer_done(void *data)
852 {
853 	struct iio_dev *indio_dev = data;
854 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
855 	int available = stm32_dfsdm_adc_dma_residue(adc);
856 	size_t old_pos;
857 
858 	/*
859 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
860 	 * offers only an interface to push data samples per samples.
861 	 * For this reason IIO buffer interface is not used and interface is
862 	 * bypassed using a private callback registered by ASoC.
863 	 * This should be a temporary solution waiting a cyclic DMA engine
864 	 * support in IIO.
865 	 */
866 
867 	dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
868 		adc->bufi, available);
869 	old_pos = adc->bufi;
870 
871 	while (available >= indio_dev->scan_bytes) {
872 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
873 
874 		stm32_dfsdm_process_data(adc, buffer);
875 
876 		available -= indio_dev->scan_bytes;
877 		adc->bufi += indio_dev->scan_bytes;
878 		if (adc->bufi >= adc->buf_sz) {
879 			if (adc->cb)
880 				adc->cb(&adc->rx_buf[old_pos],
881 					 adc->buf_sz - old_pos, adc->cb_priv);
882 			adc->bufi = 0;
883 			old_pos = 0;
884 		}
885 		/*
886 		 * In DMA mode the trigger services of IIO are not used
887 		 * (e.g. no call to iio_trigger_poll).
888 		 * Calling irq handler associated to the hardware trigger is not
889 		 * relevant as the conversions have already been done. Data
890 		 * transfers are performed directly in DMA callback instead.
891 		 * This implementation avoids to call trigger irq handler that
892 		 * may sleep, in an atomic context (DMA irq handler context).
893 		 */
894 		if (adc->dev_data->type == DFSDM_IIO)
895 			iio_push_to_buffers(indio_dev, buffer);
896 	}
897 	if (adc->cb)
898 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
899 			adc->cb_priv);
900 }
901 
902 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
903 {
904 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
905 	/*
906 	 * The DFSDM supports half-word transfers. However, for 16 bits record,
907 	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
908 	 * shift is required.
909 	 */
910 	struct dma_slave_config config = {
911 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
912 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 	};
914 	struct dma_async_tx_descriptor *desc;
915 	dma_cookie_t cookie;
916 	int ret;
917 
918 	if (!adc->dma_chan)
919 		return -EINVAL;
920 
921 	dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
922 		adc->buf_sz, adc->buf_sz / 2);
923 
924 	if (adc->nconv == 1 && !indio_dev->trig)
925 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
926 	else
927 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
928 	ret = dmaengine_slave_config(adc->dma_chan, &config);
929 	if (ret)
930 		return ret;
931 
932 	/* Prepare a DMA cyclic transaction */
933 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
934 					 adc->dma_buf,
935 					 adc->buf_sz, adc->buf_sz / 2,
936 					 DMA_DEV_TO_MEM,
937 					 DMA_PREP_INTERRUPT);
938 	if (!desc)
939 		return -EBUSY;
940 
941 	desc->callback = stm32_dfsdm_dma_buffer_done;
942 	desc->callback_param = indio_dev;
943 
944 	cookie = dmaengine_submit(desc);
945 	ret = dma_submit_error(cookie);
946 	if (ret)
947 		goto err_stop_dma;
948 
949 	/* Issue pending DMA requests */
950 	dma_async_issue_pending(adc->dma_chan);
951 
952 	if (adc->nconv == 1 && !indio_dev->trig) {
953 		/* Enable regular DMA transfer*/
954 		ret = regmap_update_bits(adc->dfsdm->regmap,
955 					 DFSDM_CR1(adc->fl_id),
956 					 DFSDM_CR1_RDMAEN_MASK,
957 					 DFSDM_CR1_RDMAEN_MASK);
958 	} else {
959 		/* Enable injected DMA transfer*/
960 		ret = regmap_update_bits(adc->dfsdm->regmap,
961 					 DFSDM_CR1(adc->fl_id),
962 					 DFSDM_CR1_JDMAEN_MASK,
963 					 DFSDM_CR1_JDMAEN_MASK);
964 	}
965 
966 	if (ret < 0)
967 		goto err_stop_dma;
968 
969 	return 0;
970 
971 err_stop_dma:
972 	dmaengine_terminate_all(adc->dma_chan);
973 
974 	return ret;
975 }
976 
977 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
978 {
979 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
980 
981 	if (!adc->dma_chan)
982 		return;
983 
984 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
985 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
986 	dmaengine_terminate_all(adc->dma_chan);
987 }
988 
989 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
990 					const unsigned long *scan_mask)
991 {
992 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
993 
994 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
995 	adc->smask = *scan_mask;
996 
997 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
998 
999 	return 0;
1000 }
1001 
1002 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1003 {
1004 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1005 	int ret;
1006 
1007 	/* Reset adc buffer index */
1008 	adc->bufi = 0;
1009 
1010 	if (adc->hwc) {
1011 		ret = iio_hw_consumer_enable(adc->hwc);
1012 		if (ret < 0)
1013 			return ret;
1014 	}
1015 
1016 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1017 	if (ret < 0)
1018 		goto err_stop_hwc;
1019 
1020 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1021 	if (ret) {
1022 		dev_err(&indio_dev->dev, "Can't start DMA\n");
1023 		goto stop_dfsdm;
1024 	}
1025 
1026 	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1027 	if (ret) {
1028 		dev_err(&indio_dev->dev, "Can't start conversion\n");
1029 		goto err_stop_dma;
1030 	}
1031 
1032 	return 0;
1033 
1034 err_stop_dma:
1035 	stm32_dfsdm_adc_dma_stop(indio_dev);
1036 stop_dfsdm:
1037 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1038 err_stop_hwc:
1039 	if (adc->hwc)
1040 		iio_hw_consumer_disable(adc->hwc);
1041 
1042 	return ret;
1043 }
1044 
1045 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1046 {
1047 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1048 
1049 	stm32_dfsdm_stop_conv(indio_dev);
1050 
1051 	stm32_dfsdm_adc_dma_stop(indio_dev);
1052 
1053 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1054 
1055 	if (adc->hwc)
1056 		iio_hw_consumer_disable(adc->hwc);
1057 
1058 	return 0;
1059 }
1060 
1061 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1062 	.postenable = &stm32_dfsdm_postenable,
1063 	.predisable = &stm32_dfsdm_predisable,
1064 };
1065 
1066 /**
1067  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1068  *                             DMA transfer period is achieved.
1069  *
1070  * @iio_dev: Handle to IIO device.
1071  * @cb: Pointer to callback function:
1072  *      - data: pointer to data buffer
1073  *      - size: size in byte of the data buffer
1074  *      - private: pointer to consumer private structure.
1075  * @private: Pointer to consumer private structure.
1076  */
1077 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1078 			    int (*cb)(const void *data, size_t size,
1079 				      void *private),
1080 			    void *private)
1081 {
1082 	struct stm32_dfsdm_adc *adc;
1083 
1084 	if (!iio_dev)
1085 		return -EINVAL;
1086 	adc = iio_priv(iio_dev);
1087 
1088 	adc->cb = cb;
1089 	adc->cb_priv = private;
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1094 
1095 /**
1096  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1097  *
1098  * @iio_dev: Handle to IIO device.
1099  */
1100 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1101 {
1102 	struct stm32_dfsdm_adc *adc;
1103 
1104 	if (!iio_dev)
1105 		return -EINVAL;
1106 	adc = iio_priv(iio_dev);
1107 
1108 	adc->cb = NULL;
1109 	adc->cb_priv = NULL;
1110 
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1114 
1115 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1116 				   const struct iio_chan_spec *chan, int *res)
1117 {
1118 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1119 	long time_left;
1120 	int ret;
1121 
1122 	reinit_completion(&adc->completion);
1123 
1124 	adc->buffer = res;
1125 
1126 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1127 	if (ret < 0)
1128 		return ret;
1129 
1130 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1131 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1132 	if (ret < 0)
1133 		goto stop_dfsdm;
1134 
1135 	adc->nconv = 1;
1136 	adc->smask = BIT(chan->scan_index);
1137 	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1138 	if (ret < 0) {
1139 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1140 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1141 		goto stop_dfsdm;
1142 	}
1143 
1144 	time_left = wait_for_completion_interruptible_timeout(&adc->completion,
1145 							      DFSDM_TIMEOUT);
1146 
1147 	/* Mask IRQ for regular conversion achievement*/
1148 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1149 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1150 
1151 	if (time_left == 0)
1152 		ret = -ETIMEDOUT;
1153 	else if (time_left < 0)
1154 		ret = time_left;
1155 	else
1156 		ret = IIO_VAL_INT;
1157 
1158 	stm32_dfsdm_stop_conv(indio_dev);
1159 
1160 	stm32_dfsdm_process_data(adc, res);
1161 
1162 stop_dfsdm:
1163 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1164 
1165 	return ret;
1166 }
1167 
1168 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1169 				 struct iio_chan_spec const *chan,
1170 				 int val, int val2, long mask)
1171 {
1172 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1173 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1174 	unsigned int spi_freq;
1175 	int ret = -EINVAL;
1176 
1177 	switch (ch->src) {
1178 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1179 		spi_freq = adc->dfsdm->spi_master_freq;
1180 		break;
1181 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1182 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1183 		spi_freq = adc->dfsdm->spi_master_freq / 2;
1184 		break;
1185 	default:
1186 		spi_freq = adc->spi_freq;
1187 	}
1188 
1189 	switch (mask) {
1190 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1191 		ret = iio_device_claim_direct_mode(indio_dev);
1192 		if (ret)
1193 			return ret;
1194 
1195 		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1196 		if (!ret) {
1197 			dev_dbg(&indio_dev->dev,
1198 				"Sampling rate changed from (%u) to (%u)\n",
1199 				adc->sample_freq, spi_freq / val);
1200 			adc->oversamp = val;
1201 			adc->sample_freq = spi_freq / val;
1202 		}
1203 		iio_device_release_direct_mode(indio_dev);
1204 		return ret;
1205 
1206 	case IIO_CHAN_INFO_SAMP_FREQ:
1207 		if (!val)
1208 			return -EINVAL;
1209 
1210 		ret = iio_device_claim_direct_mode(indio_dev);
1211 		if (ret)
1212 			return ret;
1213 
1214 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1215 		iio_device_release_direct_mode(indio_dev);
1216 		return ret;
1217 	}
1218 
1219 	return -EINVAL;
1220 }
1221 
1222 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1223 				struct iio_chan_spec const *chan, int *val,
1224 				int *val2, long mask)
1225 {
1226 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1227 	int ret;
1228 
1229 	switch (mask) {
1230 	case IIO_CHAN_INFO_RAW:
1231 		ret = iio_device_claim_direct_mode(indio_dev);
1232 		if (ret)
1233 			return ret;
1234 		ret = iio_hw_consumer_enable(adc->hwc);
1235 		if (ret < 0) {
1236 			dev_err(&indio_dev->dev,
1237 				"%s: IIO enable failed (channel %d)\n",
1238 				__func__, chan->channel);
1239 			iio_device_release_direct_mode(indio_dev);
1240 			return ret;
1241 		}
1242 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1243 		iio_hw_consumer_disable(adc->hwc);
1244 		if (ret < 0) {
1245 			dev_err(&indio_dev->dev,
1246 				"%s: Conversion failed (channel %d)\n",
1247 				__func__, chan->channel);
1248 			iio_device_release_direct_mode(indio_dev);
1249 			return ret;
1250 		}
1251 		iio_device_release_direct_mode(indio_dev);
1252 		return IIO_VAL_INT;
1253 
1254 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1255 		*val = adc->oversamp;
1256 
1257 		return IIO_VAL_INT;
1258 
1259 	case IIO_CHAN_INFO_SAMP_FREQ:
1260 		*val = adc->sample_freq;
1261 
1262 		return IIO_VAL_INT;
1263 	}
1264 
1265 	return -EINVAL;
1266 }
1267 
1268 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1269 					struct iio_trigger *trig)
1270 {
1271 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1272 }
1273 
1274 static const struct iio_info stm32_dfsdm_info_audio = {
1275 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1276 	.read_raw = stm32_dfsdm_read_raw,
1277 	.write_raw = stm32_dfsdm_write_raw,
1278 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1279 };
1280 
1281 static const struct iio_info stm32_dfsdm_info_adc = {
1282 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1283 	.read_raw = stm32_dfsdm_read_raw,
1284 	.write_raw = stm32_dfsdm_write_raw,
1285 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1286 	.validate_trigger = stm32_dfsdm_validate_trigger,
1287 };
1288 
1289 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1290 {
1291 	struct iio_dev *indio_dev = arg;
1292 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1293 	struct regmap *regmap = adc->dfsdm->regmap;
1294 	unsigned int status, int_en;
1295 
1296 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1297 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1298 
1299 	if (status & DFSDM_ISR_REOCF_MASK) {
1300 		/* Read the data register clean the IRQ status */
1301 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1302 		complete(&adc->completion);
1303 	}
1304 
1305 	if (status & DFSDM_ISR_ROVRF_MASK) {
1306 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1307 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1308 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1309 				   DFSDM_ICR_CLRROVRF_MASK,
1310 				   DFSDM_ICR_CLRROVRF_MASK);
1311 	}
1312 
1313 	return IRQ_HANDLED;
1314 }
1315 
1316 /*
1317  * Define external info for SPI Frequency and audio sampling rate that can be
1318  * configured by ASoC driver through consumer.h API
1319  */
1320 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1321 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1322 	{
1323 		.name = "spi_clk_freq",
1324 		.shared = IIO_SHARED_BY_TYPE,
1325 		.read = dfsdm_adc_audio_get_spiclk,
1326 		.write = dfsdm_adc_audio_set_spiclk,
1327 	},
1328 	{},
1329 };
1330 
1331 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1332 {
1333 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1334 
1335 	if (adc->dma_chan) {
1336 		dma_free_coherent(adc->dma_chan->device->dev,
1337 				  DFSDM_DMA_BUFFER_SIZE,
1338 				  adc->rx_buf, adc->dma_buf);
1339 		dma_release_channel(adc->dma_chan);
1340 	}
1341 }
1342 
1343 static int stm32_dfsdm_dma_request(struct device *dev,
1344 				   struct iio_dev *indio_dev)
1345 {
1346 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1347 
1348 	adc->dma_chan = dma_request_chan(dev, "rx");
1349 	if (IS_ERR(adc->dma_chan)) {
1350 		int ret = PTR_ERR(adc->dma_chan);
1351 
1352 		adc->dma_chan = NULL;
1353 		return ret;
1354 	}
1355 
1356 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1357 					 DFSDM_DMA_BUFFER_SIZE,
1358 					 &adc->dma_buf, GFP_KERNEL);
1359 	if (!adc->rx_buf) {
1360 		dma_release_channel(adc->dma_chan);
1361 		return -ENOMEM;
1362 	}
1363 
1364 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1365 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1366 
1367 	return 0;
1368 }
1369 
1370 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1371 					 struct iio_chan_spec *ch)
1372 {
1373 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1374 	int ret;
1375 
1376 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1377 	if (ret < 0)
1378 		return ret;
1379 
1380 	ch->type = IIO_VOLTAGE;
1381 	ch->indexed = 1;
1382 
1383 	/*
1384 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1385 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1386 	 */
1387 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1388 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1389 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1390 
1391 	if (adc->dev_data->type == DFSDM_AUDIO) {
1392 		ch->ext_info = dfsdm_adc_audio_ext_info;
1393 	} else {
1394 		ch->scan_type.shift = 8;
1395 	}
1396 	ch->scan_type.sign = 's';
1397 	ch->scan_type.realbits = 24;
1398 	ch->scan_type.storagebits = 32;
1399 
1400 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1401 					  &adc->dfsdm->ch_list[ch->channel]);
1402 }
1403 
1404 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1405 {
1406 	struct iio_chan_spec *ch;
1407 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1408 	struct stm32_dfsdm_channel *d_ch;
1409 	int ret;
1410 
1411 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1412 	if (!ch)
1413 		return -ENOMEM;
1414 
1415 	ch->scan_index = 0;
1416 
1417 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1418 	if (ret < 0) {
1419 		dev_err(&indio_dev->dev, "Channels init failed\n");
1420 		return ret;
1421 	}
1422 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1423 
1424 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1425 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1426 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1427 
1428 	indio_dev->num_channels = 1;
1429 	indio_dev->channels = ch;
1430 
1431 	return stm32_dfsdm_dma_request(dev, indio_dev);
1432 }
1433 
1434 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1435 {
1436 	struct iio_chan_spec *ch;
1437 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1438 	int num_ch;
1439 	int ret, chan_idx;
1440 
1441 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1442 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1443 	if (ret < 0)
1444 		return ret;
1445 
1446 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1447 					     "st,adc-channels");
1448 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1449 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1450 		return num_ch < 0 ? num_ch : -EINVAL;
1451 	}
1452 
1453 	/* Bind to SD modulator IIO device */
1454 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1455 	if (IS_ERR(adc->hwc))
1456 		return -EPROBE_DEFER;
1457 
1458 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1459 			  GFP_KERNEL);
1460 	if (!ch)
1461 		return -ENOMEM;
1462 
1463 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1464 		ch[chan_idx].scan_index = chan_idx;
1465 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1466 		if (ret < 0) {
1467 			dev_err(&indio_dev->dev, "Channels init failed\n");
1468 			return ret;
1469 		}
1470 	}
1471 
1472 	indio_dev->num_channels = num_ch;
1473 	indio_dev->channels = ch;
1474 
1475 	init_completion(&adc->completion);
1476 
1477 	/* Optionally request DMA */
1478 	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1479 	if (ret) {
1480 		if (ret != -ENODEV)
1481 			return dev_err_probe(dev, ret,
1482 					     "DMA channel request failed with\n");
1483 
1484 		dev_dbg(dev, "No DMA support\n");
1485 		return 0;
1486 	}
1487 
1488 	ret = iio_triggered_buffer_setup(indio_dev,
1489 					 &iio_pollfunc_store_time, NULL,
1490 					 &stm32_dfsdm_buffer_setup_ops);
1491 	if (ret) {
1492 		stm32_dfsdm_dma_release(indio_dev);
1493 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1494 		return ret;
1495 	}
1496 
1497 	/* lptimer/timer hardware triggers */
1498 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499 
1500 	return 0;
1501 }
1502 
1503 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504 	.type = DFSDM_IIO,
1505 	.init = stm32_dfsdm_adc_init,
1506 };
1507 
1508 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509 	.type = DFSDM_AUDIO,
1510 	.init = stm32_dfsdm_audio_init,
1511 };
1512 
1513 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514 	{
1515 		.compatible = "st,stm32-dfsdm-adc",
1516 		.data = &stm32h7_dfsdm_adc_data,
1517 	},
1518 	{
1519 		.compatible = "st,stm32-dfsdm-dmic",
1520 		.data = &stm32h7_dfsdm_audio_data,
1521 	},
1522 	{}
1523 };
1524 MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1525 
1526 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1527 {
1528 	struct device *dev = &pdev->dev;
1529 	struct stm32_dfsdm_adc *adc;
1530 	struct device_node *np = dev->of_node;
1531 	const struct stm32_dfsdm_dev_data *dev_data;
1532 	struct iio_dev *iio;
1533 	char *name;
1534 	int ret, irq, val;
1535 
1536 	dev_data = of_device_get_match_data(dev);
1537 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1538 	if (!iio) {
1539 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1540 		return -ENOMEM;
1541 	}
1542 
1543 	adc = iio_priv(iio);
1544 	adc->dfsdm = dev_get_drvdata(dev->parent);
1545 
1546 	iio->dev.of_node = np;
1547 	iio->modes = INDIO_DIRECT_MODE;
1548 
1549 	platform_set_drvdata(pdev, iio);
1550 
1551 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1552 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1553 		dev_err(dev, "Missing or bad reg property\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1558 	if (!name)
1559 		return -ENOMEM;
1560 	if (dev_data->type == DFSDM_AUDIO) {
1561 		iio->info = &stm32_dfsdm_info_audio;
1562 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1563 	} else {
1564 		iio->info = &stm32_dfsdm_info_adc;
1565 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1566 	}
1567 	iio->name = name;
1568 
1569 	/*
1570 	 * In a first step IRQs generated for channels are not treated.
1571 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1572 	 */
1573 	irq = platform_get_irq(pdev, 0);
1574 	if (irq < 0)
1575 		return irq;
1576 
1577 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1578 			       0, pdev->name, iio);
1579 	if (ret < 0) {
1580 		dev_err(dev, "Failed to request IRQ\n");
1581 		return ret;
1582 	}
1583 
1584 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1585 	if (ret < 0) {
1586 		dev_err(dev, "Failed to set filter order\n");
1587 		return ret;
1588 	}
1589 
1590 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1591 
1592 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1593 	if (!ret)
1594 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1595 
1596 	adc->dev_data = dev_data;
1597 	ret = dev_data->init(dev, iio);
1598 	if (ret < 0)
1599 		return ret;
1600 
1601 	ret = iio_device_register(iio);
1602 	if (ret < 0)
1603 		goto err_cleanup;
1604 
1605 	if (dev_data->type == DFSDM_AUDIO) {
1606 		ret = of_platform_populate(np, NULL, NULL, dev);
1607 		if (ret < 0) {
1608 			dev_err(dev, "Failed to find an audio DAI\n");
1609 			goto err_unregister;
1610 		}
1611 	}
1612 
1613 	return 0;
1614 
1615 err_unregister:
1616 	iio_device_unregister(iio);
1617 err_cleanup:
1618 	stm32_dfsdm_dma_release(iio);
1619 
1620 	return ret;
1621 }
1622 
1623 static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1624 {
1625 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1626 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1627 
1628 	if (adc->dev_data->type == DFSDM_AUDIO)
1629 		of_platform_depopulate(&pdev->dev);
1630 	iio_device_unregister(indio_dev);
1631 	stm32_dfsdm_dma_release(indio_dev);
1632 }
1633 
1634 static int stm32_dfsdm_adc_suspend(struct device *dev)
1635 {
1636 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1637 
1638 	if (iio_buffer_enabled(indio_dev))
1639 		stm32_dfsdm_predisable(indio_dev);
1640 
1641 	return 0;
1642 }
1643 
1644 static int stm32_dfsdm_adc_resume(struct device *dev)
1645 {
1646 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648 	const struct iio_chan_spec *chan;
1649 	struct stm32_dfsdm_channel *ch;
1650 	int i, ret;
1651 
1652 	/* restore channels configuration */
1653 	for (i = 0; i < indio_dev->num_channels; i++) {
1654 		chan = indio_dev->channels + i;
1655 		ch = &adc->dfsdm->ch_list[chan->channel];
1656 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1657 		if (ret)
1658 			return ret;
1659 	}
1660 
1661 	if (iio_buffer_enabled(indio_dev))
1662 		stm32_dfsdm_postenable(indio_dev);
1663 
1664 	return 0;
1665 }
1666 
1667 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1668 				stm32_dfsdm_adc_suspend,
1669 				stm32_dfsdm_adc_resume);
1670 
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672 	.driver = {
1673 		.name = "stm32-dfsdm-adc",
1674 		.of_match_table = stm32_dfsdm_adc_match,
1675 		.pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1676 	},
1677 	.probe = stm32_dfsdm_adc_probe,
1678 	.remove_new = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681 
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");
1685