xref: /linux/drivers/iio/adc/stm32-adc.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "stm32-adc-core.h"
30 
31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
32 #define STM32H7_LINCALFACT_NUM		6
33 
34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35 #define STM32H7_BOOST_CLKRATE		20000000UL
36 
37 #define STM32_ADC_CH_MAX		20	/* max number of channels */
38 #define STM32_ADC_CH_SZ			10	/* max channel name size */
39 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
40 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
41 #define STM32_ADC_TIMEOUT_US		100000
42 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43 #define STM32_ADC_HW_STOP_DELAY_MS	100
44 
45 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
46 
47 /* External trigger enable */
48 enum stm32_adc_exten {
49 	STM32_EXTEN_SWTRIG,
50 	STM32_EXTEN_HWTRIG_RISING_EDGE,
51 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
53 };
54 
55 /* extsel - trigger mux selection value */
56 enum stm32_adc_extsel {
57 	STM32_EXT0,
58 	STM32_EXT1,
59 	STM32_EXT2,
60 	STM32_EXT3,
61 	STM32_EXT4,
62 	STM32_EXT5,
63 	STM32_EXT6,
64 	STM32_EXT7,
65 	STM32_EXT8,
66 	STM32_EXT9,
67 	STM32_EXT10,
68 	STM32_EXT11,
69 	STM32_EXT12,
70 	STM32_EXT13,
71 	STM32_EXT14,
72 	STM32_EXT15,
73 	STM32_EXT16,
74 	STM32_EXT17,
75 	STM32_EXT18,
76 	STM32_EXT19,
77 	STM32_EXT20,
78 };
79 
80 /**
81  * struct stm32_adc_trig_info - ADC trigger info
82  * @name:		name of the trigger, corresponding to its source
83  * @extsel:		trigger selection
84  */
85 struct stm32_adc_trig_info {
86 	const char *name;
87 	enum stm32_adc_extsel extsel;
88 };
89 
90 /**
91  * struct stm32_adc_calib - optional adc calibration data
92  * @calfact_s: Calibration offset for single ended channels
93  * @calfact_d: Calibration offset in differential
94  * @lincalfact: Linearity calibration factor
95  * @calibrated: Indicates calibration status
96  */
97 struct stm32_adc_calib {
98 	u32			calfact_s;
99 	u32			calfact_d;
100 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
101 	bool			calibrated;
102 };
103 
104 /**
105  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106  * @reg:		register offset
107  * @mask:		bitfield mask
108  * @shift:		left shift
109  */
110 struct stm32_adc_regs {
111 	int reg;
112 	int mask;
113 	int shift;
114 };
115 
116 /**
117  * struct stm32_adc_regspec - stm32 registers definition
118  * @dr:			data register offset
119  * @ier_eoc:		interrupt enable register & eocie bitfield
120  * @ier_ovr:		interrupt enable register & overrun bitfield
121  * @isr_eoc:		interrupt status register & eoc bitfield
122  * @isr_ovr:		interrupt status register & overrun bitfield
123  * @sqr:		reference to sequence registers array
124  * @exten:		trigger control register & bitfield
125  * @extsel:		trigger selection register & bitfield
126  * @res:		resolution selection register & bitfield
127  * @smpr:		smpr1 & smpr2 registers offset array
128  * @smp_bits:		smpr1 & smpr2 index and bitfields
129  */
130 struct stm32_adc_regspec {
131 	const u32 dr;
132 	const struct stm32_adc_regs ier_eoc;
133 	const struct stm32_adc_regs ier_ovr;
134 	const struct stm32_adc_regs isr_eoc;
135 	const struct stm32_adc_regs isr_ovr;
136 	const struct stm32_adc_regs *sqr;
137 	const struct stm32_adc_regs exten;
138 	const struct stm32_adc_regs extsel;
139 	const struct stm32_adc_regs res;
140 	const u32 smpr[2];
141 	const struct stm32_adc_regs *smp_bits;
142 };
143 
144 struct stm32_adc;
145 
146 /**
147  * struct stm32_adc_cfg - stm32 compatible configuration data
148  * @regs:		registers descriptions
149  * @adc_info:		per instance input channels definitions
150  * @trigs:		external trigger sources
151  * @clk_required:	clock is required
152  * @has_vregready:	vregready status flag presence
153  * @prepare:		optional prepare routine (power-up, enable)
154  * @start_conv:		routine to start conversions
155  * @stop_conv:		routine to stop conversions
156  * @unprepare:		optional unprepare routine (disable, power-down)
157  * @irq_clear:		routine to clear irqs
158  * @smp_cycles:		programmable sampling time (ADC clock cycles)
159  */
160 struct stm32_adc_cfg {
161 	const struct stm32_adc_regspec	*regs;
162 	const struct stm32_adc_info	*adc_info;
163 	struct stm32_adc_trig_info	*trigs;
164 	bool clk_required;
165 	bool has_vregready;
166 	int (*prepare)(struct iio_dev *);
167 	void (*start_conv)(struct iio_dev *, bool dma);
168 	void (*stop_conv)(struct iio_dev *);
169 	void (*unprepare)(struct iio_dev *);
170 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
171 	const unsigned int *smp_cycles;
172 };
173 
174 /**
175  * struct stm32_adc - private data of each ADC IIO instance
176  * @common:		reference to ADC block common data
177  * @offset:		ADC instance register offset in ADC block
178  * @cfg:		compatible configuration data
179  * @completion:		end of single conversion completion
180  * @buffer:		data buffer
181  * @clk:		clock for this adc instance
182  * @irq:		interrupt for this adc instance
183  * @lock:		spinlock
184  * @bufi:		data buffer index
185  * @num_conv:		expected number of scan conversions
186  * @res:		data resolution (e.g. RES bitfield value)
187  * @trigger_polarity:	external trigger polarity (e.g. exten)
188  * @dma_chan:		dma channel
189  * @rx_buf:		dma rx buffer cpu address
190  * @rx_dma_buf:		dma rx buffer bus address
191  * @rx_buf_sz:		dma rx buffer size
192  * @difsel:		bitmask to set single-ended/differential channel
193  * @pcsel:		bitmask to preselect channels on some devices
194  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
195  * @cal:		optional calibration data on some devices
196  * @chan_name:		channel name array
197  */
198 struct stm32_adc {
199 	struct stm32_adc_common	*common;
200 	u32			offset;
201 	const struct stm32_adc_cfg	*cfg;
202 	struct completion	completion;
203 	u16			buffer[STM32_ADC_MAX_SQ];
204 	struct clk		*clk;
205 	int			irq;
206 	spinlock_t		lock;		/* interrupt lock */
207 	unsigned int		bufi;
208 	unsigned int		num_conv;
209 	u32			res;
210 	u32			trigger_polarity;
211 	struct dma_chan		*dma_chan;
212 	u8			*rx_buf;
213 	dma_addr_t		rx_dma_buf;
214 	unsigned int		rx_buf_sz;
215 	u32			difsel;
216 	u32			pcsel;
217 	u32			smpr_val[2];
218 	struct stm32_adc_calib	cal;
219 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
220 };
221 
222 struct stm32_adc_diff_channel {
223 	u32 vinp;
224 	u32 vinn;
225 };
226 
227 /**
228  * struct stm32_adc_info - stm32 ADC, per instance config data
229  * @max_channels:	Number of channels
230  * @resolutions:	available resolutions
231  * @num_res:		number of available resolutions
232  */
233 struct stm32_adc_info {
234 	int max_channels;
235 	const unsigned int *resolutions;
236 	const unsigned int num_res;
237 };
238 
239 static const unsigned int stm32f4_adc_resolutions[] = {
240 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
241 	12, 10, 8, 6,
242 };
243 
244 /* stm32f4 can have up to 16 channels */
245 static const struct stm32_adc_info stm32f4_adc_info = {
246 	.max_channels = 16,
247 	.resolutions = stm32f4_adc_resolutions,
248 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
249 };
250 
251 static const unsigned int stm32h7_adc_resolutions[] = {
252 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
253 	16, 14, 12, 10, 8,
254 };
255 
256 /* stm32h7 can have up to 20 channels */
257 static const struct stm32_adc_info stm32h7_adc_info = {
258 	.max_channels = STM32_ADC_CH_MAX,
259 	.resolutions = stm32h7_adc_resolutions,
260 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
261 };
262 
263 /*
264  * stm32f4_sq - describe regular sequence registers
265  * - L: sequence len (register & bit field)
266  * - SQ1..SQ16: sequence entries (register & bit field)
267  */
268 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
269 	/* L: len bit field description to be kept as first element */
270 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
271 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
272 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
273 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
274 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
275 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
276 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
277 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
278 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
279 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
280 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
281 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
282 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
283 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
284 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
285 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
286 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
287 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
288 };
289 
290 /* STM32F4 external trigger sources for all instances */
291 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
292 	{ TIM1_CH1, STM32_EXT0 },
293 	{ TIM1_CH2, STM32_EXT1 },
294 	{ TIM1_CH3, STM32_EXT2 },
295 	{ TIM2_CH2, STM32_EXT3 },
296 	{ TIM2_CH3, STM32_EXT4 },
297 	{ TIM2_CH4, STM32_EXT5 },
298 	{ TIM2_TRGO, STM32_EXT6 },
299 	{ TIM3_CH1, STM32_EXT7 },
300 	{ TIM3_TRGO, STM32_EXT8 },
301 	{ TIM4_CH4, STM32_EXT9 },
302 	{ TIM5_CH1, STM32_EXT10 },
303 	{ TIM5_CH2, STM32_EXT11 },
304 	{ TIM5_CH3, STM32_EXT12 },
305 	{ TIM8_CH1, STM32_EXT13 },
306 	{ TIM8_TRGO, STM32_EXT14 },
307 	{}, /* sentinel */
308 };
309 
310 /*
311  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
312  * Sorted so it can be indexed by channel number.
313  */
314 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
315 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
316 	{ 1, GENMASK(2, 0), 0 },
317 	{ 1, GENMASK(5, 3), 3 },
318 	{ 1, GENMASK(8, 6), 6 },
319 	{ 1, GENMASK(11, 9), 9 },
320 	{ 1, GENMASK(14, 12), 12 },
321 	{ 1, GENMASK(17, 15), 15 },
322 	{ 1, GENMASK(20, 18), 18 },
323 	{ 1, GENMASK(23, 21), 21 },
324 	{ 1, GENMASK(26, 24), 24 },
325 	{ 1, GENMASK(29, 27), 27 },
326 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
327 	{ 0, GENMASK(2, 0), 0 },
328 	{ 0, GENMASK(5, 3), 3 },
329 	{ 0, GENMASK(8, 6), 6 },
330 	{ 0, GENMASK(11, 9), 9 },
331 	{ 0, GENMASK(14, 12), 12 },
332 	{ 0, GENMASK(17, 15), 15 },
333 	{ 0, GENMASK(20, 18), 18 },
334 	{ 0, GENMASK(23, 21), 21 },
335 	{ 0, GENMASK(26, 24), 24 },
336 };
337 
338 /* STM32F4 programmable sampling time (ADC clock cycles) */
339 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
340 	3, 15, 28, 56, 84, 112, 144, 480,
341 };
342 
343 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
344 	.dr = STM32F4_ADC_DR,
345 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
346 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
347 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
348 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
349 	.sqr = stm32f4_sq,
350 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
351 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
352 		    STM32F4_EXTSEL_SHIFT },
353 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
354 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
355 	.smp_bits = stm32f4_smp_bits,
356 };
357 
358 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
359 	/* L: len bit field description to be kept as first element */
360 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
361 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
362 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
363 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
364 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
365 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
366 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
367 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
368 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
369 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
370 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
371 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
372 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
373 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
374 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
375 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
376 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
377 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
378 };
379 
380 /* STM32H7 external trigger sources for all instances */
381 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
382 	{ TIM1_CH1, STM32_EXT0 },
383 	{ TIM1_CH2, STM32_EXT1 },
384 	{ TIM1_CH3, STM32_EXT2 },
385 	{ TIM2_CH2, STM32_EXT3 },
386 	{ TIM3_TRGO, STM32_EXT4 },
387 	{ TIM4_CH4, STM32_EXT5 },
388 	{ TIM8_TRGO, STM32_EXT7 },
389 	{ TIM8_TRGO2, STM32_EXT8 },
390 	{ TIM1_TRGO, STM32_EXT9 },
391 	{ TIM1_TRGO2, STM32_EXT10 },
392 	{ TIM2_TRGO, STM32_EXT11 },
393 	{ TIM4_TRGO, STM32_EXT12 },
394 	{ TIM6_TRGO, STM32_EXT13 },
395 	{ TIM15_TRGO, STM32_EXT14 },
396 	{ TIM3_CH4, STM32_EXT15 },
397 	{ LPTIM1_OUT, STM32_EXT18 },
398 	{ LPTIM2_OUT, STM32_EXT19 },
399 	{ LPTIM3_OUT, STM32_EXT20 },
400 	{},
401 };
402 
403 /*
404  * stm32h7_smp_bits - describe sampling time register index & bit fields
405  * Sorted so it can be indexed by channel number.
406  */
407 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
408 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
409 	{ 0, GENMASK(2, 0), 0 },
410 	{ 0, GENMASK(5, 3), 3 },
411 	{ 0, GENMASK(8, 6), 6 },
412 	{ 0, GENMASK(11, 9), 9 },
413 	{ 0, GENMASK(14, 12), 12 },
414 	{ 0, GENMASK(17, 15), 15 },
415 	{ 0, GENMASK(20, 18), 18 },
416 	{ 0, GENMASK(23, 21), 21 },
417 	{ 0, GENMASK(26, 24), 24 },
418 	{ 0, GENMASK(29, 27), 27 },
419 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
420 	{ 1, GENMASK(2, 0), 0 },
421 	{ 1, GENMASK(5, 3), 3 },
422 	{ 1, GENMASK(8, 6), 6 },
423 	{ 1, GENMASK(11, 9), 9 },
424 	{ 1, GENMASK(14, 12), 12 },
425 	{ 1, GENMASK(17, 15), 15 },
426 	{ 1, GENMASK(20, 18), 18 },
427 	{ 1, GENMASK(23, 21), 21 },
428 	{ 1, GENMASK(26, 24), 24 },
429 	{ 1, GENMASK(29, 27), 27 },
430 };
431 
432 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
433 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
434 	1, 2, 8, 16, 32, 64, 387, 810,
435 };
436 
437 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
438 	.dr = STM32H7_ADC_DR,
439 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
440 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
441 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
442 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
443 	.sqr = stm32h7_sq,
444 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
445 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
446 		    STM32H7_EXTSEL_SHIFT },
447 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
448 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
449 	.smp_bits = stm32h7_smp_bits,
450 };
451 
452 /**
453  * STM32 ADC registers access routines
454  * @adc: stm32 adc instance
455  * @reg: reg offset in adc instance
456  *
457  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
458  * for adc1, adc2 and adc3.
459  */
460 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
461 {
462 	return readl_relaxed(adc->common->base + adc->offset + reg);
463 }
464 
465 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
466 
467 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
468 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
469 			   cond, sleep_us, timeout_us)
470 
471 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
472 {
473 	return readw_relaxed(adc->common->base + adc->offset + reg);
474 }
475 
476 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
477 {
478 	writel_relaxed(val, adc->common->base + adc->offset + reg);
479 }
480 
481 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
482 {
483 	unsigned long flags;
484 
485 	spin_lock_irqsave(&adc->lock, flags);
486 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
487 	spin_unlock_irqrestore(&adc->lock, flags);
488 }
489 
490 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
491 {
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&adc->lock, flags);
495 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
496 	spin_unlock_irqrestore(&adc->lock, flags);
497 }
498 
499 /**
500  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
501  * @adc: stm32 adc instance
502  */
503 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
504 {
505 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 			   adc->cfg->regs->ier_eoc.mask);
507 };
508 
509 /**
510  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
511  * @adc: stm32 adc instance
512  */
513 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
514 {
515 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
516 			   adc->cfg->regs->ier_eoc.mask);
517 }
518 
519 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
520 {
521 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
522 			   adc->cfg->regs->ier_ovr.mask);
523 }
524 
525 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
526 {
527 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
528 			   adc->cfg->regs->ier_ovr.mask);
529 }
530 
531 static void stm32_adc_set_res(struct stm32_adc *adc)
532 {
533 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
534 	u32 val;
535 
536 	val = stm32_adc_readl(adc, res->reg);
537 	val = (val & ~res->mask) | (adc->res << res->shift);
538 	stm32_adc_writel(adc, res->reg, val);
539 }
540 
541 static int stm32_adc_hw_stop(struct device *dev)
542 {
543 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
544 	struct stm32_adc *adc = iio_priv(indio_dev);
545 
546 	if (adc->cfg->unprepare)
547 		adc->cfg->unprepare(indio_dev);
548 
549 	if (adc->clk)
550 		clk_disable_unprepare(adc->clk);
551 
552 	return 0;
553 }
554 
555 static int stm32_adc_hw_start(struct device *dev)
556 {
557 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
558 	struct stm32_adc *adc = iio_priv(indio_dev);
559 	int ret;
560 
561 	if (adc->clk) {
562 		ret = clk_prepare_enable(adc->clk);
563 		if (ret)
564 			return ret;
565 	}
566 
567 	stm32_adc_set_res(adc);
568 
569 	if (adc->cfg->prepare) {
570 		ret = adc->cfg->prepare(indio_dev);
571 		if (ret)
572 			goto err_clk_dis;
573 	}
574 
575 	return 0;
576 
577 err_clk_dis:
578 	if (adc->clk)
579 		clk_disable_unprepare(adc->clk);
580 
581 	return ret;
582 }
583 
584 /**
585  * stm32f4_adc_start_conv() - Start conversions for regular channels.
586  * @indio_dev: IIO device instance
587  * @dma: use dma to transfer conversion result
588  *
589  * Start conversions for regular channels.
590  * Also take care of normal or DMA mode. Circular DMA may be used for regular
591  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
592  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
593  */
594 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
595 {
596 	struct stm32_adc *adc = iio_priv(indio_dev);
597 
598 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
599 
600 	if (dma)
601 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
602 				   STM32F4_DMA | STM32F4_DDS);
603 
604 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
605 
606 	/* Wait for Power-up time (tSTAB from datasheet) */
607 	usleep_range(2, 3);
608 
609 	/* Software start ? (e.g. trigger detection disabled ?) */
610 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
611 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
612 }
613 
614 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
615 {
616 	struct stm32_adc *adc = iio_priv(indio_dev);
617 
618 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
619 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
620 
621 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
622 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
623 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
624 }
625 
626 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
627 {
628 	struct stm32_adc *adc = iio_priv(indio_dev);
629 
630 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
631 }
632 
633 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
634 {
635 	struct stm32_adc *adc = iio_priv(indio_dev);
636 	enum stm32h7_adc_dmngt dmngt;
637 	unsigned long flags;
638 	u32 val;
639 
640 	if (dma)
641 		dmngt = STM32H7_DMNGT_DMA_CIRC;
642 	else
643 		dmngt = STM32H7_DMNGT_DR_ONLY;
644 
645 	spin_lock_irqsave(&adc->lock, flags);
646 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
647 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
648 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
649 	spin_unlock_irqrestore(&adc->lock, flags);
650 
651 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
652 }
653 
654 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
655 {
656 	struct stm32_adc *adc = iio_priv(indio_dev);
657 	int ret;
658 	u32 val;
659 
660 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
661 
662 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
663 					   !(val & (STM32H7_ADSTART)),
664 					   100, STM32_ADC_TIMEOUT_US);
665 	if (ret)
666 		dev_warn(&indio_dev->dev, "stop failed\n");
667 
668 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
669 }
670 
671 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
672 {
673 	struct stm32_adc *adc = iio_priv(indio_dev);
674 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
675 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
676 }
677 
678 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
679 {
680 	struct stm32_adc *adc = iio_priv(indio_dev);
681 	int ret;
682 	u32 val;
683 
684 	/* Exit deep power down, then enable ADC voltage regulator */
685 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
686 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
687 
688 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
689 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
690 
691 	/* Wait for startup time */
692 	if (!adc->cfg->has_vregready) {
693 		usleep_range(10, 20);
694 		return 0;
695 	}
696 
697 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
698 					   val & STM32MP1_VREGREADY, 100,
699 					   STM32_ADC_TIMEOUT_US);
700 	if (ret) {
701 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
702 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
703 	}
704 
705 	return ret;
706 }
707 
708 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
709 {
710 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
711 
712 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
713 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
714 }
715 
716 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
717 {
718 	struct stm32_adc *adc = iio_priv(indio_dev);
719 	int ret;
720 	u32 val;
721 
722 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
723 
724 	/* Poll for ADRDY to be set (after adc startup time) */
725 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
726 					   val & STM32H7_ADRDY,
727 					   100, STM32_ADC_TIMEOUT_US);
728 	if (ret) {
729 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
730 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
731 	} else {
732 		/* Clear ADRDY by writing one */
733 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
734 	}
735 
736 	return ret;
737 }
738 
739 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
740 {
741 	struct stm32_adc *adc = iio_priv(indio_dev);
742 	int ret;
743 	u32 val;
744 
745 	/* Disable ADC and wait until it's effectively disabled */
746 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
747 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
748 					   !(val & STM32H7_ADEN), 100,
749 					   STM32_ADC_TIMEOUT_US);
750 	if (ret)
751 		dev_warn(&indio_dev->dev, "Failed to disable\n");
752 }
753 
754 /**
755  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
756  * @indio_dev: IIO device instance
757  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
758  */
759 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
760 {
761 	struct stm32_adc *adc = iio_priv(indio_dev);
762 	int i, ret;
763 	u32 lincalrdyw_mask, val;
764 
765 	/* Read linearity calibration */
766 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
767 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
768 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
769 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
770 
771 		/* Poll: wait calib data to be ready in CALFACT2 register */
772 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
773 						   !(val & lincalrdyw_mask),
774 						   100, STM32_ADC_TIMEOUT_US);
775 		if (ret) {
776 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
777 			return ret;
778 		}
779 
780 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
781 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
782 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
783 
784 		lincalrdyw_mask >>= 1;
785 	}
786 
787 	/* Read offset calibration */
788 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
789 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
790 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
791 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
792 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
793 	adc->cal.calibrated = true;
794 
795 	return 0;
796 }
797 
798 /**
799  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
800  * @indio_dev: IIO device instance
801  * Note: ADC must be enabled, with no on-going conversions.
802  */
803 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
804 {
805 	struct stm32_adc *adc = iio_priv(indio_dev);
806 	int i, ret;
807 	u32 lincalrdyw_mask, val;
808 
809 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
810 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
811 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
812 
813 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
814 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
815 		/*
816 		 * Write saved calibration data to shadow registers:
817 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
818 		 * data write. Then poll to wait for complete transfer.
819 		 */
820 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
821 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
822 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
823 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
824 						   val & lincalrdyw_mask,
825 						   100, STM32_ADC_TIMEOUT_US);
826 		if (ret) {
827 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
828 			return ret;
829 		}
830 
831 		/*
832 		 * Read back calibration data, has two effects:
833 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
834 		 *   for next time calibration needs to be restored.
835 		 * - BTW, bit clear triggers a read, then check data has been
836 		 *   correctly written.
837 		 */
838 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
839 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
840 						   !(val & lincalrdyw_mask),
841 						   100, STM32_ADC_TIMEOUT_US);
842 		if (ret) {
843 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
844 			return ret;
845 		}
846 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
847 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
848 			dev_err(&indio_dev->dev, "calfact not consistent\n");
849 			return -EIO;
850 		}
851 
852 		lincalrdyw_mask >>= 1;
853 	}
854 
855 	return 0;
856 }
857 
858 /**
859  * Fixed timeout value for ADC calibration.
860  * worst cases:
861  * - low clock frequency
862  * - maximum prescalers
863  * Calibration requires:
864  * - 131,072 ADC clock cycle for the linear calibration
865  * - 20 ADC clock cycle for the offset calibration
866  *
867  * Set to 100ms for now
868  */
869 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
870 
871 /**
872  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
873  * @indio_dev: IIO device instance
874  * Note: Must be called once ADC is out of power down.
875  */
876 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
877 {
878 	struct stm32_adc *adc = iio_priv(indio_dev);
879 	int ret;
880 	u32 val;
881 
882 	if (adc->cal.calibrated)
883 		return true;
884 
885 	/*
886 	 * Select calibration mode:
887 	 * - Offset calibration for single ended inputs
888 	 * - No linearity calibration (do it later, before reading it)
889 	 */
890 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
891 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
892 
893 	/* Start calibration, then wait for completion */
894 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
895 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
896 					   !(val & STM32H7_ADCAL), 100,
897 					   STM32H7_ADC_CALIB_TIMEOUT_US);
898 	if (ret) {
899 		dev_err(&indio_dev->dev, "calibration failed\n");
900 		goto out;
901 	}
902 
903 	/*
904 	 * Select calibration mode, then start calibration:
905 	 * - Offset calibration for differential input
906 	 * - Linearity calibration (needs to be done only once for single/diff)
907 	 *   will run simultaneously with offset calibration.
908 	 */
909 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
910 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
911 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
912 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
913 					   !(val & STM32H7_ADCAL), 100,
914 					   STM32H7_ADC_CALIB_TIMEOUT_US);
915 	if (ret) {
916 		dev_err(&indio_dev->dev, "calibration failed\n");
917 		goto out;
918 	}
919 
920 out:
921 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
922 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
923 
924 	return ret;
925 }
926 
927 /**
928  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
929  * @indio_dev: IIO device instance
930  * Leave power down mode.
931  * Configure channels as single ended or differential before enabling ADC.
932  * Enable ADC.
933  * Restore calibration data.
934  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
935  * - Only one input is selected for single ended (e.g. 'vinp')
936  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
937  */
938 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
939 {
940 	struct stm32_adc *adc = iio_priv(indio_dev);
941 	int calib, ret;
942 
943 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
944 	if (ret)
945 		return ret;
946 
947 	ret = stm32h7_adc_selfcalib(indio_dev);
948 	if (ret < 0)
949 		goto pwr_dwn;
950 	calib = ret;
951 
952 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
953 
954 	ret = stm32h7_adc_enable(indio_dev);
955 	if (ret)
956 		goto pwr_dwn;
957 
958 	/* Either restore or read calibration result for future reference */
959 	if (calib)
960 		ret = stm32h7_adc_restore_selfcalib(indio_dev);
961 	else
962 		ret = stm32h7_adc_read_selfcalib(indio_dev);
963 	if (ret)
964 		goto disable;
965 
966 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
967 
968 	return 0;
969 
970 disable:
971 	stm32h7_adc_disable(indio_dev);
972 pwr_dwn:
973 	stm32h7_adc_enter_pwr_down(adc);
974 
975 	return ret;
976 }
977 
978 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
979 {
980 	struct stm32_adc *adc = iio_priv(indio_dev);
981 
982 	stm32h7_adc_disable(indio_dev);
983 	stm32h7_adc_enter_pwr_down(adc);
984 }
985 
986 /**
987  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
988  * @indio_dev: IIO device
989  * @scan_mask: channels to be converted
990  *
991  * Conversion sequence :
992  * Apply sampling time settings for all channels.
993  * Configure ADC scan sequence based on selected channels in scan_mask.
994  * Add channels to SQR registers, from scan_mask LSB to MSB, then
995  * program sequence len.
996  */
997 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
998 				   const unsigned long *scan_mask)
999 {
1000 	struct stm32_adc *adc = iio_priv(indio_dev);
1001 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1002 	const struct iio_chan_spec *chan;
1003 	u32 val, bit;
1004 	int i = 0;
1005 
1006 	/* Apply sampling time settings */
1007 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1008 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1009 
1010 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1011 		chan = indio_dev->channels + bit;
1012 		/*
1013 		 * Assign one channel per SQ entry in regular
1014 		 * sequence, starting with SQ1.
1015 		 */
1016 		i++;
1017 		if (i > STM32_ADC_MAX_SQ)
1018 			return -EINVAL;
1019 
1020 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1021 			__func__, chan->channel, i);
1022 
1023 		val = stm32_adc_readl(adc, sqr[i].reg);
1024 		val &= ~sqr[i].mask;
1025 		val |= chan->channel << sqr[i].shift;
1026 		stm32_adc_writel(adc, sqr[i].reg, val);
1027 	}
1028 
1029 	if (!i)
1030 		return -EINVAL;
1031 
1032 	/* Sequence len */
1033 	val = stm32_adc_readl(adc, sqr[0].reg);
1034 	val &= ~sqr[0].mask;
1035 	val |= ((i - 1) << sqr[0].shift);
1036 	stm32_adc_writel(adc, sqr[0].reg, val);
1037 
1038 	return 0;
1039 }
1040 
1041 /**
1042  * stm32_adc_get_trig_extsel() - Get external trigger selection
1043  * @indio_dev: IIO device structure
1044  * @trig: trigger
1045  *
1046  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1047  */
1048 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1049 				     struct iio_trigger *trig)
1050 {
1051 	struct stm32_adc *adc = iio_priv(indio_dev);
1052 	int i;
1053 
1054 	/* lookup triggers registered by stm32 timer trigger driver */
1055 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1056 		/**
1057 		 * Checking both stm32 timer trigger type and trig name
1058 		 * should be safe against arbitrary trigger names.
1059 		 */
1060 		if ((is_stm32_timer_trigger(trig) ||
1061 		     is_stm32_lptim_trigger(trig)) &&
1062 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1063 			return adc->cfg->trigs[i].extsel;
1064 		}
1065 	}
1066 
1067 	return -EINVAL;
1068 }
1069 
1070 /**
1071  * stm32_adc_set_trig() - Set a regular trigger
1072  * @indio_dev: IIO device
1073  * @trig: IIO trigger
1074  *
1075  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1076  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1077  * - if HW trigger enabled, set source & polarity
1078  */
1079 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1080 			      struct iio_trigger *trig)
1081 {
1082 	struct stm32_adc *adc = iio_priv(indio_dev);
1083 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1084 	unsigned long flags;
1085 	int ret;
1086 
1087 	if (trig) {
1088 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1089 		if (ret < 0)
1090 			return ret;
1091 
1092 		/* set trigger source and polarity (default to rising edge) */
1093 		extsel = ret;
1094 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1095 	}
1096 
1097 	spin_lock_irqsave(&adc->lock, flags);
1098 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1099 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1100 	val |= exten << adc->cfg->regs->exten.shift;
1101 	val |= extsel << adc->cfg->regs->extsel.shift;
1102 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1103 	spin_unlock_irqrestore(&adc->lock, flags);
1104 
1105 	return 0;
1106 }
1107 
1108 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1109 				  const struct iio_chan_spec *chan,
1110 				  unsigned int type)
1111 {
1112 	struct stm32_adc *adc = iio_priv(indio_dev);
1113 
1114 	adc->trigger_polarity = type;
1115 
1116 	return 0;
1117 }
1118 
1119 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1120 				  const struct iio_chan_spec *chan)
1121 {
1122 	struct stm32_adc *adc = iio_priv(indio_dev);
1123 
1124 	return adc->trigger_polarity;
1125 }
1126 
1127 static const char * const stm32_trig_pol_items[] = {
1128 	"rising-edge", "falling-edge", "both-edges",
1129 };
1130 
1131 static const struct iio_enum stm32_adc_trig_pol = {
1132 	.items = stm32_trig_pol_items,
1133 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1134 	.get = stm32_adc_get_trig_pol,
1135 	.set = stm32_adc_set_trig_pol,
1136 };
1137 
1138 /**
1139  * stm32_adc_single_conv() - Performs a single conversion
1140  * @indio_dev: IIO device
1141  * @chan: IIO channel
1142  * @res: conversion result
1143  *
1144  * The function performs a single conversion on a given channel:
1145  * - Apply sampling time settings
1146  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1147  * - Use SW trigger
1148  * - Start conversion, then wait for interrupt completion.
1149  */
1150 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1151 				 const struct iio_chan_spec *chan,
1152 				 int *res)
1153 {
1154 	struct stm32_adc *adc = iio_priv(indio_dev);
1155 	struct device *dev = indio_dev->dev.parent;
1156 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1157 	long timeout;
1158 	u32 val;
1159 	int ret;
1160 
1161 	reinit_completion(&adc->completion);
1162 
1163 	adc->bufi = 0;
1164 
1165 	ret = pm_runtime_get_sync(dev);
1166 	if (ret < 0) {
1167 		pm_runtime_put_noidle(dev);
1168 		return ret;
1169 	}
1170 
1171 	/* Apply sampling time settings */
1172 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1173 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1174 
1175 	/* Program chan number in regular sequence (SQ1) */
1176 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1177 	val &= ~regs->sqr[1].mask;
1178 	val |= chan->channel << regs->sqr[1].shift;
1179 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1180 
1181 	/* Set regular sequence len (0 for 1 conversion) */
1182 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1183 
1184 	/* Trigger detection disabled (conversion can be launched in SW) */
1185 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1186 
1187 	stm32_adc_conv_irq_enable(adc);
1188 
1189 	adc->cfg->start_conv(indio_dev, false);
1190 
1191 	timeout = wait_for_completion_interruptible_timeout(
1192 					&adc->completion, STM32_ADC_TIMEOUT);
1193 	if (timeout == 0) {
1194 		ret = -ETIMEDOUT;
1195 	} else if (timeout < 0) {
1196 		ret = timeout;
1197 	} else {
1198 		*res = adc->buffer[0];
1199 		ret = IIO_VAL_INT;
1200 	}
1201 
1202 	adc->cfg->stop_conv(indio_dev);
1203 
1204 	stm32_adc_conv_irq_disable(adc);
1205 
1206 	pm_runtime_mark_last_busy(dev);
1207 	pm_runtime_put_autosuspend(dev);
1208 
1209 	return ret;
1210 }
1211 
1212 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1213 			      struct iio_chan_spec const *chan,
1214 			      int *val, int *val2, long mask)
1215 {
1216 	struct stm32_adc *adc = iio_priv(indio_dev);
1217 	int ret;
1218 
1219 	switch (mask) {
1220 	case IIO_CHAN_INFO_RAW:
1221 		ret = iio_device_claim_direct_mode(indio_dev);
1222 		if (ret)
1223 			return ret;
1224 		if (chan->type == IIO_VOLTAGE)
1225 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1226 		else
1227 			ret = -EINVAL;
1228 		iio_device_release_direct_mode(indio_dev);
1229 		return ret;
1230 
1231 	case IIO_CHAN_INFO_SCALE:
1232 		if (chan->differential) {
1233 			*val = adc->common->vref_mv * 2;
1234 			*val2 = chan->scan_type.realbits;
1235 		} else {
1236 			*val = adc->common->vref_mv;
1237 			*val2 = chan->scan_type.realbits;
1238 		}
1239 		return IIO_VAL_FRACTIONAL_LOG2;
1240 
1241 	case IIO_CHAN_INFO_OFFSET:
1242 		if (chan->differential)
1243 			/* ADC_full_scale / 2 */
1244 			*val = -((1 << chan->scan_type.realbits) / 2);
1245 		else
1246 			*val = 0;
1247 		return IIO_VAL_INT;
1248 
1249 	default:
1250 		return -EINVAL;
1251 	}
1252 }
1253 
1254 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1255 {
1256 	struct stm32_adc *adc = iio_priv(indio_dev);
1257 
1258 	adc->cfg->irq_clear(indio_dev, msk);
1259 }
1260 
1261 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1262 {
1263 	struct iio_dev *indio_dev = data;
1264 	struct stm32_adc *adc = iio_priv(indio_dev);
1265 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1266 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1267 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1268 
1269 	/* Check ovr status right now, as ovr mask should be already disabled */
1270 	if (status & regs->isr_ovr.mask) {
1271 		/*
1272 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1273 		 * This requires to stop ADC first. OVR bit state in ISR,
1274 		 * is propaged to CSR register by hardware.
1275 		 */
1276 		adc->cfg->stop_conv(indio_dev);
1277 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1278 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1279 		return IRQ_HANDLED;
1280 	}
1281 
1282 	if (!(status & mask))
1283 		dev_err_ratelimited(&indio_dev->dev,
1284 				    "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
1285 				    mask, status);
1286 
1287 	return IRQ_NONE;
1288 }
1289 
1290 static irqreturn_t stm32_adc_isr(int irq, void *data)
1291 {
1292 	struct iio_dev *indio_dev = data;
1293 	struct stm32_adc *adc = iio_priv(indio_dev);
1294 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1295 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1296 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1297 
1298 	if (!(status & mask))
1299 		return IRQ_WAKE_THREAD;
1300 
1301 	if (status & regs->isr_ovr.mask) {
1302 		/*
1303 		 * Overrun occurred on regular conversions: data for wrong
1304 		 * channel may be read. Unconditionally disable interrupts
1305 		 * to stop processing data and print error message.
1306 		 * Restarting the capture can be done by disabling, then
1307 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1308 		 */
1309 		stm32_adc_ovr_irq_disable(adc);
1310 		stm32_adc_conv_irq_disable(adc);
1311 		return IRQ_WAKE_THREAD;
1312 	}
1313 
1314 	if (status & regs->isr_eoc.mask) {
1315 		/* Reading DR also clears EOC status flag */
1316 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1317 		if (iio_buffer_enabled(indio_dev)) {
1318 			adc->bufi++;
1319 			if (adc->bufi >= adc->num_conv) {
1320 				stm32_adc_conv_irq_disable(adc);
1321 				iio_trigger_poll(indio_dev->trig);
1322 			}
1323 		} else {
1324 			complete(&adc->completion);
1325 		}
1326 		return IRQ_HANDLED;
1327 	}
1328 
1329 	return IRQ_NONE;
1330 }
1331 
1332 /**
1333  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1334  * @indio_dev: IIO device
1335  * @trig: new trigger
1336  *
1337  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1338  * driver, -EINVAL otherwise.
1339  */
1340 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1341 				      struct iio_trigger *trig)
1342 {
1343 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1344 }
1345 
1346 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1347 {
1348 	struct stm32_adc *adc = iio_priv(indio_dev);
1349 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1350 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1351 
1352 	/*
1353 	 * dma cyclic transfers are used, buffer is split into two periods.
1354 	 * There should be :
1355 	 * - always one buffer (period) dma is working on
1356 	 * - one buffer (period) driver can push data.
1357 	 */
1358 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1359 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1360 
1361 	return 0;
1362 }
1363 
1364 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1365 				      const unsigned long *scan_mask)
1366 {
1367 	struct stm32_adc *adc = iio_priv(indio_dev);
1368 	struct device *dev = indio_dev->dev.parent;
1369 	int ret;
1370 
1371 	ret = pm_runtime_get_sync(dev);
1372 	if (ret < 0) {
1373 		pm_runtime_put_noidle(dev);
1374 		return ret;
1375 	}
1376 
1377 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1378 
1379 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1380 	pm_runtime_mark_last_busy(dev);
1381 	pm_runtime_put_autosuspend(dev);
1382 
1383 	return ret;
1384 }
1385 
1386 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1387 			      const struct of_phandle_args *iiospec)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i < indio_dev->num_channels; i++)
1392 		if (indio_dev->channels[i].channel == iiospec->args[0])
1393 			return i;
1394 
1395 	return -EINVAL;
1396 }
1397 
1398 /**
1399  * stm32_adc_debugfs_reg_access - read or write register value
1400  * @indio_dev: IIO device structure
1401  * @reg: register offset
1402  * @writeval: value to write
1403  * @readval: value to read
1404  *
1405  * To read a value from an ADC register:
1406  *   echo [ADC reg offset] > direct_reg_access
1407  *   cat direct_reg_access
1408  *
1409  * To write a value in a ADC register:
1410  *   echo [ADC_reg_offset] [value] > direct_reg_access
1411  */
1412 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1413 					unsigned reg, unsigned writeval,
1414 					unsigned *readval)
1415 {
1416 	struct stm32_adc *adc = iio_priv(indio_dev);
1417 	struct device *dev = indio_dev->dev.parent;
1418 	int ret;
1419 
1420 	ret = pm_runtime_get_sync(dev);
1421 	if (ret < 0) {
1422 		pm_runtime_put_noidle(dev);
1423 		return ret;
1424 	}
1425 
1426 	if (!readval)
1427 		stm32_adc_writel(adc, reg, writeval);
1428 	else
1429 		*readval = stm32_adc_readl(adc, reg);
1430 
1431 	pm_runtime_mark_last_busy(dev);
1432 	pm_runtime_put_autosuspend(dev);
1433 
1434 	return 0;
1435 }
1436 
1437 static const struct iio_info stm32_adc_iio_info = {
1438 	.read_raw = stm32_adc_read_raw,
1439 	.validate_trigger = stm32_adc_validate_trigger,
1440 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1441 	.update_scan_mode = stm32_adc_update_scan_mode,
1442 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1443 	.of_xlate = stm32_adc_of_xlate,
1444 };
1445 
1446 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1447 {
1448 	struct dma_tx_state state;
1449 	enum dma_status status;
1450 
1451 	status = dmaengine_tx_status(adc->dma_chan,
1452 				     adc->dma_chan->cookie,
1453 				     &state);
1454 	if (status == DMA_IN_PROGRESS) {
1455 		/* Residue is size in bytes from end of buffer */
1456 		unsigned int i = adc->rx_buf_sz - state.residue;
1457 		unsigned int size;
1458 
1459 		/* Return available bytes */
1460 		if (i >= adc->bufi)
1461 			size = i - adc->bufi;
1462 		else
1463 			size = adc->rx_buf_sz + i - adc->bufi;
1464 
1465 		return size;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 static void stm32_adc_dma_buffer_done(void *data)
1472 {
1473 	struct iio_dev *indio_dev = data;
1474 	struct stm32_adc *adc = iio_priv(indio_dev);
1475 	int residue = stm32_adc_dma_residue(adc);
1476 
1477 	/*
1478 	 * In DMA mode the trigger services of IIO are not used
1479 	 * (e.g. no call to iio_trigger_poll).
1480 	 * Calling irq handler associated to the hardware trigger is not
1481 	 * relevant as the conversions have already been done. Data
1482 	 * transfers are performed directly in DMA callback instead.
1483 	 * This implementation avoids to call trigger irq handler that
1484 	 * may sleep, in an atomic context (DMA irq handler context).
1485 	 */
1486 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1487 
1488 	while (residue >= indio_dev->scan_bytes) {
1489 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1490 
1491 		iio_push_to_buffers(indio_dev, buffer);
1492 
1493 		residue -= indio_dev->scan_bytes;
1494 		adc->bufi += indio_dev->scan_bytes;
1495 		if (adc->bufi >= adc->rx_buf_sz)
1496 			adc->bufi = 0;
1497 	}
1498 }
1499 
1500 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1501 {
1502 	struct stm32_adc *adc = iio_priv(indio_dev);
1503 	struct dma_async_tx_descriptor *desc;
1504 	dma_cookie_t cookie;
1505 	int ret;
1506 
1507 	if (!adc->dma_chan)
1508 		return 0;
1509 
1510 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1511 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1512 
1513 	/* Prepare a DMA cyclic transaction */
1514 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1515 					 adc->rx_dma_buf,
1516 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1517 					 DMA_DEV_TO_MEM,
1518 					 DMA_PREP_INTERRUPT);
1519 	if (!desc)
1520 		return -EBUSY;
1521 
1522 	desc->callback = stm32_adc_dma_buffer_done;
1523 	desc->callback_param = indio_dev;
1524 
1525 	cookie = dmaengine_submit(desc);
1526 	ret = dma_submit_error(cookie);
1527 	if (ret) {
1528 		dmaengine_terminate_sync(adc->dma_chan);
1529 		return ret;
1530 	}
1531 
1532 	/* Issue pending DMA requests */
1533 	dma_async_issue_pending(adc->dma_chan);
1534 
1535 	return 0;
1536 }
1537 
1538 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1539 {
1540 	struct stm32_adc *adc = iio_priv(indio_dev);
1541 	struct device *dev = indio_dev->dev.parent;
1542 	int ret;
1543 
1544 	ret = pm_runtime_get_sync(dev);
1545 	if (ret < 0) {
1546 		pm_runtime_put_noidle(dev);
1547 		return ret;
1548 	}
1549 
1550 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1551 	if (ret) {
1552 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1553 		goto err_pm_put;
1554 	}
1555 
1556 	ret = stm32_adc_dma_start(indio_dev);
1557 	if (ret) {
1558 		dev_err(&indio_dev->dev, "Can't start dma\n");
1559 		goto err_clr_trig;
1560 	}
1561 
1562 	/* Reset adc buffer index */
1563 	adc->bufi = 0;
1564 
1565 	stm32_adc_ovr_irq_enable(adc);
1566 
1567 	if (!adc->dma_chan)
1568 		stm32_adc_conv_irq_enable(adc);
1569 
1570 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1571 
1572 	return 0;
1573 
1574 err_clr_trig:
1575 	stm32_adc_set_trig(indio_dev, NULL);
1576 err_pm_put:
1577 	pm_runtime_mark_last_busy(dev);
1578 	pm_runtime_put_autosuspend(dev);
1579 
1580 	return ret;
1581 }
1582 
1583 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1584 {
1585 	struct stm32_adc *adc = iio_priv(indio_dev);
1586 	struct device *dev = indio_dev->dev.parent;
1587 
1588 	adc->cfg->stop_conv(indio_dev);
1589 	if (!adc->dma_chan)
1590 		stm32_adc_conv_irq_disable(adc);
1591 
1592 	stm32_adc_ovr_irq_disable(adc);
1593 
1594 	if (adc->dma_chan)
1595 		dmaengine_terminate_sync(adc->dma_chan);
1596 
1597 	if (stm32_adc_set_trig(indio_dev, NULL))
1598 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1599 
1600 	pm_runtime_mark_last_busy(dev);
1601 	pm_runtime_put_autosuspend(dev);
1602 
1603 	return 0;
1604 }
1605 
1606 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1607 	.postenable = &stm32_adc_buffer_postenable,
1608 	.predisable = &stm32_adc_buffer_predisable,
1609 };
1610 
1611 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1612 {
1613 	struct iio_poll_func *pf = p;
1614 	struct iio_dev *indio_dev = pf->indio_dev;
1615 	struct stm32_adc *adc = iio_priv(indio_dev);
1616 
1617 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1618 
1619 	/* reset buffer index */
1620 	adc->bufi = 0;
1621 	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1622 					   pf->timestamp);
1623 	iio_trigger_notify_done(indio_dev->trig);
1624 
1625 	/* re-enable eoc irq */
1626 	stm32_adc_conv_irq_enable(adc);
1627 
1628 	return IRQ_HANDLED;
1629 }
1630 
1631 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1632 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1633 	{
1634 		.name = "trigger_polarity_available",
1635 		.shared = IIO_SHARED_BY_ALL,
1636 		.read = iio_enum_available_read,
1637 		.private = (uintptr_t)&stm32_adc_trig_pol,
1638 	},
1639 	{},
1640 };
1641 
1642 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1643 {
1644 	struct device_node *node = indio_dev->dev.of_node;
1645 	struct stm32_adc *adc = iio_priv(indio_dev);
1646 	unsigned int i;
1647 	u32 res;
1648 
1649 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1650 		res = adc->cfg->adc_info->resolutions[0];
1651 
1652 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1653 		if (res == adc->cfg->adc_info->resolutions[i])
1654 			break;
1655 	if (i >= adc->cfg->adc_info->num_res) {
1656 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1657 		return -EINVAL;
1658 	}
1659 
1660 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1661 	adc->res = i;
1662 
1663 	return 0;
1664 }
1665 
1666 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1667 {
1668 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1669 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1670 	unsigned int smp, r = smpr->reg;
1671 
1672 	/* Determine sampling time (ADC clock cycles) */
1673 	period_ns = NSEC_PER_SEC / adc->common->rate;
1674 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1675 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1676 			break;
1677 	if (smp > STM32_ADC_MAX_SMP)
1678 		smp = STM32_ADC_MAX_SMP;
1679 
1680 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1681 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1682 }
1683 
1684 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1685 				    struct iio_chan_spec *chan, u32 vinp,
1686 				    u32 vinn, int scan_index, bool differential)
1687 {
1688 	struct stm32_adc *adc = iio_priv(indio_dev);
1689 	char *name = adc->chan_name[vinp];
1690 
1691 	chan->type = IIO_VOLTAGE;
1692 	chan->channel = vinp;
1693 	if (differential) {
1694 		chan->differential = 1;
1695 		chan->channel2 = vinn;
1696 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1697 	} else {
1698 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1699 	}
1700 	chan->datasheet_name = name;
1701 	chan->scan_index = scan_index;
1702 	chan->indexed = 1;
1703 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1704 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1705 					 BIT(IIO_CHAN_INFO_OFFSET);
1706 	chan->scan_type.sign = 'u';
1707 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1708 	chan->scan_type.storagebits = 16;
1709 	chan->ext_info = stm32_adc_ext_info;
1710 
1711 	/* pre-build selected channels mask */
1712 	adc->pcsel |= BIT(chan->channel);
1713 	if (differential) {
1714 		/* pre-build diff channels mask */
1715 		adc->difsel |= BIT(chan->channel);
1716 		/* Also add negative input to pre-selected channels */
1717 		adc->pcsel |= BIT(chan->channel2);
1718 	}
1719 }
1720 
1721 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1722 {
1723 	struct device_node *node = indio_dev->dev.of_node;
1724 	struct stm32_adc *adc = iio_priv(indio_dev);
1725 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1726 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1727 	struct property *prop;
1728 	const __be32 *cur;
1729 	struct iio_chan_spec *channels;
1730 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1731 	u32 val, smp = 0;
1732 
1733 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1734 	if (ret > adc_info->max_channels) {
1735 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1736 		return -EINVAL;
1737 	} else if (ret > 0) {
1738 		num_channels += ret;
1739 	}
1740 
1741 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1742 					      sizeof(*diff));
1743 	if (ret > adc_info->max_channels) {
1744 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1745 		return -EINVAL;
1746 	} else if (ret > 0) {
1747 		int size = ret * sizeof(*diff) / sizeof(u32);
1748 
1749 		num_diff = ret;
1750 		num_channels += ret;
1751 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1752 						 (u32 *)diff, size);
1753 		if (ret)
1754 			return ret;
1755 	}
1756 
1757 	if (!num_channels) {
1758 		dev_err(&indio_dev->dev, "No channels configured\n");
1759 		return -ENODATA;
1760 	}
1761 
1762 	/* Optional sample time is provided either for each, or all channels */
1763 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1764 	if (ret > 1 && ret != num_channels) {
1765 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1766 		return -EINVAL;
1767 	}
1768 
1769 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1770 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1771 	if (!channels)
1772 		return -ENOMEM;
1773 
1774 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1775 		if (val >= adc_info->max_channels) {
1776 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1777 			return -EINVAL;
1778 		}
1779 
1780 		/* Channel can't be configured both as single-ended & diff */
1781 		for (i = 0; i < num_diff; i++) {
1782 			if (val == diff[i].vinp) {
1783 				dev_err(&indio_dev->dev,
1784 					"channel %d miss-configured\n",	val);
1785 				return -EINVAL;
1786 			}
1787 		}
1788 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1789 					0, scan_index, false);
1790 		scan_index++;
1791 	}
1792 
1793 	for (i = 0; i < num_diff; i++) {
1794 		if (diff[i].vinp >= adc_info->max_channels ||
1795 		    diff[i].vinn >= adc_info->max_channels) {
1796 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1797 				diff[i].vinp, diff[i].vinn);
1798 			return -EINVAL;
1799 		}
1800 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1801 					diff[i].vinp, diff[i].vinn, scan_index,
1802 					true);
1803 		scan_index++;
1804 	}
1805 
1806 	for (i = 0; i < scan_index; i++) {
1807 		/*
1808 		 * Using of_property_read_u32_index(), smp value will only be
1809 		 * modified if valid u32 value can be decoded. This allows to
1810 		 * get either no value, 1 shared value for all indexes, or one
1811 		 * value per channel.
1812 		 */
1813 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1814 					   i, &smp);
1815 		/* Prepare sampling time settings */
1816 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1817 	}
1818 
1819 	indio_dev->num_channels = scan_index;
1820 	indio_dev->channels = channels;
1821 
1822 	return 0;
1823 }
1824 
1825 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1826 {
1827 	struct stm32_adc *adc = iio_priv(indio_dev);
1828 	struct dma_slave_config config;
1829 	int ret;
1830 
1831 	adc->dma_chan = dma_request_chan(dev, "rx");
1832 	if (IS_ERR(adc->dma_chan)) {
1833 		ret = PTR_ERR(adc->dma_chan);
1834 		if (ret != -ENODEV)
1835 			return dev_err_probe(dev, ret,
1836 					     "DMA channel request failed with\n");
1837 
1838 		/* DMA is optional: fall back to IRQ mode */
1839 		adc->dma_chan = NULL;
1840 		return 0;
1841 	}
1842 
1843 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1844 					 STM32_DMA_BUFFER_SIZE,
1845 					 &adc->rx_dma_buf, GFP_KERNEL);
1846 	if (!adc->rx_buf) {
1847 		ret = -ENOMEM;
1848 		goto err_release;
1849 	}
1850 
1851 	/* Configure DMA channel to read data register */
1852 	memset(&config, 0, sizeof(config));
1853 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1854 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1855 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1856 
1857 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1858 	if (ret)
1859 		goto err_free;
1860 
1861 	return 0;
1862 
1863 err_free:
1864 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1865 			  adc->rx_buf, adc->rx_dma_buf);
1866 err_release:
1867 	dma_release_channel(adc->dma_chan);
1868 
1869 	return ret;
1870 }
1871 
1872 static int stm32_adc_probe(struct platform_device *pdev)
1873 {
1874 	struct iio_dev *indio_dev;
1875 	struct device *dev = &pdev->dev;
1876 	irqreturn_t (*handler)(int irq, void *p) = NULL;
1877 	struct stm32_adc *adc;
1878 	int ret;
1879 
1880 	if (!pdev->dev.of_node)
1881 		return -ENODEV;
1882 
1883 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1884 	if (!indio_dev)
1885 		return -ENOMEM;
1886 
1887 	adc = iio_priv(indio_dev);
1888 	adc->common = dev_get_drvdata(pdev->dev.parent);
1889 	spin_lock_init(&adc->lock);
1890 	init_completion(&adc->completion);
1891 	adc->cfg = (const struct stm32_adc_cfg *)
1892 		of_match_device(dev->driver->of_match_table, dev)->data;
1893 
1894 	indio_dev->name = dev_name(&pdev->dev);
1895 	indio_dev->dev.of_node = pdev->dev.of_node;
1896 	indio_dev->info = &stm32_adc_iio_info;
1897 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1898 
1899 	platform_set_drvdata(pdev, indio_dev);
1900 
1901 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1902 	if (ret != 0) {
1903 		dev_err(&pdev->dev, "missing reg property\n");
1904 		return -EINVAL;
1905 	}
1906 
1907 	adc->irq = platform_get_irq(pdev, 0);
1908 	if (adc->irq < 0)
1909 		return adc->irq;
1910 
1911 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1912 					stm32_adc_threaded_isr,
1913 					0, pdev->name, indio_dev);
1914 	if (ret) {
1915 		dev_err(&pdev->dev, "failed to request IRQ\n");
1916 		return ret;
1917 	}
1918 
1919 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1920 	if (IS_ERR(adc->clk)) {
1921 		ret = PTR_ERR(adc->clk);
1922 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1923 			adc->clk = NULL;
1924 		} else {
1925 			dev_err(&pdev->dev, "Can't get clock\n");
1926 			return ret;
1927 		}
1928 	}
1929 
1930 	ret = stm32_adc_of_get_resolution(indio_dev);
1931 	if (ret < 0)
1932 		return ret;
1933 
1934 	ret = stm32_adc_chan_of_init(indio_dev);
1935 	if (ret < 0)
1936 		return ret;
1937 
1938 	ret = stm32_adc_dma_request(dev, indio_dev);
1939 	if (ret < 0)
1940 		return ret;
1941 
1942 	if (!adc->dma_chan)
1943 		handler = &stm32_adc_trigger_handler;
1944 
1945 	ret = iio_triggered_buffer_setup(indio_dev,
1946 					 &iio_pollfunc_store_time, handler,
1947 					 &stm32_adc_buffer_setup_ops);
1948 	if (ret) {
1949 		dev_err(&pdev->dev, "buffer setup failed\n");
1950 		goto err_dma_disable;
1951 	}
1952 
1953 	/* Get stm32-adc-core PM online */
1954 	pm_runtime_get_noresume(dev);
1955 	pm_runtime_set_active(dev);
1956 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1957 	pm_runtime_use_autosuspend(dev);
1958 	pm_runtime_enable(dev);
1959 
1960 	ret = stm32_adc_hw_start(dev);
1961 	if (ret)
1962 		goto err_buffer_cleanup;
1963 
1964 	ret = iio_device_register(indio_dev);
1965 	if (ret) {
1966 		dev_err(&pdev->dev, "iio dev register failed\n");
1967 		goto err_hw_stop;
1968 	}
1969 
1970 	pm_runtime_mark_last_busy(dev);
1971 	pm_runtime_put_autosuspend(dev);
1972 
1973 	return 0;
1974 
1975 err_hw_stop:
1976 	stm32_adc_hw_stop(dev);
1977 
1978 err_buffer_cleanup:
1979 	pm_runtime_disable(dev);
1980 	pm_runtime_set_suspended(dev);
1981 	pm_runtime_put_noidle(dev);
1982 	iio_triggered_buffer_cleanup(indio_dev);
1983 
1984 err_dma_disable:
1985 	if (adc->dma_chan) {
1986 		dma_free_coherent(adc->dma_chan->device->dev,
1987 				  STM32_DMA_BUFFER_SIZE,
1988 				  adc->rx_buf, adc->rx_dma_buf);
1989 		dma_release_channel(adc->dma_chan);
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 static int stm32_adc_remove(struct platform_device *pdev)
1996 {
1997 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1998 	struct stm32_adc *adc = iio_priv(indio_dev);
1999 
2000 	pm_runtime_get_sync(&pdev->dev);
2001 	iio_device_unregister(indio_dev);
2002 	stm32_adc_hw_stop(&pdev->dev);
2003 	pm_runtime_disable(&pdev->dev);
2004 	pm_runtime_set_suspended(&pdev->dev);
2005 	pm_runtime_put_noidle(&pdev->dev);
2006 	iio_triggered_buffer_cleanup(indio_dev);
2007 	if (adc->dma_chan) {
2008 		dma_free_coherent(adc->dma_chan->device->dev,
2009 				  STM32_DMA_BUFFER_SIZE,
2010 				  adc->rx_buf, adc->rx_dma_buf);
2011 		dma_release_channel(adc->dma_chan);
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 #if defined(CONFIG_PM_SLEEP)
2018 static int stm32_adc_suspend(struct device *dev)
2019 {
2020 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2021 
2022 	if (iio_buffer_enabled(indio_dev))
2023 		stm32_adc_buffer_predisable(indio_dev);
2024 
2025 	return pm_runtime_force_suspend(dev);
2026 }
2027 
2028 static int stm32_adc_resume(struct device *dev)
2029 {
2030 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2031 	int ret;
2032 
2033 	ret = pm_runtime_force_resume(dev);
2034 	if (ret < 0)
2035 		return ret;
2036 
2037 	if (!iio_buffer_enabled(indio_dev))
2038 		return 0;
2039 
2040 	ret = stm32_adc_update_scan_mode(indio_dev,
2041 					 indio_dev->active_scan_mask);
2042 	if (ret < 0)
2043 		return ret;
2044 
2045 	return stm32_adc_buffer_postenable(indio_dev);
2046 }
2047 #endif
2048 
2049 #if defined(CONFIG_PM)
2050 static int stm32_adc_runtime_suspend(struct device *dev)
2051 {
2052 	return stm32_adc_hw_stop(dev);
2053 }
2054 
2055 static int stm32_adc_runtime_resume(struct device *dev)
2056 {
2057 	return stm32_adc_hw_start(dev);
2058 }
2059 #endif
2060 
2061 static const struct dev_pm_ops stm32_adc_pm_ops = {
2062 	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2063 	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2064 			   NULL)
2065 };
2066 
2067 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2068 	.regs = &stm32f4_adc_regspec,
2069 	.adc_info = &stm32f4_adc_info,
2070 	.trigs = stm32f4_adc_trigs,
2071 	.clk_required = true,
2072 	.start_conv = stm32f4_adc_start_conv,
2073 	.stop_conv = stm32f4_adc_stop_conv,
2074 	.smp_cycles = stm32f4_adc_smp_cycles,
2075 	.irq_clear = stm32f4_adc_irq_clear,
2076 };
2077 
2078 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2079 	.regs = &stm32h7_adc_regspec,
2080 	.adc_info = &stm32h7_adc_info,
2081 	.trigs = stm32h7_adc_trigs,
2082 	.start_conv = stm32h7_adc_start_conv,
2083 	.stop_conv = stm32h7_adc_stop_conv,
2084 	.prepare = stm32h7_adc_prepare,
2085 	.unprepare = stm32h7_adc_unprepare,
2086 	.smp_cycles = stm32h7_adc_smp_cycles,
2087 	.irq_clear = stm32h7_adc_irq_clear,
2088 };
2089 
2090 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2091 	.regs = &stm32h7_adc_regspec,
2092 	.adc_info = &stm32h7_adc_info,
2093 	.trigs = stm32h7_adc_trigs,
2094 	.has_vregready = true,
2095 	.start_conv = stm32h7_adc_start_conv,
2096 	.stop_conv = stm32h7_adc_stop_conv,
2097 	.prepare = stm32h7_adc_prepare,
2098 	.unprepare = stm32h7_adc_unprepare,
2099 	.smp_cycles = stm32h7_adc_smp_cycles,
2100 	.irq_clear = stm32h7_adc_irq_clear,
2101 };
2102 
2103 static const struct of_device_id stm32_adc_of_match[] = {
2104 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2105 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2106 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2107 	{},
2108 };
2109 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2110 
2111 static struct platform_driver stm32_adc_driver = {
2112 	.probe = stm32_adc_probe,
2113 	.remove = stm32_adc_remove,
2114 	.driver = {
2115 		.name = "stm32-adc",
2116 		.of_match_table = stm32_adc_of_match,
2117 		.pm = &stm32_adc_pm_ops,
2118 	},
2119 };
2120 module_platform_driver(stm32_adc_driver);
2121 
2122 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2123 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2124 MODULE_LICENSE("GPL v2");
2125 MODULE_ALIAS("platform:stm32-adc");
2126