xref: /linux/drivers/iio/adc/stm32-adc.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 
30 #include "stm32-adc-core.h"
31 
32 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
33 #define STM32H7_LINCALFACT_NUM		6
34 
35 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
36 #define STM32H7_BOOST_CLKRATE		20000000UL
37 
38 #define STM32_ADC_CH_MAX		20	/* max number of channels */
39 #define STM32_ADC_CH_SZ			16	/* max channel name size */
40 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
41 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
42 #define STM32_ADC_TIMEOUT_US		100000
43 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
44 #define STM32_ADC_HW_STOP_DELAY_MS	100
45 #define STM32_ADC_VREFINT_VOLTAGE	3300
46 
47 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
48 
49 /* External trigger enable */
50 enum stm32_adc_exten {
51 	STM32_EXTEN_SWTRIG,
52 	STM32_EXTEN_HWTRIG_RISING_EDGE,
53 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
54 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
55 };
56 
57 /* extsel - trigger mux selection value */
58 enum stm32_adc_extsel {
59 	STM32_EXT0,
60 	STM32_EXT1,
61 	STM32_EXT2,
62 	STM32_EXT3,
63 	STM32_EXT4,
64 	STM32_EXT5,
65 	STM32_EXT6,
66 	STM32_EXT7,
67 	STM32_EXT8,
68 	STM32_EXT9,
69 	STM32_EXT10,
70 	STM32_EXT11,
71 	STM32_EXT12,
72 	STM32_EXT13,
73 	STM32_EXT14,
74 	STM32_EXT15,
75 	STM32_EXT16,
76 	STM32_EXT17,
77 	STM32_EXT18,
78 	STM32_EXT19,
79 	STM32_EXT20,
80 };
81 
82 enum stm32_adc_int_ch {
83 	STM32_ADC_INT_CH_NONE = -1,
84 	STM32_ADC_INT_CH_VDDCORE,
85 	STM32_ADC_INT_CH_VREFINT,
86 	STM32_ADC_INT_CH_VBAT,
87 	STM32_ADC_INT_CH_NB,
88 };
89 
90 /**
91  * struct stm32_adc_ic - ADC internal channels
92  * @name:	name of the internal channel
93  * @idx:	internal channel enum index
94  */
95 struct stm32_adc_ic {
96 	const char *name;
97 	u32 idx;
98 };
99 
100 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
101 	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
102 	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
103 	{ "vbat", STM32_ADC_INT_CH_VBAT },
104 };
105 
106 /**
107  * struct stm32_adc_trig_info - ADC trigger info
108  * @name:		name of the trigger, corresponding to its source
109  * @extsel:		trigger selection
110  */
111 struct stm32_adc_trig_info {
112 	const char *name;
113 	enum stm32_adc_extsel extsel;
114 };
115 
116 /**
117  * struct stm32_adc_calib - optional adc calibration data
118  * @calfact_s: Calibration offset for single ended channels
119  * @calfact_d: Calibration offset in differential
120  * @lincalfact: Linearity calibration factor
121  * @calibrated: Indicates calibration status
122  */
123 struct stm32_adc_calib {
124 	u32			calfact_s;
125 	u32			calfact_d;
126 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
127 	bool			calibrated;
128 };
129 
130 /**
131  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
132  * @reg:		register offset
133  * @mask:		bitfield mask
134  * @shift:		left shift
135  */
136 struct stm32_adc_regs {
137 	int reg;
138 	int mask;
139 	int shift;
140 };
141 
142 /**
143  * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
144  * @vrefint_cal:	vrefint calibration value from nvmem
145  * @vrefint_data:	vrefint actual value
146  */
147 struct stm32_adc_vrefint {
148 	u32 vrefint_cal;
149 	u32 vrefint_data;
150 };
151 
152 /**
153  * struct stm32_adc_regspec - stm32 registers definition
154  * @dr:			data register offset
155  * @ier_eoc:		interrupt enable register & eocie bitfield
156  * @ier_ovr:		interrupt enable register & overrun bitfield
157  * @isr_eoc:		interrupt status register & eoc bitfield
158  * @isr_ovr:		interrupt status register & overrun bitfield
159  * @sqr:		reference to sequence registers array
160  * @exten:		trigger control register & bitfield
161  * @extsel:		trigger selection register & bitfield
162  * @res:		resolution selection register & bitfield
163  * @smpr:		smpr1 & smpr2 registers offset array
164  * @smp_bits:		smpr1 & smpr2 index and bitfields
165  * @or_vdd:		option register & vddcore bitfield
166  * @ccr_vbat:		common register & vbat bitfield
167  * @ccr_vref:		common register & vrefint bitfield
168  */
169 struct stm32_adc_regspec {
170 	const u32 dr;
171 	const struct stm32_adc_regs ier_eoc;
172 	const struct stm32_adc_regs ier_ovr;
173 	const struct stm32_adc_regs isr_eoc;
174 	const struct stm32_adc_regs isr_ovr;
175 	const struct stm32_adc_regs *sqr;
176 	const struct stm32_adc_regs exten;
177 	const struct stm32_adc_regs extsel;
178 	const struct stm32_adc_regs res;
179 	const u32 smpr[2];
180 	const struct stm32_adc_regs *smp_bits;
181 	const struct stm32_adc_regs or_vdd;
182 	const struct stm32_adc_regs ccr_vbat;
183 	const struct stm32_adc_regs ccr_vref;
184 };
185 
186 struct stm32_adc;
187 
188 /**
189  * struct stm32_adc_cfg - stm32 compatible configuration data
190  * @regs:		registers descriptions
191  * @adc_info:		per instance input channels definitions
192  * @trigs:		external trigger sources
193  * @clk_required:	clock is required
194  * @has_vregready:	vregready status flag presence
195  * @prepare:		optional prepare routine (power-up, enable)
196  * @start_conv:		routine to start conversions
197  * @stop_conv:		routine to stop conversions
198  * @unprepare:		optional unprepare routine (disable, power-down)
199  * @irq_clear:		routine to clear irqs
200  * @smp_cycles:		programmable sampling time (ADC clock cycles)
201  * @ts_vrefint_ns:	vrefint minimum sampling time in ns
202  */
203 struct stm32_adc_cfg {
204 	const struct stm32_adc_regspec	*regs;
205 	const struct stm32_adc_info	*adc_info;
206 	struct stm32_adc_trig_info	*trigs;
207 	bool clk_required;
208 	bool has_vregready;
209 	int (*prepare)(struct iio_dev *);
210 	void (*start_conv)(struct iio_dev *, bool dma);
211 	void (*stop_conv)(struct iio_dev *);
212 	void (*unprepare)(struct iio_dev *);
213 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
214 	const unsigned int *smp_cycles;
215 	const unsigned int ts_vrefint_ns;
216 };
217 
218 /**
219  * struct stm32_adc - private data of each ADC IIO instance
220  * @common:		reference to ADC block common data
221  * @offset:		ADC instance register offset in ADC block
222  * @cfg:		compatible configuration data
223  * @completion:		end of single conversion completion
224  * @buffer:		data buffer + 8 bytes for timestamp if enabled
225  * @clk:		clock for this adc instance
226  * @irq:		interrupt for this adc instance
227  * @lock:		spinlock
228  * @bufi:		data buffer index
229  * @num_conv:		expected number of scan conversions
230  * @res:		data resolution (e.g. RES bitfield value)
231  * @trigger_polarity:	external trigger polarity (e.g. exten)
232  * @dma_chan:		dma channel
233  * @rx_buf:		dma rx buffer cpu address
234  * @rx_dma_buf:		dma rx buffer bus address
235  * @rx_buf_sz:		dma rx buffer size
236  * @difsel:		bitmask to set single-ended/differential channel
237  * @pcsel:		bitmask to preselect channels on some devices
238  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
239  * @cal:		optional calibration data on some devices
240  * @vrefint:		internal reference voltage data
241  * @chan_name:		channel name array
242  * @num_diff:		number of differential channels
243  * @int_ch:		internal channel indexes array
244  */
245 struct stm32_adc {
246 	struct stm32_adc_common	*common;
247 	u32			offset;
248 	const struct stm32_adc_cfg	*cfg;
249 	struct completion	completion;
250 	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
251 	struct clk		*clk;
252 	int			irq;
253 	spinlock_t		lock;		/* interrupt lock */
254 	unsigned int		bufi;
255 	unsigned int		num_conv;
256 	u32			res;
257 	u32			trigger_polarity;
258 	struct dma_chan		*dma_chan;
259 	u8			*rx_buf;
260 	dma_addr_t		rx_dma_buf;
261 	unsigned int		rx_buf_sz;
262 	u32			difsel;
263 	u32			pcsel;
264 	u32			smpr_val[2];
265 	struct stm32_adc_calib	cal;
266 	struct stm32_adc_vrefint vrefint;
267 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
268 	u32			num_diff;
269 	int			int_ch[STM32_ADC_INT_CH_NB];
270 };
271 
272 struct stm32_adc_diff_channel {
273 	u32 vinp;
274 	u32 vinn;
275 };
276 
277 /**
278  * struct stm32_adc_info - stm32 ADC, per instance config data
279  * @max_channels:	Number of channels
280  * @resolutions:	available resolutions
281  * @num_res:		number of available resolutions
282  */
283 struct stm32_adc_info {
284 	int max_channels;
285 	const unsigned int *resolutions;
286 	const unsigned int num_res;
287 };
288 
289 static const unsigned int stm32f4_adc_resolutions[] = {
290 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
291 	12, 10, 8, 6,
292 };
293 
294 /* stm32f4 can have up to 16 channels */
295 static const struct stm32_adc_info stm32f4_adc_info = {
296 	.max_channels = 16,
297 	.resolutions = stm32f4_adc_resolutions,
298 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
299 };
300 
301 static const unsigned int stm32h7_adc_resolutions[] = {
302 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
303 	16, 14, 12, 10, 8,
304 };
305 
306 /* stm32h7 can have up to 20 channels */
307 static const struct stm32_adc_info stm32h7_adc_info = {
308 	.max_channels = STM32_ADC_CH_MAX,
309 	.resolutions = stm32h7_adc_resolutions,
310 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
311 };
312 
313 /*
314  * stm32f4_sq - describe regular sequence registers
315  * - L: sequence len (register & bit field)
316  * - SQ1..SQ16: sequence entries (register & bit field)
317  */
318 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
319 	/* L: len bit field description to be kept as first element */
320 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
321 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
322 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
323 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
324 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
325 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
326 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
327 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
328 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
329 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
330 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
331 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
332 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
333 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
334 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
335 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
336 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
337 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
338 };
339 
340 /* STM32F4 external trigger sources for all instances */
341 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
342 	{ TIM1_CH1, STM32_EXT0 },
343 	{ TIM1_CH2, STM32_EXT1 },
344 	{ TIM1_CH3, STM32_EXT2 },
345 	{ TIM2_CH2, STM32_EXT3 },
346 	{ TIM2_CH3, STM32_EXT4 },
347 	{ TIM2_CH4, STM32_EXT5 },
348 	{ TIM2_TRGO, STM32_EXT6 },
349 	{ TIM3_CH1, STM32_EXT7 },
350 	{ TIM3_TRGO, STM32_EXT8 },
351 	{ TIM4_CH4, STM32_EXT9 },
352 	{ TIM5_CH1, STM32_EXT10 },
353 	{ TIM5_CH2, STM32_EXT11 },
354 	{ TIM5_CH3, STM32_EXT12 },
355 	{ TIM8_CH1, STM32_EXT13 },
356 	{ TIM8_TRGO, STM32_EXT14 },
357 	{}, /* sentinel */
358 };
359 
360 /*
361  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
362  * Sorted so it can be indexed by channel number.
363  */
364 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
365 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
366 	{ 1, GENMASK(2, 0), 0 },
367 	{ 1, GENMASK(5, 3), 3 },
368 	{ 1, GENMASK(8, 6), 6 },
369 	{ 1, GENMASK(11, 9), 9 },
370 	{ 1, GENMASK(14, 12), 12 },
371 	{ 1, GENMASK(17, 15), 15 },
372 	{ 1, GENMASK(20, 18), 18 },
373 	{ 1, GENMASK(23, 21), 21 },
374 	{ 1, GENMASK(26, 24), 24 },
375 	{ 1, GENMASK(29, 27), 27 },
376 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
377 	{ 0, GENMASK(2, 0), 0 },
378 	{ 0, GENMASK(5, 3), 3 },
379 	{ 0, GENMASK(8, 6), 6 },
380 	{ 0, GENMASK(11, 9), 9 },
381 	{ 0, GENMASK(14, 12), 12 },
382 	{ 0, GENMASK(17, 15), 15 },
383 	{ 0, GENMASK(20, 18), 18 },
384 	{ 0, GENMASK(23, 21), 21 },
385 	{ 0, GENMASK(26, 24), 24 },
386 };
387 
388 /* STM32F4 programmable sampling time (ADC clock cycles) */
389 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
390 	3, 15, 28, 56, 84, 112, 144, 480,
391 };
392 
393 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
394 	.dr = STM32F4_ADC_DR,
395 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
396 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
397 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
398 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
399 	.sqr = stm32f4_sq,
400 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
401 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
402 		    STM32F4_EXTSEL_SHIFT },
403 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
404 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
405 	.smp_bits = stm32f4_smp_bits,
406 };
407 
408 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
409 	/* L: len bit field description to be kept as first element */
410 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
411 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
412 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
413 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
414 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
415 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
416 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
417 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
418 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
419 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
420 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
421 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
422 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
423 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
424 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
425 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
426 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
427 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
428 };
429 
430 /* STM32H7 external trigger sources for all instances */
431 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
432 	{ TIM1_CH1, STM32_EXT0 },
433 	{ TIM1_CH2, STM32_EXT1 },
434 	{ TIM1_CH3, STM32_EXT2 },
435 	{ TIM2_CH2, STM32_EXT3 },
436 	{ TIM3_TRGO, STM32_EXT4 },
437 	{ TIM4_CH4, STM32_EXT5 },
438 	{ TIM8_TRGO, STM32_EXT7 },
439 	{ TIM8_TRGO2, STM32_EXT8 },
440 	{ TIM1_TRGO, STM32_EXT9 },
441 	{ TIM1_TRGO2, STM32_EXT10 },
442 	{ TIM2_TRGO, STM32_EXT11 },
443 	{ TIM4_TRGO, STM32_EXT12 },
444 	{ TIM6_TRGO, STM32_EXT13 },
445 	{ TIM15_TRGO, STM32_EXT14 },
446 	{ TIM3_CH4, STM32_EXT15 },
447 	{ LPTIM1_OUT, STM32_EXT18 },
448 	{ LPTIM2_OUT, STM32_EXT19 },
449 	{ LPTIM3_OUT, STM32_EXT20 },
450 	{},
451 };
452 
453 /*
454  * stm32h7_smp_bits - describe sampling time register index & bit fields
455  * Sorted so it can be indexed by channel number.
456  */
457 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
458 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
459 	{ 0, GENMASK(2, 0), 0 },
460 	{ 0, GENMASK(5, 3), 3 },
461 	{ 0, GENMASK(8, 6), 6 },
462 	{ 0, GENMASK(11, 9), 9 },
463 	{ 0, GENMASK(14, 12), 12 },
464 	{ 0, GENMASK(17, 15), 15 },
465 	{ 0, GENMASK(20, 18), 18 },
466 	{ 0, GENMASK(23, 21), 21 },
467 	{ 0, GENMASK(26, 24), 24 },
468 	{ 0, GENMASK(29, 27), 27 },
469 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
470 	{ 1, GENMASK(2, 0), 0 },
471 	{ 1, GENMASK(5, 3), 3 },
472 	{ 1, GENMASK(8, 6), 6 },
473 	{ 1, GENMASK(11, 9), 9 },
474 	{ 1, GENMASK(14, 12), 12 },
475 	{ 1, GENMASK(17, 15), 15 },
476 	{ 1, GENMASK(20, 18), 18 },
477 	{ 1, GENMASK(23, 21), 21 },
478 	{ 1, GENMASK(26, 24), 24 },
479 	{ 1, GENMASK(29, 27), 27 },
480 };
481 
482 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
483 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
484 	1, 2, 8, 16, 32, 64, 387, 810,
485 };
486 
487 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
488 	.dr = STM32H7_ADC_DR,
489 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
490 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
491 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
492 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
493 	.sqr = stm32h7_sq,
494 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
495 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
496 		    STM32H7_EXTSEL_SHIFT },
497 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
498 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
499 	.smp_bits = stm32h7_smp_bits,
500 };
501 
502 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
503 	.dr = STM32H7_ADC_DR,
504 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
505 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
506 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
507 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
508 	.sqr = stm32h7_sq,
509 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
510 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
511 		    STM32H7_EXTSEL_SHIFT },
512 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
513 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
514 	.smp_bits = stm32h7_smp_bits,
515 	.or_vdd = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
516 	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
517 	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
518 };
519 
520 /*
521  * STM32 ADC registers access routines
522  * @adc: stm32 adc instance
523  * @reg: reg offset in adc instance
524  *
525  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
526  * for adc1, adc2 and adc3.
527  */
528 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
529 {
530 	return readl_relaxed(adc->common->base + adc->offset + reg);
531 }
532 
533 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
534 
535 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
536 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
537 			   cond, sleep_us, timeout_us)
538 
539 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
540 {
541 	return readw_relaxed(adc->common->base + adc->offset + reg);
542 }
543 
544 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
545 {
546 	writel_relaxed(val, adc->common->base + adc->offset + reg);
547 }
548 
549 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&adc->lock, flags);
554 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
555 	spin_unlock_irqrestore(&adc->lock, flags);
556 }
557 
558 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
559 {
560 	spin_lock(&adc->common->lock);
561 	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
562 		       adc->common->base + reg);
563 	spin_unlock(&adc->common->lock);
564 }
565 
566 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
567 {
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&adc->lock, flags);
571 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
572 	spin_unlock_irqrestore(&adc->lock, flags);
573 }
574 
575 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
576 {
577 	spin_lock(&adc->common->lock);
578 	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
579 		       adc->common->base + reg);
580 	spin_unlock(&adc->common->lock);
581 }
582 
583 /**
584  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
585  * @adc: stm32 adc instance
586  */
587 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
588 {
589 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
590 			   adc->cfg->regs->ier_eoc.mask);
591 };
592 
593 /**
594  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
595  * @adc: stm32 adc instance
596  */
597 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
598 {
599 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 			   adc->cfg->regs->ier_eoc.mask);
601 }
602 
603 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
604 {
605 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
606 			   adc->cfg->regs->ier_ovr.mask);
607 }
608 
609 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
610 {
611 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
612 			   adc->cfg->regs->ier_ovr.mask);
613 }
614 
615 static void stm32_adc_set_res(struct stm32_adc *adc)
616 {
617 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
618 	u32 val;
619 
620 	val = stm32_adc_readl(adc, res->reg);
621 	val = (val & ~res->mask) | (adc->res << res->shift);
622 	stm32_adc_writel(adc, res->reg, val);
623 }
624 
625 static int stm32_adc_hw_stop(struct device *dev)
626 {
627 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
628 	struct stm32_adc *adc = iio_priv(indio_dev);
629 
630 	if (adc->cfg->unprepare)
631 		adc->cfg->unprepare(indio_dev);
632 
633 	clk_disable_unprepare(adc->clk);
634 
635 	return 0;
636 }
637 
638 static int stm32_adc_hw_start(struct device *dev)
639 {
640 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
641 	struct stm32_adc *adc = iio_priv(indio_dev);
642 	int ret;
643 
644 	ret = clk_prepare_enable(adc->clk);
645 	if (ret)
646 		return ret;
647 
648 	stm32_adc_set_res(adc);
649 
650 	if (adc->cfg->prepare) {
651 		ret = adc->cfg->prepare(indio_dev);
652 		if (ret)
653 			goto err_clk_dis;
654 	}
655 
656 	return 0;
657 
658 err_clk_dis:
659 	clk_disable_unprepare(adc->clk);
660 
661 	return ret;
662 }
663 
664 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
665 {
666 	struct stm32_adc *adc = iio_priv(indio_dev);
667 	u32 i;
668 
669 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
670 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
671 			continue;
672 
673 		switch (i) {
674 		case STM32_ADC_INT_CH_VDDCORE:
675 			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
676 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vdd.reg,
677 					   adc->cfg->regs->or_vdd.mask);
678 			break;
679 		case STM32_ADC_INT_CH_VREFINT:
680 			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
681 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
682 						  adc->cfg->regs->ccr_vref.mask);
683 			break;
684 		case STM32_ADC_INT_CH_VBAT:
685 			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
686 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
687 						  adc->cfg->regs->ccr_vbat.mask);
688 			break;
689 		}
690 	}
691 }
692 
693 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
694 {
695 	u32 i;
696 
697 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
698 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
699 			continue;
700 
701 		switch (i) {
702 		case STM32_ADC_INT_CH_VDDCORE:
703 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vdd.reg,
704 					   adc->cfg->regs->or_vdd.mask);
705 			break;
706 		case STM32_ADC_INT_CH_VREFINT:
707 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
708 						  adc->cfg->regs->ccr_vref.mask);
709 			break;
710 		case STM32_ADC_INT_CH_VBAT:
711 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
712 						  adc->cfg->regs->ccr_vbat.mask);
713 			break;
714 		}
715 	}
716 }
717 
718 /**
719  * stm32f4_adc_start_conv() - Start conversions for regular channels.
720  * @indio_dev: IIO device instance
721  * @dma: use dma to transfer conversion result
722  *
723  * Start conversions for regular channels.
724  * Also take care of normal or DMA mode. Circular DMA may be used for regular
725  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
726  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
727  */
728 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
729 {
730 	struct stm32_adc *adc = iio_priv(indio_dev);
731 
732 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
733 
734 	if (dma)
735 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
736 				   STM32F4_DMA | STM32F4_DDS);
737 
738 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
739 
740 	/* Wait for Power-up time (tSTAB from datasheet) */
741 	usleep_range(2, 3);
742 
743 	/* Software start ? (e.g. trigger detection disabled ?) */
744 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
745 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
746 }
747 
748 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
749 {
750 	struct stm32_adc *adc = iio_priv(indio_dev);
751 
752 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
753 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
754 
755 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
756 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
757 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
758 }
759 
760 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
761 {
762 	struct stm32_adc *adc = iio_priv(indio_dev);
763 
764 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
765 }
766 
767 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
768 {
769 	struct stm32_adc *adc = iio_priv(indio_dev);
770 	enum stm32h7_adc_dmngt dmngt;
771 	unsigned long flags;
772 	u32 val;
773 
774 	if (dma)
775 		dmngt = STM32H7_DMNGT_DMA_CIRC;
776 	else
777 		dmngt = STM32H7_DMNGT_DR_ONLY;
778 
779 	spin_lock_irqsave(&adc->lock, flags);
780 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
781 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
782 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
783 	spin_unlock_irqrestore(&adc->lock, flags);
784 
785 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
786 }
787 
788 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
789 {
790 	struct stm32_adc *adc = iio_priv(indio_dev);
791 	int ret;
792 	u32 val;
793 
794 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
795 
796 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 					   !(val & (STM32H7_ADSTART)),
798 					   100, STM32_ADC_TIMEOUT_US);
799 	if (ret)
800 		dev_warn(&indio_dev->dev, "stop failed\n");
801 
802 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
803 }
804 
805 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
806 {
807 	struct stm32_adc *adc = iio_priv(indio_dev);
808 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
809 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
810 }
811 
812 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
813 {
814 	struct stm32_adc *adc = iio_priv(indio_dev);
815 	int ret;
816 	u32 val;
817 
818 	/* Exit deep power down, then enable ADC voltage regulator */
819 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
820 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
821 
822 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
823 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
824 
825 	/* Wait for startup time */
826 	if (!adc->cfg->has_vregready) {
827 		usleep_range(10, 20);
828 		return 0;
829 	}
830 
831 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
832 					   val & STM32MP1_VREGREADY, 100,
833 					   STM32_ADC_TIMEOUT_US);
834 	if (ret) {
835 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
836 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
837 	}
838 
839 	return ret;
840 }
841 
842 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
843 {
844 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
845 
846 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
847 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
848 }
849 
850 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
851 {
852 	struct stm32_adc *adc = iio_priv(indio_dev);
853 	int ret;
854 	u32 val;
855 
856 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
857 
858 	/* Poll for ADRDY to be set (after adc startup time) */
859 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
860 					   val & STM32H7_ADRDY,
861 					   100, STM32_ADC_TIMEOUT_US);
862 	if (ret) {
863 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
864 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
865 	} else {
866 		/* Clear ADRDY by writing one */
867 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
868 	}
869 
870 	return ret;
871 }
872 
873 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
874 {
875 	struct stm32_adc *adc = iio_priv(indio_dev);
876 	int ret;
877 	u32 val;
878 
879 	if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
880 		return;
881 
882 	/* Disable ADC and wait until it's effectively disabled */
883 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
884 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
885 					   !(val & STM32H7_ADEN), 100,
886 					   STM32_ADC_TIMEOUT_US);
887 	if (ret)
888 		dev_warn(&indio_dev->dev, "Failed to disable\n");
889 }
890 
891 /**
892  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
893  * @indio_dev: IIO device instance
894  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
895  */
896 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
897 {
898 	struct stm32_adc *adc = iio_priv(indio_dev);
899 	int i, ret;
900 	u32 lincalrdyw_mask, val;
901 
902 	/* Read linearity calibration */
903 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
904 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
905 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
906 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
907 
908 		/* Poll: wait calib data to be ready in CALFACT2 register */
909 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
910 						   !(val & lincalrdyw_mask),
911 						   100, STM32_ADC_TIMEOUT_US);
912 		if (ret) {
913 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
914 			return ret;
915 		}
916 
917 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
918 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
919 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
920 
921 		lincalrdyw_mask >>= 1;
922 	}
923 
924 	/* Read offset calibration */
925 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
926 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
927 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
928 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
929 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
930 	adc->cal.calibrated = true;
931 
932 	return 0;
933 }
934 
935 /**
936  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
937  * @indio_dev: IIO device instance
938  * Note: ADC must be enabled, with no on-going conversions.
939  */
940 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
941 {
942 	struct stm32_adc *adc = iio_priv(indio_dev);
943 	int i, ret;
944 	u32 lincalrdyw_mask, val;
945 
946 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
947 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
948 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
949 
950 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
951 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
952 		/*
953 		 * Write saved calibration data to shadow registers:
954 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
955 		 * data write. Then poll to wait for complete transfer.
956 		 */
957 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
958 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
959 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
960 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
961 						   val & lincalrdyw_mask,
962 						   100, STM32_ADC_TIMEOUT_US);
963 		if (ret) {
964 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
965 			return ret;
966 		}
967 
968 		/*
969 		 * Read back calibration data, has two effects:
970 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
971 		 *   for next time calibration needs to be restored.
972 		 * - BTW, bit clear triggers a read, then check data has been
973 		 *   correctly written.
974 		 */
975 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
976 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
977 						   !(val & lincalrdyw_mask),
978 						   100, STM32_ADC_TIMEOUT_US);
979 		if (ret) {
980 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
981 			return ret;
982 		}
983 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
984 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
985 			dev_err(&indio_dev->dev, "calfact not consistent\n");
986 			return -EIO;
987 		}
988 
989 		lincalrdyw_mask >>= 1;
990 	}
991 
992 	return 0;
993 }
994 
995 /*
996  * Fixed timeout value for ADC calibration.
997  * worst cases:
998  * - low clock frequency
999  * - maximum prescalers
1000  * Calibration requires:
1001  * - 131,072 ADC clock cycle for the linear calibration
1002  * - 20 ADC clock cycle for the offset calibration
1003  *
1004  * Set to 100ms for now
1005  */
1006 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1007 
1008 /**
1009  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1010  * @indio_dev: IIO device instance
1011  * Note: Must be called once ADC is out of power down.
1012  */
1013 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
1014 {
1015 	struct stm32_adc *adc = iio_priv(indio_dev);
1016 	int ret;
1017 	u32 val;
1018 
1019 	if (adc->cal.calibrated)
1020 		return true;
1021 
1022 	/* ADC must be disabled for calibration */
1023 	stm32h7_adc_disable(indio_dev);
1024 
1025 	/*
1026 	 * Select calibration mode:
1027 	 * - Offset calibration for single ended inputs
1028 	 * - No linearity calibration (do it later, before reading it)
1029 	 */
1030 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
1031 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
1032 
1033 	/* Start calibration, then wait for completion */
1034 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1035 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1036 					   !(val & STM32H7_ADCAL), 100,
1037 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1038 	if (ret) {
1039 		dev_err(&indio_dev->dev, "calibration failed\n");
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * Select calibration mode, then start calibration:
1045 	 * - Offset calibration for differential input
1046 	 * - Linearity calibration (needs to be done only once for single/diff)
1047 	 *   will run simultaneously with offset calibration.
1048 	 */
1049 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
1050 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1051 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1052 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1053 					   !(val & STM32H7_ADCAL), 100,
1054 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1055 	if (ret) {
1056 		dev_err(&indio_dev->dev, "calibration failed\n");
1057 		goto out;
1058 	}
1059 
1060 out:
1061 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
1062 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1063 
1064 	return ret;
1065 }
1066 
1067 /**
1068  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1069  * @indio_dev: IIO device instance
1070  * Leave power down mode.
1071  * Configure channels as single ended or differential before enabling ADC.
1072  * Enable ADC.
1073  * Restore calibration data.
1074  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1075  * - Only one input is selected for single ended (e.g. 'vinp')
1076  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1077  */
1078 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1079 {
1080 	struct stm32_adc *adc = iio_priv(indio_dev);
1081 	int calib, ret;
1082 
1083 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1084 	if (ret)
1085 		return ret;
1086 
1087 	ret = stm32h7_adc_selfcalib(indio_dev);
1088 	if (ret < 0)
1089 		goto pwr_dwn;
1090 	calib = ret;
1091 
1092 	stm32_adc_int_ch_enable(indio_dev);
1093 
1094 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1095 
1096 	ret = stm32h7_adc_enable(indio_dev);
1097 	if (ret)
1098 		goto ch_disable;
1099 
1100 	/* Either restore or read calibration result for future reference */
1101 	if (calib)
1102 		ret = stm32h7_adc_restore_selfcalib(indio_dev);
1103 	else
1104 		ret = stm32h7_adc_read_selfcalib(indio_dev);
1105 	if (ret)
1106 		goto disable;
1107 
1108 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1109 
1110 	return 0;
1111 
1112 disable:
1113 	stm32h7_adc_disable(indio_dev);
1114 ch_disable:
1115 	stm32_adc_int_ch_disable(adc);
1116 pwr_dwn:
1117 	stm32h7_adc_enter_pwr_down(adc);
1118 
1119 	return ret;
1120 }
1121 
1122 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1123 {
1124 	struct stm32_adc *adc = iio_priv(indio_dev);
1125 
1126 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1127 	stm32h7_adc_disable(indio_dev);
1128 	stm32_adc_int_ch_disable(adc);
1129 	stm32h7_adc_enter_pwr_down(adc);
1130 }
1131 
1132 /**
1133  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1134  * @indio_dev: IIO device
1135  * @scan_mask: channels to be converted
1136  *
1137  * Conversion sequence :
1138  * Apply sampling time settings for all channels.
1139  * Configure ADC scan sequence based on selected channels in scan_mask.
1140  * Add channels to SQR registers, from scan_mask LSB to MSB, then
1141  * program sequence len.
1142  */
1143 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1144 				   const unsigned long *scan_mask)
1145 {
1146 	struct stm32_adc *adc = iio_priv(indio_dev);
1147 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1148 	const struct iio_chan_spec *chan;
1149 	u32 val, bit;
1150 	int i = 0;
1151 
1152 	/* Apply sampling time settings */
1153 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1154 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1155 
1156 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1157 		chan = indio_dev->channels + bit;
1158 		/*
1159 		 * Assign one channel per SQ entry in regular
1160 		 * sequence, starting with SQ1.
1161 		 */
1162 		i++;
1163 		if (i > STM32_ADC_MAX_SQ)
1164 			return -EINVAL;
1165 
1166 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1167 			__func__, chan->channel, i);
1168 
1169 		val = stm32_adc_readl(adc, sqr[i].reg);
1170 		val &= ~sqr[i].mask;
1171 		val |= chan->channel << sqr[i].shift;
1172 		stm32_adc_writel(adc, sqr[i].reg, val);
1173 	}
1174 
1175 	if (!i)
1176 		return -EINVAL;
1177 
1178 	/* Sequence len */
1179 	val = stm32_adc_readl(adc, sqr[0].reg);
1180 	val &= ~sqr[0].mask;
1181 	val |= ((i - 1) << sqr[0].shift);
1182 	stm32_adc_writel(adc, sqr[0].reg, val);
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * stm32_adc_get_trig_extsel() - Get external trigger selection
1189  * @indio_dev: IIO device structure
1190  * @trig: trigger
1191  *
1192  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1193  */
1194 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1195 				     struct iio_trigger *trig)
1196 {
1197 	struct stm32_adc *adc = iio_priv(indio_dev);
1198 	int i;
1199 
1200 	/* lookup triggers registered by stm32 timer trigger driver */
1201 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1202 		/**
1203 		 * Checking both stm32 timer trigger type and trig name
1204 		 * should be safe against arbitrary trigger names.
1205 		 */
1206 		if ((is_stm32_timer_trigger(trig) ||
1207 		     is_stm32_lptim_trigger(trig)) &&
1208 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1209 			return adc->cfg->trigs[i].extsel;
1210 		}
1211 	}
1212 
1213 	return -EINVAL;
1214 }
1215 
1216 /**
1217  * stm32_adc_set_trig() - Set a regular trigger
1218  * @indio_dev: IIO device
1219  * @trig: IIO trigger
1220  *
1221  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1222  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1223  * - if HW trigger enabled, set source & polarity
1224  */
1225 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1226 			      struct iio_trigger *trig)
1227 {
1228 	struct stm32_adc *adc = iio_priv(indio_dev);
1229 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1230 	unsigned long flags;
1231 	int ret;
1232 
1233 	if (trig) {
1234 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1235 		if (ret < 0)
1236 			return ret;
1237 
1238 		/* set trigger source and polarity (default to rising edge) */
1239 		extsel = ret;
1240 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1241 	}
1242 
1243 	spin_lock_irqsave(&adc->lock, flags);
1244 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1245 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1246 	val |= exten << adc->cfg->regs->exten.shift;
1247 	val |= extsel << adc->cfg->regs->extsel.shift;
1248 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1249 	spin_unlock_irqrestore(&adc->lock, flags);
1250 
1251 	return 0;
1252 }
1253 
1254 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1255 				  const struct iio_chan_spec *chan,
1256 				  unsigned int type)
1257 {
1258 	struct stm32_adc *adc = iio_priv(indio_dev);
1259 
1260 	adc->trigger_polarity = type;
1261 
1262 	return 0;
1263 }
1264 
1265 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1266 				  const struct iio_chan_spec *chan)
1267 {
1268 	struct stm32_adc *adc = iio_priv(indio_dev);
1269 
1270 	return adc->trigger_polarity;
1271 }
1272 
1273 static const char * const stm32_trig_pol_items[] = {
1274 	"rising-edge", "falling-edge", "both-edges",
1275 };
1276 
1277 static const struct iio_enum stm32_adc_trig_pol = {
1278 	.items = stm32_trig_pol_items,
1279 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1280 	.get = stm32_adc_get_trig_pol,
1281 	.set = stm32_adc_set_trig_pol,
1282 };
1283 
1284 /**
1285  * stm32_adc_single_conv() - Performs a single conversion
1286  * @indio_dev: IIO device
1287  * @chan: IIO channel
1288  * @res: conversion result
1289  *
1290  * The function performs a single conversion on a given channel:
1291  * - Apply sampling time settings
1292  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1293  * - Use SW trigger
1294  * - Start conversion, then wait for interrupt completion.
1295  */
1296 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1297 				 const struct iio_chan_spec *chan,
1298 				 int *res)
1299 {
1300 	struct stm32_adc *adc = iio_priv(indio_dev);
1301 	struct device *dev = indio_dev->dev.parent;
1302 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1303 	long timeout;
1304 	u32 val;
1305 	int ret;
1306 
1307 	reinit_completion(&adc->completion);
1308 
1309 	adc->bufi = 0;
1310 
1311 	ret = pm_runtime_resume_and_get(dev);
1312 	if (ret < 0)
1313 		return ret;
1314 
1315 	/* Apply sampling time settings */
1316 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1317 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1318 
1319 	/* Program chan number in regular sequence (SQ1) */
1320 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1321 	val &= ~regs->sqr[1].mask;
1322 	val |= chan->channel << regs->sqr[1].shift;
1323 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1324 
1325 	/* Set regular sequence len (0 for 1 conversion) */
1326 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1327 
1328 	/* Trigger detection disabled (conversion can be launched in SW) */
1329 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1330 
1331 	stm32_adc_conv_irq_enable(adc);
1332 
1333 	adc->cfg->start_conv(indio_dev, false);
1334 
1335 	timeout = wait_for_completion_interruptible_timeout(
1336 					&adc->completion, STM32_ADC_TIMEOUT);
1337 	if (timeout == 0) {
1338 		ret = -ETIMEDOUT;
1339 	} else if (timeout < 0) {
1340 		ret = timeout;
1341 	} else {
1342 		*res = adc->buffer[0];
1343 		ret = IIO_VAL_INT;
1344 	}
1345 
1346 	adc->cfg->stop_conv(indio_dev);
1347 
1348 	stm32_adc_conv_irq_disable(adc);
1349 
1350 	pm_runtime_mark_last_busy(dev);
1351 	pm_runtime_put_autosuspend(dev);
1352 
1353 	return ret;
1354 }
1355 
1356 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1357 			      struct iio_chan_spec const *chan,
1358 			      int *val, int *val2, long mask)
1359 {
1360 	struct stm32_adc *adc = iio_priv(indio_dev);
1361 	int ret;
1362 
1363 	switch (mask) {
1364 	case IIO_CHAN_INFO_RAW:
1365 	case IIO_CHAN_INFO_PROCESSED:
1366 		ret = iio_device_claim_direct_mode(indio_dev);
1367 		if (ret)
1368 			return ret;
1369 		if (chan->type == IIO_VOLTAGE)
1370 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1371 		else
1372 			ret = -EINVAL;
1373 
1374 		if (mask == IIO_CHAN_INFO_PROCESSED)
1375 			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1376 
1377 		iio_device_release_direct_mode(indio_dev);
1378 		return ret;
1379 
1380 	case IIO_CHAN_INFO_SCALE:
1381 		if (chan->differential) {
1382 			*val = adc->common->vref_mv * 2;
1383 			*val2 = chan->scan_type.realbits;
1384 		} else {
1385 			*val = adc->common->vref_mv;
1386 			*val2 = chan->scan_type.realbits;
1387 		}
1388 		return IIO_VAL_FRACTIONAL_LOG2;
1389 
1390 	case IIO_CHAN_INFO_OFFSET:
1391 		if (chan->differential)
1392 			/* ADC_full_scale / 2 */
1393 			*val = -((1 << chan->scan_type.realbits) / 2);
1394 		else
1395 			*val = 0;
1396 		return IIO_VAL_INT;
1397 
1398 	default:
1399 		return -EINVAL;
1400 	}
1401 }
1402 
1403 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1404 {
1405 	struct stm32_adc *adc = iio_priv(indio_dev);
1406 
1407 	adc->cfg->irq_clear(indio_dev, msk);
1408 }
1409 
1410 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1411 {
1412 	struct iio_dev *indio_dev = data;
1413 	struct stm32_adc *adc = iio_priv(indio_dev);
1414 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1415 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1416 
1417 	/* Check ovr status right now, as ovr mask should be already disabled */
1418 	if (status & regs->isr_ovr.mask) {
1419 		/*
1420 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1421 		 * This requires to stop ADC first. OVR bit state in ISR,
1422 		 * is propaged to CSR register by hardware.
1423 		 */
1424 		adc->cfg->stop_conv(indio_dev);
1425 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1426 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1427 		return IRQ_HANDLED;
1428 	}
1429 
1430 	return IRQ_NONE;
1431 }
1432 
1433 static irqreturn_t stm32_adc_isr(int irq, void *data)
1434 {
1435 	struct iio_dev *indio_dev = data;
1436 	struct stm32_adc *adc = iio_priv(indio_dev);
1437 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1438 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1439 
1440 	if (status & regs->isr_ovr.mask) {
1441 		/*
1442 		 * Overrun occurred on regular conversions: data for wrong
1443 		 * channel may be read. Unconditionally disable interrupts
1444 		 * to stop processing data and print error message.
1445 		 * Restarting the capture can be done by disabling, then
1446 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1447 		 */
1448 		stm32_adc_ovr_irq_disable(adc);
1449 		stm32_adc_conv_irq_disable(adc);
1450 		return IRQ_WAKE_THREAD;
1451 	}
1452 
1453 	if (status & regs->isr_eoc.mask) {
1454 		/* Reading DR also clears EOC status flag */
1455 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1456 		if (iio_buffer_enabled(indio_dev)) {
1457 			adc->bufi++;
1458 			if (adc->bufi >= adc->num_conv) {
1459 				stm32_adc_conv_irq_disable(adc);
1460 				iio_trigger_poll(indio_dev->trig);
1461 			}
1462 		} else {
1463 			complete(&adc->completion);
1464 		}
1465 		return IRQ_HANDLED;
1466 	}
1467 
1468 	return IRQ_NONE;
1469 }
1470 
1471 /**
1472  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1473  * @indio_dev: IIO device
1474  * @trig: new trigger
1475  *
1476  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1477  * driver, -EINVAL otherwise.
1478  */
1479 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1480 				      struct iio_trigger *trig)
1481 {
1482 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1483 }
1484 
1485 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1486 {
1487 	struct stm32_adc *adc = iio_priv(indio_dev);
1488 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1489 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1490 
1491 	/*
1492 	 * dma cyclic transfers are used, buffer is split into two periods.
1493 	 * There should be :
1494 	 * - always one buffer (period) dma is working on
1495 	 * - one buffer (period) driver can push data.
1496 	 */
1497 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1498 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1499 
1500 	return 0;
1501 }
1502 
1503 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1504 				      const unsigned long *scan_mask)
1505 {
1506 	struct stm32_adc *adc = iio_priv(indio_dev);
1507 	struct device *dev = indio_dev->dev.parent;
1508 	int ret;
1509 
1510 	ret = pm_runtime_resume_and_get(dev);
1511 	if (ret < 0)
1512 		return ret;
1513 
1514 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1515 
1516 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1517 	pm_runtime_mark_last_busy(dev);
1518 	pm_runtime_put_autosuspend(dev);
1519 
1520 	return ret;
1521 }
1522 
1523 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1524 			      const struct of_phandle_args *iiospec)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < indio_dev->num_channels; i++)
1529 		if (indio_dev->channels[i].channel == iiospec->args[0])
1530 			return i;
1531 
1532 	return -EINVAL;
1533 }
1534 
1535 /**
1536  * stm32_adc_debugfs_reg_access - read or write register value
1537  * @indio_dev: IIO device structure
1538  * @reg: register offset
1539  * @writeval: value to write
1540  * @readval: value to read
1541  *
1542  * To read a value from an ADC register:
1543  *   echo [ADC reg offset] > direct_reg_access
1544  *   cat direct_reg_access
1545  *
1546  * To write a value in a ADC register:
1547  *   echo [ADC_reg_offset] [value] > direct_reg_access
1548  */
1549 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1550 					unsigned reg, unsigned writeval,
1551 					unsigned *readval)
1552 {
1553 	struct stm32_adc *adc = iio_priv(indio_dev);
1554 	struct device *dev = indio_dev->dev.parent;
1555 	int ret;
1556 
1557 	ret = pm_runtime_resume_and_get(dev);
1558 	if (ret < 0)
1559 		return ret;
1560 
1561 	if (!readval)
1562 		stm32_adc_writel(adc, reg, writeval);
1563 	else
1564 		*readval = stm32_adc_readl(adc, reg);
1565 
1566 	pm_runtime_mark_last_busy(dev);
1567 	pm_runtime_put_autosuspend(dev);
1568 
1569 	return 0;
1570 }
1571 
1572 static const struct iio_info stm32_adc_iio_info = {
1573 	.read_raw = stm32_adc_read_raw,
1574 	.validate_trigger = stm32_adc_validate_trigger,
1575 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1576 	.update_scan_mode = stm32_adc_update_scan_mode,
1577 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1578 	.of_xlate = stm32_adc_of_xlate,
1579 };
1580 
1581 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1582 {
1583 	struct dma_tx_state state;
1584 	enum dma_status status;
1585 
1586 	status = dmaengine_tx_status(adc->dma_chan,
1587 				     adc->dma_chan->cookie,
1588 				     &state);
1589 	if (status == DMA_IN_PROGRESS) {
1590 		/* Residue is size in bytes from end of buffer */
1591 		unsigned int i = adc->rx_buf_sz - state.residue;
1592 		unsigned int size;
1593 
1594 		/* Return available bytes */
1595 		if (i >= adc->bufi)
1596 			size = i - adc->bufi;
1597 		else
1598 			size = adc->rx_buf_sz + i - adc->bufi;
1599 
1600 		return size;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static void stm32_adc_dma_buffer_done(void *data)
1607 {
1608 	struct iio_dev *indio_dev = data;
1609 	struct stm32_adc *adc = iio_priv(indio_dev);
1610 	int residue = stm32_adc_dma_residue(adc);
1611 
1612 	/*
1613 	 * In DMA mode the trigger services of IIO are not used
1614 	 * (e.g. no call to iio_trigger_poll).
1615 	 * Calling irq handler associated to the hardware trigger is not
1616 	 * relevant as the conversions have already been done. Data
1617 	 * transfers are performed directly in DMA callback instead.
1618 	 * This implementation avoids to call trigger irq handler that
1619 	 * may sleep, in an atomic context (DMA irq handler context).
1620 	 */
1621 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1622 
1623 	while (residue >= indio_dev->scan_bytes) {
1624 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1625 
1626 		iio_push_to_buffers(indio_dev, buffer);
1627 
1628 		residue -= indio_dev->scan_bytes;
1629 		adc->bufi += indio_dev->scan_bytes;
1630 		if (adc->bufi >= adc->rx_buf_sz)
1631 			adc->bufi = 0;
1632 	}
1633 }
1634 
1635 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1636 {
1637 	struct stm32_adc *adc = iio_priv(indio_dev);
1638 	struct dma_async_tx_descriptor *desc;
1639 	dma_cookie_t cookie;
1640 	int ret;
1641 
1642 	if (!adc->dma_chan)
1643 		return 0;
1644 
1645 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1646 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1647 
1648 	/* Prepare a DMA cyclic transaction */
1649 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1650 					 adc->rx_dma_buf,
1651 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1652 					 DMA_DEV_TO_MEM,
1653 					 DMA_PREP_INTERRUPT);
1654 	if (!desc)
1655 		return -EBUSY;
1656 
1657 	desc->callback = stm32_adc_dma_buffer_done;
1658 	desc->callback_param = indio_dev;
1659 
1660 	cookie = dmaengine_submit(desc);
1661 	ret = dma_submit_error(cookie);
1662 	if (ret) {
1663 		dmaengine_terminate_sync(adc->dma_chan);
1664 		return ret;
1665 	}
1666 
1667 	/* Issue pending DMA requests */
1668 	dma_async_issue_pending(adc->dma_chan);
1669 
1670 	return 0;
1671 }
1672 
1673 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1674 {
1675 	struct stm32_adc *adc = iio_priv(indio_dev);
1676 	struct device *dev = indio_dev->dev.parent;
1677 	int ret;
1678 
1679 	ret = pm_runtime_resume_and_get(dev);
1680 	if (ret < 0)
1681 		return ret;
1682 
1683 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1684 	if (ret) {
1685 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1686 		goto err_pm_put;
1687 	}
1688 
1689 	ret = stm32_adc_dma_start(indio_dev);
1690 	if (ret) {
1691 		dev_err(&indio_dev->dev, "Can't start dma\n");
1692 		goto err_clr_trig;
1693 	}
1694 
1695 	/* Reset adc buffer index */
1696 	adc->bufi = 0;
1697 
1698 	stm32_adc_ovr_irq_enable(adc);
1699 
1700 	if (!adc->dma_chan)
1701 		stm32_adc_conv_irq_enable(adc);
1702 
1703 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1704 
1705 	return 0;
1706 
1707 err_clr_trig:
1708 	stm32_adc_set_trig(indio_dev, NULL);
1709 err_pm_put:
1710 	pm_runtime_mark_last_busy(dev);
1711 	pm_runtime_put_autosuspend(dev);
1712 
1713 	return ret;
1714 }
1715 
1716 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1717 {
1718 	struct stm32_adc *adc = iio_priv(indio_dev);
1719 	struct device *dev = indio_dev->dev.parent;
1720 
1721 	adc->cfg->stop_conv(indio_dev);
1722 	if (!adc->dma_chan)
1723 		stm32_adc_conv_irq_disable(adc);
1724 
1725 	stm32_adc_ovr_irq_disable(adc);
1726 
1727 	if (adc->dma_chan)
1728 		dmaengine_terminate_sync(adc->dma_chan);
1729 
1730 	if (stm32_adc_set_trig(indio_dev, NULL))
1731 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1732 
1733 	pm_runtime_mark_last_busy(dev);
1734 	pm_runtime_put_autosuspend(dev);
1735 
1736 	return 0;
1737 }
1738 
1739 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1740 	.postenable = &stm32_adc_buffer_postenable,
1741 	.predisable = &stm32_adc_buffer_predisable,
1742 };
1743 
1744 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1745 {
1746 	struct iio_poll_func *pf = p;
1747 	struct iio_dev *indio_dev = pf->indio_dev;
1748 	struct stm32_adc *adc = iio_priv(indio_dev);
1749 
1750 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1751 
1752 	/* reset buffer index */
1753 	adc->bufi = 0;
1754 	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1755 					   pf->timestamp);
1756 	iio_trigger_notify_done(indio_dev->trig);
1757 
1758 	/* re-enable eoc irq */
1759 	stm32_adc_conv_irq_enable(adc);
1760 
1761 	return IRQ_HANDLED;
1762 }
1763 
1764 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1765 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1766 	{
1767 		.name = "trigger_polarity_available",
1768 		.shared = IIO_SHARED_BY_ALL,
1769 		.read = iio_enum_available_read,
1770 		.private = (uintptr_t)&stm32_adc_trig_pol,
1771 	},
1772 	{},
1773 };
1774 
1775 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1776 {
1777 	struct device_node *node = indio_dev->dev.of_node;
1778 	struct stm32_adc *adc = iio_priv(indio_dev);
1779 	unsigned int i;
1780 	u32 res;
1781 
1782 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1783 		res = adc->cfg->adc_info->resolutions[0];
1784 
1785 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1786 		if (res == adc->cfg->adc_info->resolutions[i])
1787 			break;
1788 	if (i >= adc->cfg->adc_info->num_res) {
1789 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1790 		return -EINVAL;
1791 	}
1792 
1793 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1794 	adc->res = i;
1795 
1796 	return 0;
1797 }
1798 
1799 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1800 {
1801 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1802 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1803 	unsigned int smp, r = smpr->reg;
1804 
1805 	/*
1806 	 * For vrefint channel, ensure that the sampling time cannot
1807 	 * be lower than the one specified in the datasheet
1808 	 */
1809 	if (channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1810 		smp_ns = max(smp_ns, adc->cfg->ts_vrefint_ns);
1811 
1812 	/* Determine sampling time (ADC clock cycles) */
1813 	period_ns = NSEC_PER_SEC / adc->common->rate;
1814 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1815 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1816 			break;
1817 	if (smp > STM32_ADC_MAX_SMP)
1818 		smp = STM32_ADC_MAX_SMP;
1819 
1820 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1821 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1822 }
1823 
1824 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1825 				    struct iio_chan_spec *chan, u32 vinp,
1826 				    u32 vinn, int scan_index, bool differential)
1827 {
1828 	struct stm32_adc *adc = iio_priv(indio_dev);
1829 	char *name = adc->chan_name[vinp];
1830 
1831 	chan->type = IIO_VOLTAGE;
1832 	chan->channel = vinp;
1833 	if (differential) {
1834 		chan->differential = 1;
1835 		chan->channel2 = vinn;
1836 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1837 	} else {
1838 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1839 	}
1840 	chan->datasheet_name = name;
1841 	chan->scan_index = scan_index;
1842 	chan->indexed = 1;
1843 	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1844 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1845 	else
1846 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1847 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1848 					 BIT(IIO_CHAN_INFO_OFFSET);
1849 	chan->scan_type.sign = 'u';
1850 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1851 	chan->scan_type.storagebits = 16;
1852 	chan->ext_info = stm32_adc_ext_info;
1853 
1854 	/* pre-build selected channels mask */
1855 	adc->pcsel |= BIT(chan->channel);
1856 	if (differential) {
1857 		/* pre-build diff channels mask */
1858 		adc->difsel |= BIT(chan->channel);
1859 		/* Also add negative input to pre-selected channels */
1860 		adc->pcsel |= BIT(chan->channel2);
1861 	}
1862 }
1863 
1864 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1865 {
1866 	struct device_node *node = indio_dev->dev.of_node;
1867 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1868 	int num_channels = 0, ret;
1869 
1870 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1871 	if (ret > adc_info->max_channels) {
1872 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1873 		return -EINVAL;
1874 	} else if (ret > 0) {
1875 		num_channels += ret;
1876 	}
1877 
1878 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1879 					      sizeof(struct stm32_adc_diff_channel));
1880 	if (ret > adc_info->max_channels) {
1881 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1882 		return -EINVAL;
1883 	} else if (ret > 0) {
1884 		adc->num_diff = ret;
1885 		num_channels += ret;
1886 	}
1887 
1888 	/* Optional sample time is provided either for each, or all channels */
1889 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1890 	if (ret > 1 && ret != num_channels) {
1891 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1892 		return -EINVAL;
1893 	}
1894 
1895 	return num_channels;
1896 }
1897 
1898 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
1899 				      struct stm32_adc *adc,
1900 				      struct iio_chan_spec *channels)
1901 {
1902 	struct device_node *node = indio_dev->dev.of_node;
1903 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1904 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1905 	u32 num_diff = adc->num_diff;
1906 	int size = num_diff * sizeof(*diff) / sizeof(u32);
1907 	int scan_index = 0, val, ret, i;
1908 	struct property *prop;
1909 	const __be32 *cur;
1910 	u32 smp = 0;
1911 
1912 	if (num_diff) {
1913 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1914 						 (u32 *)diff, size);
1915 		if (ret) {
1916 			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
1917 			return ret;
1918 		}
1919 
1920 		for (i = 0; i < num_diff; i++) {
1921 			if (diff[i].vinp >= adc_info->max_channels ||
1922 			    diff[i].vinn >= adc_info->max_channels) {
1923 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1924 					diff[i].vinp, diff[i].vinn);
1925 				return -EINVAL;
1926 			}
1927 
1928 			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1929 						diff[i].vinp, diff[i].vinn,
1930 						scan_index, true);
1931 			scan_index++;
1932 		}
1933 	}
1934 
1935 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1936 		if (val >= adc_info->max_channels) {
1937 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1938 			return -EINVAL;
1939 		}
1940 
1941 		/* Channel can't be configured both as single-ended & diff */
1942 		for (i = 0; i < num_diff; i++) {
1943 			if (val == diff[i].vinp) {
1944 				dev_err(&indio_dev->dev, "channel %d misconfigured\n",	val);
1945 				return -EINVAL;
1946 			}
1947 		}
1948 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1949 					0, scan_index, false);
1950 		scan_index++;
1951 	}
1952 
1953 	for (i = 0; i < scan_index; i++) {
1954 		/*
1955 		 * Using of_property_read_u32_index(), smp value will only be
1956 		 * modified if valid u32 value can be decoded. This allows to
1957 		 * get either no value, 1 shared value for all indexes, or one
1958 		 * value per channel.
1959 		 */
1960 		of_property_read_u32_index(node, "st,min-sample-time-nsecs", i, &smp);
1961 
1962 		/* Prepare sampling time settings */
1963 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1964 	}
1965 
1966 	return scan_index;
1967 }
1968 
1969 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
1970 				     int chan)
1971 {
1972 	struct stm32_adc *adc = iio_priv(indio_dev);
1973 	u16 vrefint;
1974 	int i, ret;
1975 
1976 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
1977 		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
1978 			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
1979 				adc->int_ch[i] = chan;
1980 				break;
1981 			}
1982 
1983 			/* Get calibration data for vrefint channel */
1984 			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
1985 			if (ret && ret != -ENOENT) {
1986 				return dev_err_probe(indio_dev->dev.parent, ret,
1987 						     "nvmem access error\n");
1988 			}
1989 			if (ret == -ENOENT) {
1990 				dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
1991 				return ret;
1992 			} else if (!vrefint) {
1993 				dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
1994 				return -ENOENT;
1995 			}
1996 			adc->int_ch[i] = chan;
1997 			adc->vrefint.vrefint_cal = vrefint;
1998 		}
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2005 				       struct stm32_adc *adc,
2006 				       struct iio_chan_spec *channels)
2007 {
2008 	struct device_node *node = indio_dev->dev.of_node;
2009 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2010 	struct device_node *child;
2011 	const char *name;
2012 	int val, scan_index = 0, ret;
2013 	bool differential;
2014 	u32 vin[2];
2015 
2016 	for_each_available_child_of_node(node, child) {
2017 		ret = of_property_read_u32(child, "reg", &val);
2018 		if (ret) {
2019 			dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2020 			goto err;
2021 		}
2022 
2023 		ret = of_property_read_string(child, "label", &name);
2024 		/* label is optional */
2025 		if (!ret) {
2026 			if (strlen(name) >= STM32_ADC_CH_SZ) {
2027 				dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2028 					name, STM32_ADC_CH_SZ);
2029 				ret = -EINVAL;
2030 				goto err;
2031 			}
2032 			strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2033 			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2034 			if (ret == -ENOENT)
2035 				continue;
2036 			else if (ret)
2037 				goto err;
2038 		} else if (ret != -EINVAL) {
2039 			dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2040 			goto err;
2041 		}
2042 
2043 		if (val >= adc_info->max_channels) {
2044 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2045 			ret = -EINVAL;
2046 			goto err;
2047 		}
2048 
2049 		differential = false;
2050 		ret = of_property_read_u32_array(child, "diff-channels", vin, 2);
2051 		/* diff-channels is optional */
2052 		if (!ret) {
2053 			differential = true;
2054 			if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2055 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2056 					vin[0], vin[1]);
2057 				goto err;
2058 			}
2059 		} else if (ret != -EINVAL) {
2060 			dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2061 			goto err;
2062 		}
2063 
2064 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2065 					vin[1], scan_index, differential);
2066 
2067 		ret = of_property_read_u32(child, "st,min-sample-time-ns", &val);
2068 		/* st,min-sample-time-ns is optional */
2069 		if (!ret) {
2070 			stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2071 			if (differential)
2072 				stm32_adc_smpr_init(adc, vin[1], val);
2073 		} else if (ret != -EINVAL) {
2074 			dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2075 				ret);
2076 			goto err;
2077 		}
2078 
2079 		scan_index++;
2080 	}
2081 
2082 	return scan_index;
2083 
2084 err:
2085 	of_node_put(child);
2086 
2087 	return ret;
2088 }
2089 
2090 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev, bool timestamping)
2091 {
2092 	struct device_node *node = indio_dev->dev.of_node;
2093 	struct stm32_adc *adc = iio_priv(indio_dev);
2094 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2095 	struct iio_chan_spec *channels;
2096 	int scan_index = 0, num_channels = 0, ret, i;
2097 	bool legacy = false;
2098 
2099 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2100 		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2101 
2102 	num_channels = of_get_available_child_count(node);
2103 	/* If no channels have been found, fallback to channels legacy properties. */
2104 	if (!num_channels) {
2105 		legacy = true;
2106 
2107 		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2108 		if (!ret) {
2109 			dev_err(indio_dev->dev.parent, "No channel found\n");
2110 			return -ENODATA;
2111 		} else if (ret < 0) {
2112 			return ret;
2113 		}
2114 
2115 		num_channels = ret;
2116 	}
2117 
2118 	if (num_channels > adc_info->max_channels) {
2119 		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2120 			num_channels, adc_info->max_channels);
2121 		return -EINVAL;
2122 	}
2123 
2124 	if (timestamping)
2125 		num_channels++;
2126 
2127 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2128 				sizeof(struct iio_chan_spec), GFP_KERNEL);
2129 	if (!channels)
2130 		return -ENOMEM;
2131 
2132 	if (legacy)
2133 		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels);
2134 	else
2135 		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2136 	if (ret < 0)
2137 		return ret;
2138 	scan_index = ret;
2139 
2140 	if (timestamping) {
2141 		struct iio_chan_spec *timestamp = &channels[scan_index];
2142 
2143 		timestamp->type = IIO_TIMESTAMP;
2144 		timestamp->channel = -1;
2145 		timestamp->scan_index = scan_index;
2146 		timestamp->scan_type.sign = 's';
2147 		timestamp->scan_type.realbits = 64;
2148 		timestamp->scan_type.storagebits = 64;
2149 
2150 		scan_index++;
2151 	}
2152 
2153 	indio_dev->num_channels = scan_index;
2154 	indio_dev->channels = channels;
2155 
2156 	return 0;
2157 }
2158 
2159 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2160 {
2161 	struct stm32_adc *adc = iio_priv(indio_dev);
2162 	struct dma_slave_config config;
2163 	int ret;
2164 
2165 	adc->dma_chan = dma_request_chan(dev, "rx");
2166 	if (IS_ERR(adc->dma_chan)) {
2167 		ret = PTR_ERR(adc->dma_chan);
2168 		if (ret != -ENODEV)
2169 			return dev_err_probe(dev, ret,
2170 					     "DMA channel request failed with\n");
2171 
2172 		/* DMA is optional: fall back to IRQ mode */
2173 		adc->dma_chan = NULL;
2174 		return 0;
2175 	}
2176 
2177 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2178 					 STM32_DMA_BUFFER_SIZE,
2179 					 &adc->rx_dma_buf, GFP_KERNEL);
2180 	if (!adc->rx_buf) {
2181 		ret = -ENOMEM;
2182 		goto err_release;
2183 	}
2184 
2185 	/* Configure DMA channel to read data register */
2186 	memset(&config, 0, sizeof(config));
2187 	config.src_addr = (dma_addr_t)adc->common->phys_base;
2188 	config.src_addr += adc->offset + adc->cfg->regs->dr;
2189 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2190 
2191 	ret = dmaengine_slave_config(adc->dma_chan, &config);
2192 	if (ret)
2193 		goto err_free;
2194 
2195 	return 0;
2196 
2197 err_free:
2198 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2199 			  adc->rx_buf, adc->rx_dma_buf);
2200 err_release:
2201 	dma_release_channel(adc->dma_chan);
2202 
2203 	return ret;
2204 }
2205 
2206 static int stm32_adc_probe(struct platform_device *pdev)
2207 {
2208 	struct iio_dev *indio_dev;
2209 	struct device *dev = &pdev->dev;
2210 	irqreturn_t (*handler)(int irq, void *p) = NULL;
2211 	struct stm32_adc *adc;
2212 	bool timestamping = false;
2213 	int ret;
2214 
2215 	if (!pdev->dev.of_node)
2216 		return -ENODEV;
2217 
2218 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2219 	if (!indio_dev)
2220 		return -ENOMEM;
2221 
2222 	adc = iio_priv(indio_dev);
2223 	adc->common = dev_get_drvdata(pdev->dev.parent);
2224 	spin_lock_init(&adc->lock);
2225 	init_completion(&adc->completion);
2226 	adc->cfg = (const struct stm32_adc_cfg *)
2227 		of_match_device(dev->driver->of_match_table, dev)->data;
2228 
2229 	indio_dev->name = dev_name(&pdev->dev);
2230 	indio_dev->dev.of_node = pdev->dev.of_node;
2231 	indio_dev->info = &stm32_adc_iio_info;
2232 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2233 
2234 	platform_set_drvdata(pdev, indio_dev);
2235 
2236 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
2237 	if (ret != 0) {
2238 		dev_err(&pdev->dev, "missing reg property\n");
2239 		return -EINVAL;
2240 	}
2241 
2242 	adc->irq = platform_get_irq(pdev, 0);
2243 	if (adc->irq < 0)
2244 		return adc->irq;
2245 
2246 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2247 					stm32_adc_threaded_isr,
2248 					0, pdev->name, indio_dev);
2249 	if (ret) {
2250 		dev_err(&pdev->dev, "failed to request IRQ\n");
2251 		return ret;
2252 	}
2253 
2254 	adc->clk = devm_clk_get(&pdev->dev, NULL);
2255 	if (IS_ERR(adc->clk)) {
2256 		ret = PTR_ERR(adc->clk);
2257 		if (ret == -ENOENT && !adc->cfg->clk_required) {
2258 			adc->clk = NULL;
2259 		} else {
2260 			dev_err(&pdev->dev, "Can't get clock\n");
2261 			return ret;
2262 		}
2263 	}
2264 
2265 	ret = stm32_adc_of_get_resolution(indio_dev);
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	ret = stm32_adc_dma_request(dev, indio_dev);
2270 	if (ret < 0)
2271 		return ret;
2272 
2273 	if (!adc->dma_chan) {
2274 		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2275 		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2276 		 * runs in the IRQ thread to push out buffer along with timestamp.
2277 		 */
2278 		handler = &stm32_adc_trigger_handler;
2279 		timestamping = true;
2280 	}
2281 
2282 	ret = stm32_adc_chan_of_init(indio_dev, timestamping);
2283 	if (ret < 0)
2284 		goto err_dma_disable;
2285 
2286 	ret = iio_triggered_buffer_setup(indio_dev,
2287 					 &iio_pollfunc_store_time, handler,
2288 					 &stm32_adc_buffer_setup_ops);
2289 	if (ret) {
2290 		dev_err(&pdev->dev, "buffer setup failed\n");
2291 		goto err_dma_disable;
2292 	}
2293 
2294 	/* Get stm32-adc-core PM online */
2295 	pm_runtime_get_noresume(dev);
2296 	pm_runtime_set_active(dev);
2297 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2298 	pm_runtime_use_autosuspend(dev);
2299 	pm_runtime_enable(dev);
2300 
2301 	ret = stm32_adc_hw_start(dev);
2302 	if (ret)
2303 		goto err_buffer_cleanup;
2304 
2305 	ret = iio_device_register(indio_dev);
2306 	if (ret) {
2307 		dev_err(&pdev->dev, "iio dev register failed\n");
2308 		goto err_hw_stop;
2309 	}
2310 
2311 	pm_runtime_mark_last_busy(dev);
2312 	pm_runtime_put_autosuspend(dev);
2313 
2314 	return 0;
2315 
2316 err_hw_stop:
2317 	stm32_adc_hw_stop(dev);
2318 
2319 err_buffer_cleanup:
2320 	pm_runtime_disable(dev);
2321 	pm_runtime_set_suspended(dev);
2322 	pm_runtime_put_noidle(dev);
2323 	iio_triggered_buffer_cleanup(indio_dev);
2324 
2325 err_dma_disable:
2326 	if (adc->dma_chan) {
2327 		dma_free_coherent(adc->dma_chan->device->dev,
2328 				  STM32_DMA_BUFFER_SIZE,
2329 				  adc->rx_buf, adc->rx_dma_buf);
2330 		dma_release_channel(adc->dma_chan);
2331 	}
2332 
2333 	return ret;
2334 }
2335 
2336 static int stm32_adc_remove(struct platform_device *pdev)
2337 {
2338 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2339 	struct stm32_adc *adc = iio_priv(indio_dev);
2340 
2341 	pm_runtime_get_sync(&pdev->dev);
2342 	iio_device_unregister(indio_dev);
2343 	stm32_adc_hw_stop(&pdev->dev);
2344 	pm_runtime_disable(&pdev->dev);
2345 	pm_runtime_set_suspended(&pdev->dev);
2346 	pm_runtime_put_noidle(&pdev->dev);
2347 	iio_triggered_buffer_cleanup(indio_dev);
2348 	if (adc->dma_chan) {
2349 		dma_free_coherent(adc->dma_chan->device->dev,
2350 				  STM32_DMA_BUFFER_SIZE,
2351 				  adc->rx_buf, adc->rx_dma_buf);
2352 		dma_release_channel(adc->dma_chan);
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 static int stm32_adc_suspend(struct device *dev)
2359 {
2360 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2361 
2362 	if (iio_buffer_enabled(indio_dev))
2363 		stm32_adc_buffer_predisable(indio_dev);
2364 
2365 	return pm_runtime_force_suspend(dev);
2366 }
2367 
2368 static int stm32_adc_resume(struct device *dev)
2369 {
2370 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2371 	int ret;
2372 
2373 	ret = pm_runtime_force_resume(dev);
2374 	if (ret < 0)
2375 		return ret;
2376 
2377 	if (!iio_buffer_enabled(indio_dev))
2378 		return 0;
2379 
2380 	ret = stm32_adc_update_scan_mode(indio_dev,
2381 					 indio_dev->active_scan_mask);
2382 	if (ret < 0)
2383 		return ret;
2384 
2385 	return stm32_adc_buffer_postenable(indio_dev);
2386 }
2387 
2388 static int stm32_adc_runtime_suspend(struct device *dev)
2389 {
2390 	return stm32_adc_hw_stop(dev);
2391 }
2392 
2393 static int stm32_adc_runtime_resume(struct device *dev)
2394 {
2395 	return stm32_adc_hw_start(dev);
2396 }
2397 
2398 static const struct dev_pm_ops stm32_adc_pm_ops = {
2399 	SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2400 	RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2401 		       NULL)
2402 };
2403 
2404 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2405 	.regs = &stm32f4_adc_regspec,
2406 	.adc_info = &stm32f4_adc_info,
2407 	.trigs = stm32f4_adc_trigs,
2408 	.clk_required = true,
2409 	.start_conv = stm32f4_adc_start_conv,
2410 	.stop_conv = stm32f4_adc_stop_conv,
2411 	.smp_cycles = stm32f4_adc_smp_cycles,
2412 	.irq_clear = stm32f4_adc_irq_clear,
2413 };
2414 
2415 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2416 	.regs = &stm32h7_adc_regspec,
2417 	.adc_info = &stm32h7_adc_info,
2418 	.trigs = stm32h7_adc_trigs,
2419 	.start_conv = stm32h7_adc_start_conv,
2420 	.stop_conv = stm32h7_adc_stop_conv,
2421 	.prepare = stm32h7_adc_prepare,
2422 	.unprepare = stm32h7_adc_unprepare,
2423 	.smp_cycles = stm32h7_adc_smp_cycles,
2424 	.irq_clear = stm32h7_adc_irq_clear,
2425 };
2426 
2427 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2428 	.regs = &stm32mp1_adc_regspec,
2429 	.adc_info = &stm32h7_adc_info,
2430 	.trigs = stm32h7_adc_trigs,
2431 	.has_vregready = true,
2432 	.start_conv = stm32h7_adc_start_conv,
2433 	.stop_conv = stm32h7_adc_stop_conv,
2434 	.prepare = stm32h7_adc_prepare,
2435 	.unprepare = stm32h7_adc_unprepare,
2436 	.smp_cycles = stm32h7_adc_smp_cycles,
2437 	.irq_clear = stm32h7_adc_irq_clear,
2438 	.ts_vrefint_ns = 4300,
2439 };
2440 
2441 static const struct of_device_id stm32_adc_of_match[] = {
2442 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2443 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2444 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2445 	{},
2446 };
2447 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2448 
2449 static struct platform_driver stm32_adc_driver = {
2450 	.probe = stm32_adc_probe,
2451 	.remove = stm32_adc_remove,
2452 	.driver = {
2453 		.name = "stm32-adc",
2454 		.of_match_table = stm32_adc_of_match,
2455 		.pm = pm_ptr(&stm32_adc_pm_ops),
2456 	},
2457 };
2458 module_platform_driver(stm32_adc_driver);
2459 
2460 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2461 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2462 MODULE_LICENSE("GPL v2");
2463 MODULE_ALIAS("platform:stm32-adc");
2464