1 /* 2 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 and 6 * only version 2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/bitops.h> 15 #include <linux/completion.h> 16 #include <linux/delay.h> 17 #include <linux/err.h> 18 #include <linux/iio/iio.h> 19 #include <linux/interrupt.h> 20 #include <linux/kernel.h> 21 #include <linux/math64.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/platform_device.h> 25 #include <linux/regmap.h> 26 #include <linux/slab.h> 27 #include <linux/log2.h> 28 29 #include <dt-bindings/iio/qcom,spmi-vadc.h> 30 31 /* VADC register and bit definitions */ 32 #define VADC_REVISION2 0x1 33 #define VADC_REVISION2_SUPPORTED_VADC 1 34 35 #define VADC_PERPH_TYPE 0x4 36 #define VADC_PERPH_TYPE_ADC 8 37 38 #define VADC_PERPH_SUBTYPE 0x5 39 #define VADC_PERPH_SUBTYPE_VADC 1 40 41 #define VADC_STATUS1 0x8 42 #define VADC_STATUS1_OP_MODE 4 43 #define VADC_STATUS1_REQ_STS BIT(1) 44 #define VADC_STATUS1_EOC BIT(0) 45 #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3 46 47 #define VADC_MODE_CTL 0x40 48 #define VADC_OP_MODE_SHIFT 3 49 #define VADC_OP_MODE_NORMAL 0 50 #define VADC_AMUX_TRIM_EN BIT(1) 51 #define VADC_ADC_TRIM_EN BIT(0) 52 53 #define VADC_EN_CTL1 0x46 54 #define VADC_EN_CTL1_SET BIT(7) 55 56 #define VADC_ADC_CH_SEL_CTL 0x48 57 58 #define VADC_ADC_DIG_PARAM 0x50 59 #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2 60 61 #define VADC_HW_SETTLE_DELAY 0x51 62 63 #define VADC_CONV_REQ 0x52 64 #define VADC_CONV_REQ_SET BIT(7) 65 66 #define VADC_FAST_AVG_CTL 0x5a 67 #define VADC_FAST_AVG_EN 0x5b 68 #define VADC_FAST_AVG_EN_SET BIT(7) 69 70 #define VADC_ACCESS 0xd0 71 #define VADC_ACCESS_DATA 0xa5 72 73 #define VADC_PERH_RESET_CTL3 0xda 74 #define VADC_FOLLOW_WARM_RB BIT(2) 75 76 #define VADC_DATA 0x60 /* 16 bits */ 77 78 #define VADC_CONV_TIME_MIN_US 2000 79 #define VADC_CONV_TIME_MAX_US 2100 80 81 /* Min ADC code represents 0V */ 82 #define VADC_MIN_ADC_CODE 0x6000 83 /* Max ADC code represents full-scale range of 1.8V */ 84 #define VADC_MAX_ADC_CODE 0xa800 85 86 #define VADC_ABSOLUTE_RANGE_UV 625000 87 #define VADC_RATIOMETRIC_RANGE_UV 1800000 88 89 #define VADC_DEF_PRESCALING 0 /* 1:1 */ 90 #define VADC_DEF_DECIMATION 0 /* 512 */ 91 #define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */ 92 #define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */ 93 #define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE 94 95 #define VADC_DECIMATION_MIN 512 96 #define VADC_DECIMATION_MAX 4096 97 98 #define VADC_HW_SETTLE_DELAY_MAX 10000 99 #define VADC_AVG_SAMPLES_MAX 512 100 101 #define KELVINMIL_CELSIUSMIL 273150 102 103 #define VADC_CHAN_MIN VADC_USBIN 104 #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM 105 106 /* 107 * VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels. 108 * VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for 109 * calibration. 110 */ 111 enum vadc_calibration { 112 VADC_CALIB_ABSOLUTE = 0, 113 VADC_CALIB_RATIOMETRIC 114 }; 115 116 /** 117 * struct vadc_linear_graph - Represent ADC characteristics. 118 * @dy: numerator slope to calculate the gain. 119 * @dx: denominator slope to calculate the gain. 120 * @gnd: A/D word of the ground reference used for the channel. 121 * 122 * Each ADC device has different offset and gain parameters which are 123 * computed to calibrate the device. 124 */ 125 struct vadc_linear_graph { 126 s32 dy; 127 s32 dx; 128 s32 gnd; 129 }; 130 131 /** 132 * struct vadc_prescale_ratio - Represent scaling ratio for ADC input. 133 * @num: the inverse numerator of the gain applied to the input channel. 134 * @den: the inverse denominator of the gain applied to the input channel. 135 */ 136 struct vadc_prescale_ratio { 137 u32 num; 138 u32 den; 139 }; 140 141 /** 142 * struct vadc_channel_prop - VADC channel property. 143 * @channel: channel number, refer to the channel list. 144 * @calibration: calibration type. 145 * @decimation: sampling rate supported for the channel. 146 * @prescale: channel scaling performed on the input signal. 147 * @hw_settle_time: the time between AMUX being configured and the 148 * start of conversion. 149 * @avg_samples: ability to provide single result from the ADC 150 * that is an average of multiple measurements. 151 */ 152 struct vadc_channel_prop { 153 unsigned int channel; 154 enum vadc_calibration calibration; 155 unsigned int decimation; 156 unsigned int prescale; 157 unsigned int hw_settle_time; 158 unsigned int avg_samples; 159 }; 160 161 /** 162 * struct vadc_priv - VADC private structure. 163 * @regmap: pointer to struct regmap. 164 * @dev: pointer to struct device. 165 * @base: base address for the ADC peripheral. 166 * @nchannels: number of VADC channels. 167 * @chan_props: array of VADC channel properties. 168 * @iio_chans: array of IIO channels specification. 169 * @are_ref_measured: are reference points measured. 170 * @poll_eoc: use polling instead of interrupt. 171 * @complete: VADC result notification after interrupt is received. 172 * @graph: store parameters for calibration. 173 * @lock: ADC lock for access to the peripheral. 174 */ 175 struct vadc_priv { 176 struct regmap *regmap; 177 struct device *dev; 178 u16 base; 179 unsigned int nchannels; 180 struct vadc_channel_prop *chan_props; 181 struct iio_chan_spec *iio_chans; 182 bool are_ref_measured; 183 bool poll_eoc; 184 struct completion complete; 185 struct vadc_linear_graph graph[2]; 186 struct mutex lock; 187 }; 188 189 static const struct vadc_prescale_ratio vadc_prescale_ratios[] = { 190 {.num = 1, .den = 1}, 191 {.num = 1, .den = 3}, 192 {.num = 1, .den = 4}, 193 {.num = 1, .den = 6}, 194 {.num = 1, .den = 20}, 195 {.num = 1, .den = 8}, 196 {.num = 10, .den = 81}, 197 {.num = 1, .den = 10} 198 }; 199 200 static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data) 201 { 202 return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1); 203 } 204 205 static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data) 206 { 207 return regmap_write(vadc->regmap, vadc->base + offset, data); 208 } 209 210 static int vadc_reset(struct vadc_priv *vadc) 211 { 212 u8 data; 213 int ret; 214 215 ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); 216 if (ret) 217 return ret; 218 219 ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data); 220 if (ret) 221 return ret; 222 223 ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); 224 if (ret) 225 return ret; 226 227 data |= VADC_FOLLOW_WARM_RB; 228 229 return vadc_write(vadc, VADC_PERH_RESET_CTL3, data); 230 } 231 232 static int vadc_set_state(struct vadc_priv *vadc, bool state) 233 { 234 return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0); 235 } 236 237 static void vadc_show_status(struct vadc_priv *vadc) 238 { 239 u8 mode, sta1, chan, dig, en, req; 240 int ret; 241 242 ret = vadc_read(vadc, VADC_MODE_CTL, &mode); 243 if (ret) 244 return; 245 246 ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig); 247 if (ret) 248 return; 249 250 ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan); 251 if (ret) 252 return; 253 254 ret = vadc_read(vadc, VADC_CONV_REQ, &req); 255 if (ret) 256 return; 257 258 ret = vadc_read(vadc, VADC_STATUS1, &sta1); 259 if (ret) 260 return; 261 262 ret = vadc_read(vadc, VADC_EN_CTL1, &en); 263 if (ret) 264 return; 265 266 dev_err(vadc->dev, 267 "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n", 268 mode, en, chan, dig, req, sta1); 269 } 270 271 static int vadc_configure(struct vadc_priv *vadc, 272 struct vadc_channel_prop *prop) 273 { 274 u8 decimation, mode_ctrl; 275 int ret; 276 277 /* Mode selection */ 278 mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) | 279 VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN; 280 ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl); 281 if (ret) 282 return ret; 283 284 /* Channel selection */ 285 ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel); 286 if (ret) 287 return ret; 288 289 /* Digital parameter setup */ 290 decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT; 291 ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation); 292 if (ret) 293 return ret; 294 295 /* HW settle time delay */ 296 ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time); 297 if (ret) 298 return ret; 299 300 ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples); 301 if (ret) 302 return ret; 303 304 if (prop->avg_samples) 305 ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET); 306 else 307 ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0); 308 309 return ret; 310 } 311 312 static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us) 313 { 314 unsigned int count, retry; 315 u8 sta1; 316 int ret; 317 318 retry = interval_us / VADC_CONV_TIME_MIN_US; 319 320 for (count = 0; count < retry; count++) { 321 ret = vadc_read(vadc, VADC_STATUS1, &sta1); 322 if (ret) 323 return ret; 324 325 sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK; 326 if (sta1 == VADC_STATUS1_EOC) 327 return 0; 328 329 usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US); 330 } 331 332 vadc_show_status(vadc); 333 334 return -ETIMEDOUT; 335 } 336 337 static int vadc_read_result(struct vadc_priv *vadc, u16 *data) 338 { 339 int ret; 340 341 ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2); 342 if (ret) 343 return ret; 344 345 *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE); 346 347 return 0; 348 } 349 350 static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc, 351 unsigned int num) 352 { 353 unsigned int i; 354 355 for (i = 0; i < vadc->nchannels; i++) 356 if (vadc->chan_props[i].channel == num) 357 return &vadc->chan_props[i]; 358 359 dev_dbg(vadc->dev, "no such channel %02x\n", num); 360 361 return NULL; 362 } 363 364 static int vadc_do_conversion(struct vadc_priv *vadc, 365 struct vadc_channel_prop *prop, u16 *data) 366 { 367 unsigned int timeout; 368 int ret; 369 370 mutex_lock(&vadc->lock); 371 372 ret = vadc_configure(vadc, prop); 373 if (ret) 374 goto unlock; 375 376 if (!vadc->poll_eoc) 377 reinit_completion(&vadc->complete); 378 379 ret = vadc_set_state(vadc, true); 380 if (ret) 381 goto unlock; 382 383 ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET); 384 if (ret) 385 goto err_disable; 386 387 timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2; 388 389 if (vadc->poll_eoc) { 390 ret = vadc_poll_wait_eoc(vadc, timeout); 391 } else { 392 ret = wait_for_completion_timeout(&vadc->complete, timeout); 393 if (!ret) { 394 ret = -ETIMEDOUT; 395 goto err_disable; 396 } 397 398 /* Double check conversion status */ 399 ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US); 400 if (ret) 401 goto err_disable; 402 } 403 404 ret = vadc_read_result(vadc, data); 405 406 err_disable: 407 vadc_set_state(vadc, false); 408 if (ret) 409 dev_err(vadc->dev, "conversion failed\n"); 410 unlock: 411 mutex_unlock(&vadc->lock); 412 return ret; 413 } 414 415 static int vadc_measure_ref_points(struct vadc_priv *vadc) 416 { 417 struct vadc_channel_prop *prop; 418 u16 read_1, read_2; 419 int ret; 420 421 vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE_UV; 422 vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV; 423 424 prop = vadc_get_channel(vadc, VADC_REF_1250MV); 425 ret = vadc_do_conversion(vadc, prop, &read_1); 426 if (ret) 427 goto err; 428 429 /* Try with buffered 625mV channel first */ 430 prop = vadc_get_channel(vadc, VADC_SPARE1); 431 if (!prop) 432 prop = vadc_get_channel(vadc, VADC_REF_625MV); 433 434 ret = vadc_do_conversion(vadc, prop, &read_2); 435 if (ret) 436 goto err; 437 438 if (read_1 == read_2) { 439 ret = -EINVAL; 440 goto err; 441 } 442 443 vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2; 444 vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2; 445 446 /* Ratiometric calibration */ 447 prop = vadc_get_channel(vadc, VADC_VDD_VADC); 448 ret = vadc_do_conversion(vadc, prop, &read_1); 449 if (ret) 450 goto err; 451 452 prop = vadc_get_channel(vadc, VADC_GND_REF); 453 ret = vadc_do_conversion(vadc, prop, &read_2); 454 if (ret) 455 goto err; 456 457 if (read_1 == read_2) { 458 ret = -EINVAL; 459 goto err; 460 } 461 462 vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2; 463 vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2; 464 err: 465 if (ret) 466 dev_err(vadc->dev, "measure reference points failed\n"); 467 468 return ret; 469 } 470 471 static s32 vadc_calibrate(struct vadc_priv *vadc, 472 const struct vadc_channel_prop *prop, u16 adc_code) 473 { 474 const struct vadc_prescale_ratio *prescale; 475 s64 voltage; 476 477 voltage = adc_code - vadc->graph[prop->calibration].gnd; 478 voltage *= vadc->graph[prop->calibration].dx; 479 voltage = div64_s64(voltage, vadc->graph[prop->calibration].dy); 480 481 if (prop->calibration == VADC_CALIB_ABSOLUTE) 482 voltage += vadc->graph[prop->calibration].dx; 483 484 if (voltage < 0) 485 voltage = 0; 486 487 prescale = &vadc_prescale_ratios[prop->prescale]; 488 489 voltage = voltage * prescale->den; 490 491 return div64_s64(voltage, prescale->num); 492 } 493 494 static int vadc_decimation_from_dt(u32 value) 495 { 496 if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN || 497 value > VADC_DECIMATION_MAX) 498 return -EINVAL; 499 500 return __ffs64(value / VADC_DECIMATION_MIN); 501 } 502 503 static int vadc_prescaling_from_dt(u32 num, u32 den) 504 { 505 unsigned int pre; 506 507 for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++) 508 if (vadc_prescale_ratios[pre].num == num && 509 vadc_prescale_ratios[pre].den == den) 510 break; 511 512 if (pre == ARRAY_SIZE(vadc_prescale_ratios)) 513 return -EINVAL; 514 515 return pre; 516 } 517 518 static int vadc_hw_settle_time_from_dt(u32 value) 519 { 520 if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000)) 521 return -EINVAL; 522 523 if (value <= 1000) 524 value /= 100; 525 else 526 value = value / 2000 + 10; 527 528 return value; 529 } 530 531 static int vadc_avg_samples_from_dt(u32 value) 532 { 533 if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX) 534 return -EINVAL; 535 536 return __ffs64(value); 537 } 538 539 static int vadc_read_raw(struct iio_dev *indio_dev, 540 struct iio_chan_spec const *chan, int *val, int *val2, 541 long mask) 542 { 543 struct vadc_priv *vadc = iio_priv(indio_dev); 544 struct vadc_channel_prop *prop; 545 u16 adc_code; 546 int ret; 547 548 switch (mask) { 549 case IIO_CHAN_INFO_PROCESSED: 550 prop = &vadc->chan_props[chan->address]; 551 ret = vadc_do_conversion(vadc, prop, &adc_code); 552 if (ret) 553 break; 554 555 *val = vadc_calibrate(vadc, prop, adc_code); 556 557 /* 2mV/K, return milli Celsius */ 558 *val /= 2; 559 *val -= KELVINMIL_CELSIUSMIL; 560 return IIO_VAL_INT; 561 case IIO_CHAN_INFO_RAW: 562 prop = &vadc->chan_props[chan->address]; 563 ret = vadc_do_conversion(vadc, prop, &adc_code); 564 if (ret) 565 break; 566 567 *val = vadc_calibrate(vadc, prop, adc_code); 568 return IIO_VAL_INT; 569 case IIO_CHAN_INFO_SCALE: 570 *val = 0; 571 *val2 = 1000; 572 return IIO_VAL_INT_PLUS_MICRO; 573 default: 574 ret = -EINVAL; 575 break; 576 } 577 578 return ret; 579 } 580 581 static int vadc_of_xlate(struct iio_dev *indio_dev, 582 const struct of_phandle_args *iiospec) 583 { 584 struct vadc_priv *vadc = iio_priv(indio_dev); 585 unsigned int i; 586 587 for (i = 0; i < vadc->nchannels; i++) 588 if (vadc->iio_chans[i].channel == iiospec->args[0]) 589 return i; 590 591 return -EINVAL; 592 } 593 594 static const struct iio_info vadc_info = { 595 .read_raw = vadc_read_raw, 596 .of_xlate = vadc_of_xlate, 597 .driver_module = THIS_MODULE, 598 }; 599 600 struct vadc_channels { 601 const char *datasheet_name; 602 unsigned int prescale_index; 603 enum iio_chan_type type; 604 long info_mask; 605 }; 606 607 #define VADC_CHAN(_dname, _type, _mask, _pre) \ 608 [VADC_##_dname] = { \ 609 .datasheet_name = __stringify(_dname), \ 610 .prescale_index = _pre, \ 611 .type = _type, \ 612 .info_mask = _mask \ 613 }, \ 614 615 #define VADC_CHAN_TEMP(_dname, _pre) \ 616 VADC_CHAN(_dname, IIO_TEMP, BIT(IIO_CHAN_INFO_PROCESSED), _pre) \ 617 618 #define VADC_CHAN_VOLT(_dname, _pre) \ 619 VADC_CHAN(_dname, IIO_VOLTAGE, \ 620 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \ 621 _pre) \ 622 623 /* 624 * The array represents all possible ADC channels found in the supported PMICs. 625 * Every index in the array is equal to the channel number per datasheet. The 626 * gaps in the array should be treated as reserved channels. 627 */ 628 static const struct vadc_channels vadc_chans[] = { 629 VADC_CHAN_VOLT(USBIN, 4) 630 VADC_CHAN_VOLT(DCIN, 4) 631 VADC_CHAN_VOLT(VCHG_SNS, 3) 632 VADC_CHAN_VOLT(SPARE1_03, 1) 633 VADC_CHAN_VOLT(USB_ID_MV, 1) 634 VADC_CHAN_VOLT(VCOIN, 1) 635 VADC_CHAN_VOLT(VBAT_SNS, 1) 636 VADC_CHAN_VOLT(VSYS, 1) 637 VADC_CHAN_TEMP(DIE_TEMP, 0) 638 VADC_CHAN_VOLT(REF_625MV, 0) 639 VADC_CHAN_VOLT(REF_1250MV, 0) 640 VADC_CHAN_VOLT(CHG_TEMP, 0) 641 VADC_CHAN_VOLT(SPARE1, 0) 642 VADC_CHAN_VOLT(SPARE2, 0) 643 VADC_CHAN_VOLT(GND_REF, 0) 644 VADC_CHAN_VOLT(VDD_VADC, 0) 645 646 VADC_CHAN_VOLT(P_MUX1_1_1, 0) 647 VADC_CHAN_VOLT(P_MUX2_1_1, 0) 648 VADC_CHAN_VOLT(P_MUX3_1_1, 0) 649 VADC_CHAN_VOLT(P_MUX4_1_1, 0) 650 VADC_CHAN_VOLT(P_MUX5_1_1, 0) 651 VADC_CHAN_VOLT(P_MUX6_1_1, 0) 652 VADC_CHAN_VOLT(P_MUX7_1_1, 0) 653 VADC_CHAN_VOLT(P_MUX8_1_1, 0) 654 VADC_CHAN_VOLT(P_MUX9_1_1, 0) 655 VADC_CHAN_VOLT(P_MUX10_1_1, 0) 656 VADC_CHAN_VOLT(P_MUX11_1_1, 0) 657 VADC_CHAN_VOLT(P_MUX12_1_1, 0) 658 VADC_CHAN_VOLT(P_MUX13_1_1, 0) 659 VADC_CHAN_VOLT(P_MUX14_1_1, 0) 660 VADC_CHAN_VOLT(P_MUX15_1_1, 0) 661 VADC_CHAN_VOLT(P_MUX16_1_1, 0) 662 663 VADC_CHAN_VOLT(P_MUX1_1_3, 1) 664 VADC_CHAN_VOLT(P_MUX2_1_3, 1) 665 VADC_CHAN_VOLT(P_MUX3_1_3, 1) 666 VADC_CHAN_VOLT(P_MUX4_1_3, 1) 667 VADC_CHAN_VOLT(P_MUX5_1_3, 1) 668 VADC_CHAN_VOLT(P_MUX6_1_3, 1) 669 VADC_CHAN_VOLT(P_MUX7_1_3, 1) 670 VADC_CHAN_VOLT(P_MUX8_1_3, 1) 671 VADC_CHAN_VOLT(P_MUX9_1_3, 1) 672 VADC_CHAN_VOLT(P_MUX10_1_3, 1) 673 VADC_CHAN_VOLT(P_MUX11_1_3, 1) 674 VADC_CHAN_VOLT(P_MUX12_1_3, 1) 675 VADC_CHAN_VOLT(P_MUX13_1_3, 1) 676 VADC_CHAN_VOLT(P_MUX14_1_3, 1) 677 VADC_CHAN_VOLT(P_MUX15_1_3, 1) 678 VADC_CHAN_VOLT(P_MUX16_1_3, 1) 679 680 VADC_CHAN_VOLT(LR_MUX1_BAT_THERM, 0) 681 VADC_CHAN_VOLT(LR_MUX2_BAT_ID, 0) 682 VADC_CHAN_VOLT(LR_MUX3_XO_THERM, 0) 683 VADC_CHAN_VOLT(LR_MUX4_AMUX_THM1, 0) 684 VADC_CHAN_VOLT(LR_MUX5_AMUX_THM2, 0) 685 VADC_CHAN_VOLT(LR_MUX6_AMUX_THM3, 0) 686 VADC_CHAN_VOLT(LR_MUX7_HW_ID, 0) 687 VADC_CHAN_VOLT(LR_MUX8_AMUX_THM4, 0) 688 VADC_CHAN_VOLT(LR_MUX9_AMUX_THM5, 0) 689 VADC_CHAN_VOLT(LR_MUX10_USB_ID, 0) 690 VADC_CHAN_VOLT(AMUX_PU1, 0) 691 VADC_CHAN_VOLT(AMUX_PU2, 0) 692 VADC_CHAN_VOLT(LR_MUX3_BUF_XO_THERM, 0) 693 694 VADC_CHAN_VOLT(LR_MUX1_PU1_BAT_THERM, 0) 695 VADC_CHAN_VOLT(LR_MUX2_PU1_BAT_ID, 0) 696 VADC_CHAN_VOLT(LR_MUX3_PU1_XO_THERM, 0) 697 VADC_CHAN_VOLT(LR_MUX4_PU1_AMUX_THM1, 0) 698 VADC_CHAN_VOLT(LR_MUX5_PU1_AMUX_THM2, 0) 699 VADC_CHAN_VOLT(LR_MUX6_PU1_AMUX_THM3, 0) 700 VADC_CHAN_VOLT(LR_MUX7_PU1_AMUX_HW_ID, 0) 701 VADC_CHAN_VOLT(LR_MUX8_PU1_AMUX_THM4, 0) 702 VADC_CHAN_VOLT(LR_MUX9_PU1_AMUX_THM5, 0) 703 VADC_CHAN_VOLT(LR_MUX10_PU1_AMUX_USB_ID, 0) 704 VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_XO_THERM, 0) 705 706 VADC_CHAN_VOLT(LR_MUX1_PU2_BAT_THERM, 0) 707 VADC_CHAN_VOLT(LR_MUX2_PU2_BAT_ID, 0) 708 VADC_CHAN_VOLT(LR_MUX3_PU2_XO_THERM, 0) 709 VADC_CHAN_VOLT(LR_MUX4_PU2_AMUX_THM1, 0) 710 VADC_CHAN_VOLT(LR_MUX5_PU2_AMUX_THM2, 0) 711 VADC_CHAN_VOLT(LR_MUX6_PU2_AMUX_THM3, 0) 712 VADC_CHAN_VOLT(LR_MUX7_PU2_AMUX_HW_ID, 0) 713 VADC_CHAN_VOLT(LR_MUX8_PU2_AMUX_THM4, 0) 714 VADC_CHAN_VOLT(LR_MUX9_PU2_AMUX_THM5, 0) 715 VADC_CHAN_VOLT(LR_MUX10_PU2_AMUX_USB_ID, 0) 716 VADC_CHAN_VOLT(LR_MUX3_BUF_PU2_XO_THERM, 0) 717 718 VADC_CHAN_VOLT(LR_MUX1_PU1_PU2_BAT_THERM, 0) 719 VADC_CHAN_VOLT(LR_MUX2_PU1_PU2_BAT_ID, 0) 720 VADC_CHAN_VOLT(LR_MUX3_PU1_PU2_XO_THERM, 0) 721 VADC_CHAN_VOLT(LR_MUX4_PU1_PU2_AMUX_THM1, 0) 722 VADC_CHAN_VOLT(LR_MUX5_PU1_PU2_AMUX_THM2, 0) 723 VADC_CHAN_VOLT(LR_MUX6_PU1_PU2_AMUX_THM3, 0) 724 VADC_CHAN_VOLT(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0) 725 VADC_CHAN_VOLT(LR_MUX8_PU1_PU2_AMUX_THM4, 0) 726 VADC_CHAN_VOLT(LR_MUX9_PU1_PU2_AMUX_THM5, 0) 727 VADC_CHAN_VOLT(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0) 728 VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0) 729 }; 730 731 static int vadc_get_dt_channel_data(struct device *dev, 732 struct vadc_channel_prop *prop, 733 struct device_node *node) 734 { 735 const char *name = node->name; 736 u32 chan, value, varr[2]; 737 int ret; 738 739 ret = of_property_read_u32(node, "reg", &chan); 740 if (ret) { 741 dev_err(dev, "invalid channel number %s\n", name); 742 return ret; 743 } 744 745 if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) { 746 dev_err(dev, "%s invalid channel number %d\n", name, chan); 747 return -EINVAL; 748 } 749 750 /* the channel has DT description */ 751 prop->channel = chan; 752 753 ret = of_property_read_u32(node, "qcom,decimation", &value); 754 if (!ret) { 755 ret = vadc_decimation_from_dt(value); 756 if (ret < 0) { 757 dev_err(dev, "%02x invalid decimation %d\n", 758 chan, value); 759 return ret; 760 } 761 prop->decimation = ret; 762 } else { 763 prop->decimation = VADC_DEF_DECIMATION; 764 } 765 766 ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); 767 if (!ret) { 768 ret = vadc_prescaling_from_dt(varr[0], varr[1]); 769 if (ret < 0) { 770 dev_err(dev, "%02x invalid pre-scaling <%d %d>\n", 771 chan, varr[0], varr[1]); 772 return ret; 773 } 774 prop->prescale = ret; 775 } else { 776 prop->prescale = vadc_chans[prop->channel].prescale_index; 777 } 778 779 ret = of_property_read_u32(node, "qcom,hw-settle-time", &value); 780 if (!ret) { 781 ret = vadc_hw_settle_time_from_dt(value); 782 if (ret < 0) { 783 dev_err(dev, "%02x invalid hw-settle-time %d us\n", 784 chan, value); 785 return ret; 786 } 787 prop->hw_settle_time = ret; 788 } else { 789 prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; 790 } 791 792 ret = of_property_read_u32(node, "qcom,avg-samples", &value); 793 if (!ret) { 794 ret = vadc_avg_samples_from_dt(value); 795 if (ret < 0) { 796 dev_err(dev, "%02x invalid avg-samples %d\n", 797 chan, value); 798 return ret; 799 } 800 prop->avg_samples = ret; 801 } else { 802 prop->avg_samples = VADC_DEF_AVG_SAMPLES; 803 } 804 805 if (of_property_read_bool(node, "qcom,ratiometric")) 806 prop->calibration = VADC_CALIB_RATIOMETRIC; 807 else 808 prop->calibration = VADC_CALIB_ABSOLUTE; 809 810 dev_dbg(dev, "%02x name %s\n", chan, name); 811 812 return 0; 813 } 814 815 static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node) 816 { 817 const struct vadc_channels *vadc_chan; 818 struct iio_chan_spec *iio_chan; 819 struct vadc_channel_prop prop; 820 struct device_node *child; 821 unsigned int index = 0; 822 int ret; 823 824 vadc->nchannels = of_get_available_child_count(node); 825 if (!vadc->nchannels) 826 return -EINVAL; 827 828 vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels, 829 sizeof(*vadc->iio_chans), GFP_KERNEL); 830 if (!vadc->iio_chans) 831 return -ENOMEM; 832 833 vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels, 834 sizeof(*vadc->chan_props), GFP_KERNEL); 835 if (!vadc->chan_props) 836 return -ENOMEM; 837 838 iio_chan = vadc->iio_chans; 839 840 for_each_available_child_of_node(node, child) { 841 ret = vadc_get_dt_channel_data(vadc->dev, &prop, child); 842 if (ret) { 843 of_node_put(child); 844 return ret; 845 } 846 847 vadc->chan_props[index] = prop; 848 849 vadc_chan = &vadc_chans[prop.channel]; 850 851 iio_chan->channel = prop.channel; 852 iio_chan->datasheet_name = vadc_chan->datasheet_name; 853 iio_chan->info_mask_separate = vadc_chan->info_mask; 854 iio_chan->type = vadc_chan->type; 855 iio_chan->indexed = 1; 856 iio_chan->address = index++; 857 858 iio_chan++; 859 } 860 861 /* These channels are mandatory, they are used as reference points */ 862 if (!vadc_get_channel(vadc, VADC_REF_1250MV)) { 863 dev_err(vadc->dev, "Please define 1.25V channel\n"); 864 return -ENODEV; 865 } 866 867 if (!vadc_get_channel(vadc, VADC_REF_625MV)) { 868 dev_err(vadc->dev, "Please define 0.625V channel\n"); 869 return -ENODEV; 870 } 871 872 if (!vadc_get_channel(vadc, VADC_VDD_VADC)) { 873 dev_err(vadc->dev, "Please define VDD channel\n"); 874 return -ENODEV; 875 } 876 877 if (!vadc_get_channel(vadc, VADC_GND_REF)) { 878 dev_err(vadc->dev, "Please define GND channel\n"); 879 return -ENODEV; 880 } 881 882 return 0; 883 } 884 885 static irqreturn_t vadc_isr(int irq, void *dev_id) 886 { 887 struct vadc_priv *vadc = dev_id; 888 889 complete(&vadc->complete); 890 891 return IRQ_HANDLED; 892 } 893 894 static int vadc_check_revision(struct vadc_priv *vadc) 895 { 896 u8 val; 897 int ret; 898 899 ret = vadc_read(vadc, VADC_PERPH_TYPE, &val); 900 if (ret) 901 return ret; 902 903 if (val < VADC_PERPH_TYPE_ADC) { 904 dev_err(vadc->dev, "%d is not ADC\n", val); 905 return -ENODEV; 906 } 907 908 ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val); 909 if (ret) 910 return ret; 911 912 if (val < VADC_PERPH_SUBTYPE_VADC) { 913 dev_err(vadc->dev, "%d is not VADC\n", val); 914 return -ENODEV; 915 } 916 917 ret = vadc_read(vadc, VADC_REVISION2, &val); 918 if (ret) 919 return ret; 920 921 if (val < VADC_REVISION2_SUPPORTED_VADC) { 922 dev_err(vadc->dev, "revision %d not supported\n", val); 923 return -ENODEV; 924 } 925 926 return 0; 927 } 928 929 static int vadc_probe(struct platform_device *pdev) 930 { 931 struct device_node *node = pdev->dev.of_node; 932 struct device *dev = &pdev->dev; 933 struct iio_dev *indio_dev; 934 struct vadc_priv *vadc; 935 struct regmap *regmap; 936 int ret, irq_eoc; 937 u32 reg; 938 939 regmap = dev_get_regmap(dev->parent, NULL); 940 if (!regmap) 941 return -ENODEV; 942 943 ret = of_property_read_u32(node, "reg", ®); 944 if (ret < 0) 945 return ret; 946 947 indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc)); 948 if (!indio_dev) 949 return -ENOMEM; 950 951 vadc = iio_priv(indio_dev); 952 vadc->regmap = regmap; 953 vadc->dev = dev; 954 vadc->base = reg; 955 vadc->are_ref_measured = false; 956 init_completion(&vadc->complete); 957 mutex_init(&vadc->lock); 958 959 ret = vadc_check_revision(vadc); 960 if (ret) 961 return ret; 962 963 ret = vadc_get_dt_data(vadc, node); 964 if (ret) 965 return ret; 966 967 irq_eoc = platform_get_irq(pdev, 0); 968 if (irq_eoc < 0) { 969 if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL) 970 return irq_eoc; 971 vadc->poll_eoc = true; 972 } else { 973 ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0, 974 "spmi-vadc", vadc); 975 if (ret) 976 return ret; 977 } 978 979 ret = vadc_reset(vadc); 980 if (ret) { 981 dev_err(dev, "reset failed\n"); 982 return ret; 983 } 984 985 ret = vadc_measure_ref_points(vadc); 986 if (ret) 987 return ret; 988 989 indio_dev->dev.parent = dev; 990 indio_dev->dev.of_node = node; 991 indio_dev->name = pdev->name; 992 indio_dev->modes = INDIO_DIRECT_MODE; 993 indio_dev->info = &vadc_info; 994 indio_dev->channels = vadc->iio_chans; 995 indio_dev->num_channels = vadc->nchannels; 996 997 return devm_iio_device_register(dev, indio_dev); 998 } 999 1000 static const struct of_device_id vadc_match_table[] = { 1001 { .compatible = "qcom,spmi-vadc" }, 1002 { } 1003 }; 1004 MODULE_DEVICE_TABLE(of, vadc_match_table); 1005 1006 static struct platform_driver vadc_driver = { 1007 .driver = { 1008 .name = "qcom-spmi-vadc", 1009 .of_match_table = vadc_match_table, 1010 }, 1011 .probe = vadc_probe, 1012 }; 1013 module_platform_driver(vadc_driver); 1014 1015 MODULE_ALIAS("platform:qcom-spmi-vadc"); 1016 MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver"); 1017 MODULE_LICENSE("GPL v2"); 1018 MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>"); 1019 MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>"); 1020