xref: /linux/drivers/iio/adc/nau7802.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Nuvoton NAU7802 ADC
4  *
5  * Copyright 2013 Free Electrons
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/i2c.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/wait.h>
13 #include <linux/log2.h>
14 #include <linux/of.h>
15 
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 
19 #define NAU7802_REG_PUCTRL	0x00
20 #define NAU7802_PUCTRL_RR(x)		(x << 0)
21 #define NAU7802_PUCTRL_RR_BIT		NAU7802_PUCTRL_RR(1)
22 #define NAU7802_PUCTRL_PUD(x)		(x << 1)
23 #define NAU7802_PUCTRL_PUD_BIT		NAU7802_PUCTRL_PUD(1)
24 #define NAU7802_PUCTRL_PUA(x)		(x << 2)
25 #define NAU7802_PUCTRL_PUA_BIT		NAU7802_PUCTRL_PUA(1)
26 #define NAU7802_PUCTRL_PUR(x)		(x << 3)
27 #define NAU7802_PUCTRL_PUR_BIT		NAU7802_PUCTRL_PUR(1)
28 #define NAU7802_PUCTRL_CS(x)		(x << 4)
29 #define NAU7802_PUCTRL_CS_BIT		NAU7802_PUCTRL_CS(1)
30 #define NAU7802_PUCTRL_CR(x)		(x << 5)
31 #define NAU7802_PUCTRL_CR_BIT		NAU7802_PUCTRL_CR(1)
32 #define NAU7802_PUCTRL_AVDDS(x)		(x << 7)
33 #define NAU7802_PUCTRL_AVDDS_BIT	NAU7802_PUCTRL_AVDDS(1)
34 #define NAU7802_REG_CTRL1	0x01
35 #define NAU7802_CTRL1_VLDO(x)		(x << 3)
36 #define NAU7802_CTRL1_GAINS(x)		(x)
37 #define NAU7802_CTRL1_GAINS_BITS	0x07
38 #define NAU7802_REG_CTRL2	0x02
39 #define NAU7802_CTRL2_CHS(x)		(x << 7)
40 #define NAU7802_CTRL2_CRS(x)		(x << 4)
41 #define NAU7802_SAMP_FREQ_320	0x07
42 #define NAU7802_CTRL2_CHS_BIT		NAU7802_CTRL2_CHS(1)
43 #define NAU7802_REG_ADC_B2	0x12
44 #define NAU7802_REG_ADC_B1	0x13
45 #define NAU7802_REG_ADC_B0	0x14
46 #define NAU7802_REG_ADC_CTRL	0x15
47 
48 #define NAU7802_MIN_CONVERSIONS 6
49 
50 struct nau7802_state {
51 	struct i2c_client	*client;
52 	s32			last_value;
53 	struct mutex		lock;
54 	struct mutex		data_lock;
55 	u32			vref_mv;
56 	u32			conversion_count;
57 	u32			min_conversions;
58 	u8			sample_rate;
59 	u32			scale_avail[8];
60 	struct completion	value_ok;
61 };
62 
63 #define NAU7802_CHANNEL(chan) {					\
64 	.type = IIO_VOLTAGE,					\
65 	.indexed = 1,						\
66 	.channel = (chan),					\
67 	.scan_index = (chan),					\
68 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
69 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
70 				BIT(IIO_CHAN_INFO_SAMP_FREQ)	\
71 }
72 
73 static const struct iio_chan_spec nau7802_chan_array[] = {
74 	NAU7802_CHANNEL(0),
75 	NAU7802_CHANNEL(1),
76 };
77 
78 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
79 						10, 10, 10, 320};
80 
81 static ssize_t nau7802_show_scales(struct device *dev,
82 				   struct device_attribute *attr, char *buf)
83 {
84 	struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
85 	int i, len = 0;
86 
87 	for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
88 		len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
89 				 st->scale_avail[i]);
90 
91 	buf[len-1] = '\n';
92 
93 	return len;
94 }
95 
96 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
97 
98 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
99 		       NULL, 0);
100 
101 static struct attribute *nau7802_attributes[] = {
102 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
103 	&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
104 	NULL
105 };
106 
107 static const struct attribute_group nau7802_attribute_group = {
108 	.attrs = nau7802_attributes,
109 };
110 
111 static int nau7802_set_gain(struct nau7802_state *st, int gain)
112 {
113 	int ret;
114 
115 	mutex_lock(&st->lock);
116 	st->conversion_count = 0;
117 
118 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
119 	if (ret < 0)
120 		goto nau7802_sysfs_set_gain_out;
121 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
122 					(ret & (~NAU7802_CTRL1_GAINS_BITS)) |
123 					gain);
124 
125 nau7802_sysfs_set_gain_out:
126 	mutex_unlock(&st->lock);
127 
128 	return ret;
129 }
130 
131 static int nau7802_read_conversion(struct nau7802_state *st)
132 {
133 	int data;
134 
135 	mutex_lock(&st->data_lock);
136 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
137 	if (data < 0)
138 		goto nau7802_read_conversion_out;
139 	st->last_value = data << 16;
140 
141 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
142 	if (data < 0)
143 		goto nau7802_read_conversion_out;
144 	st->last_value |= data << 8;
145 
146 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
147 	if (data < 0)
148 		goto nau7802_read_conversion_out;
149 	st->last_value |= data;
150 
151 	st->last_value = sign_extend32(st->last_value, 23);
152 
153 nau7802_read_conversion_out:
154 	mutex_unlock(&st->data_lock);
155 
156 	return data;
157 }
158 
159 /*
160  * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
161  */
162 static int nau7802_sync(struct nau7802_state *st)
163 {
164 	int ret;
165 
166 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
167 	if (ret < 0)
168 		return ret;
169 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
170 				ret | NAU7802_PUCTRL_CS_BIT);
171 
172 	return ret;
173 }
174 
175 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
176 {
177 	struct iio_dev *indio_dev = private;
178 	struct nau7802_state *st = iio_priv(indio_dev);
179 	int status;
180 
181 	status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
182 	if (status < 0)
183 		return IRQ_HANDLED;
184 
185 	if (!(status & NAU7802_PUCTRL_CR_BIT))
186 		return IRQ_NONE;
187 
188 	if (nau7802_read_conversion(st) < 0)
189 		return IRQ_HANDLED;
190 
191 	/*
192 	 * Because there is actually only one ADC for both channels, we have to
193 	 * wait for enough conversions to happen before getting a significant
194 	 * value when changing channels and the values are far apart.
195 	 */
196 	if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
197 		st->conversion_count++;
198 	if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
199 		complete(&st->value_ok);
200 
201 	return IRQ_HANDLED;
202 }
203 
204 static int nau7802_read_irq(struct iio_dev *indio_dev,
205 			struct iio_chan_spec const *chan,
206 			int *val)
207 {
208 	struct nau7802_state *st = iio_priv(indio_dev);
209 	int ret;
210 
211 	reinit_completion(&st->value_ok);
212 	enable_irq(st->client->irq);
213 
214 	nau7802_sync(st);
215 
216 	/* read registers to ensure we flush everything */
217 	ret = nau7802_read_conversion(st);
218 	if (ret < 0)
219 		goto read_chan_info_failure;
220 
221 	/* Wait for a conversion to finish */
222 	ret = wait_for_completion_interruptible_timeout(&st->value_ok,
223 			msecs_to_jiffies(1000));
224 	if (ret == 0)
225 		ret = -ETIMEDOUT;
226 
227 	if (ret < 0)
228 		goto read_chan_info_failure;
229 
230 	disable_irq(st->client->irq);
231 
232 	*val = st->last_value;
233 
234 	return IIO_VAL_INT;
235 
236 read_chan_info_failure:
237 	disable_irq(st->client->irq);
238 
239 	return ret;
240 }
241 
242 static int nau7802_read_poll(struct iio_dev *indio_dev,
243 			struct iio_chan_spec const *chan,
244 			int *val)
245 {
246 	struct nau7802_state *st = iio_priv(indio_dev);
247 	int ret;
248 
249 	nau7802_sync(st);
250 
251 	/* read registers to ensure we flush everything */
252 	ret = nau7802_read_conversion(st);
253 	if (ret < 0)
254 		return ret;
255 
256 	/*
257 	 * Because there is actually only one ADC for both channels, we have to
258 	 * wait for enough conversions to happen before getting a significant
259 	 * value when changing channels and the values are far appart.
260 	 */
261 	do {
262 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
263 		if (ret < 0)
264 			return ret;
265 
266 		while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
267 			if (st->sample_rate != NAU7802_SAMP_FREQ_320)
268 				msleep(20);
269 			else
270 				mdelay(4);
271 			ret = i2c_smbus_read_byte_data(st->client,
272 							NAU7802_REG_PUCTRL);
273 			if (ret < 0)
274 				return ret;
275 		}
276 
277 		ret = nau7802_read_conversion(st);
278 		if (ret < 0)
279 			return ret;
280 		if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
281 			st->conversion_count++;
282 	} while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
283 
284 	*val = st->last_value;
285 
286 	return IIO_VAL_INT;
287 }
288 
289 static int nau7802_read_raw(struct iio_dev *indio_dev,
290 			    struct iio_chan_spec const *chan,
291 			    int *val, int *val2, long mask)
292 {
293 	struct nau7802_state *st = iio_priv(indio_dev);
294 	int ret;
295 
296 	switch (mask) {
297 	case IIO_CHAN_INFO_RAW:
298 		mutex_lock(&st->lock);
299 		/*
300 		 * Select the channel to use
301 		 *   - Channel 1 is value 0 in the CHS register
302 		 *   - Channel 2 is value 1 in the CHS register
303 		 */
304 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
305 		if (ret < 0) {
306 			mutex_unlock(&st->lock);
307 			return ret;
308 		}
309 
310 		if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
311 				(!(ret & NAU7802_CTRL2_CHS_BIT) &&
312 				 chan->channel)) {
313 			st->conversion_count = 0;
314 			ret = i2c_smbus_write_byte_data(st->client,
315 					NAU7802_REG_CTRL2,
316 					NAU7802_CTRL2_CHS(chan->channel) |
317 					NAU7802_CTRL2_CRS(st->sample_rate));
318 
319 			if (ret < 0) {
320 				mutex_unlock(&st->lock);
321 				return ret;
322 			}
323 		}
324 
325 		if (st->client->irq)
326 			ret = nau7802_read_irq(indio_dev, chan, val);
327 		else
328 			ret = nau7802_read_poll(indio_dev, chan, val);
329 
330 		mutex_unlock(&st->lock);
331 		return ret;
332 
333 	case IIO_CHAN_INFO_SCALE:
334 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
335 		if (ret < 0)
336 			return ret;
337 
338 		/*
339 		 * We have 24 bits of signed data, that means 23 bits of data
340 		 * plus the sign bit
341 		 */
342 		*val = st->vref_mv;
343 		*val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
344 
345 		return IIO_VAL_FRACTIONAL_LOG2;
346 
347 	case IIO_CHAN_INFO_SAMP_FREQ:
348 		*val =  nau7802_sample_freq_avail[st->sample_rate];
349 		*val2 = 0;
350 		return IIO_VAL_INT;
351 
352 	default:
353 		break;
354 	}
355 
356 	return -EINVAL;
357 }
358 
359 static int nau7802_write_raw(struct iio_dev *indio_dev,
360 			     struct iio_chan_spec const *chan,
361 			     int val, int val2, long mask)
362 {
363 	struct nau7802_state *st = iio_priv(indio_dev);
364 	int i, ret;
365 
366 	switch (mask) {
367 	case IIO_CHAN_INFO_SCALE:
368 		for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
369 			if (val2 == st->scale_avail[i])
370 				return nau7802_set_gain(st, i);
371 
372 		break;
373 
374 	case IIO_CHAN_INFO_SAMP_FREQ:
375 		for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
376 			if (val == nau7802_sample_freq_avail[i]) {
377 				mutex_lock(&st->lock);
378 				st->sample_rate = i;
379 				st->conversion_count = 0;
380 				ret = i2c_smbus_write_byte_data(st->client,
381 					NAU7802_REG_CTRL2,
382 					NAU7802_CTRL2_CRS(st->sample_rate));
383 				mutex_unlock(&st->lock);
384 				return ret;
385 			}
386 
387 		break;
388 
389 	default:
390 		break;
391 	}
392 
393 	return -EINVAL;
394 }
395 
396 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
397 				     struct iio_chan_spec const *chan,
398 				     long mask)
399 {
400 	return IIO_VAL_INT_PLUS_NANO;
401 }
402 
403 static const struct iio_info nau7802_info = {
404 	.read_raw = &nau7802_read_raw,
405 	.write_raw = &nau7802_write_raw,
406 	.write_raw_get_fmt = nau7802_write_raw_get_fmt,
407 	.attrs = &nau7802_attribute_group,
408 };
409 
410 static int nau7802_probe(struct i2c_client *client,
411 			const struct i2c_device_id *id)
412 {
413 	struct iio_dev *indio_dev;
414 	struct nau7802_state *st;
415 	struct device_node *np = client->dev.of_node;
416 	int i, ret;
417 	u8 data;
418 	u32 tmp = 0;
419 
420 	if (!client->dev.of_node) {
421 		dev_err(&client->dev, "No device tree node available.\n");
422 		return -EINVAL;
423 	}
424 
425 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
426 	if (indio_dev == NULL)
427 		return -ENOMEM;
428 
429 	st = iio_priv(indio_dev);
430 
431 	indio_dev->name = dev_name(&client->dev);
432 	indio_dev->modes = INDIO_DIRECT_MODE;
433 	indio_dev->info = &nau7802_info;
434 
435 	st->client = client;
436 
437 	/* Reset the device */
438 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
439 				  NAU7802_PUCTRL_RR_BIT);
440 	if (ret < 0)
441 		return ret;
442 
443 	/* Enter normal operation mode */
444 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
445 				  NAU7802_PUCTRL_PUD_BIT);
446 	if (ret < 0)
447 		return ret;
448 
449 	/*
450 	 * After about 200 usecs, the device should be ready and then
451 	 * the Power Up bit will be set to 1. If not, wait for it.
452 	 */
453 	udelay(210);
454 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
455 	if (ret < 0)
456 		return ret;
457 	if (!(ret & NAU7802_PUCTRL_PUR_BIT))
458 		return ret;
459 
460 	of_property_read_u32(np, "nuvoton,vldo", &tmp);
461 	st->vref_mv = tmp;
462 
463 	data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
464 		NAU7802_PUCTRL_CS_BIT;
465 	if (tmp >= 2400)
466 		data |= NAU7802_PUCTRL_AVDDS_BIT;
467 
468 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
469 	if (ret < 0)
470 		return ret;
471 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
472 	if (ret < 0)
473 		return ret;
474 
475 	if (tmp >= 2400) {
476 		data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
477 		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
478 						data);
479 		if (ret < 0)
480 			return ret;
481 	}
482 
483 	/* Populate available ADC input ranges */
484 	for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
485 		st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
486 					   >> (23 + i);
487 
488 	init_completion(&st->value_ok);
489 
490 	/*
491 	 * The ADC fires continuously and we can't do anything about
492 	 * it. So we need to have the IRQ disabled by default, and we
493 	 * will enable them back when we will need them..
494 	 */
495 	if (client->irq) {
496 		ret = devm_request_threaded_irq(&client->dev, client->irq,
497 						NULL,
498 						nau7802_eoc_trigger,
499 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
500 						IRQF_NO_AUTOEN,
501 						client->dev.driver->name,
502 						indio_dev);
503 		if (ret) {
504 			/*
505 			 * What may happen here is that our IRQ controller is
506 			 * not able to get level interrupt but this is required
507 			 * by this ADC as when going over 40 sample per second,
508 			 * the interrupt line may stay high between conversions.
509 			 * So, we continue no matter what but we switch to
510 			 * polling mode.
511 			 */
512 			dev_info(&client->dev,
513 				"Failed to allocate IRQ, using polling mode\n");
514 			client->irq = 0;
515 		}
516 	}
517 
518 	if (!client->irq) {
519 		/*
520 		 * We are polling, use the fastest sample rate by
521 		 * default
522 		 */
523 		st->sample_rate = NAU7802_SAMP_FREQ_320;
524 		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
525 					  NAU7802_CTRL2_CRS(st->sample_rate));
526 		if (ret)
527 			return ret;
528 	}
529 
530 	/* Setup the ADC channels available on the board */
531 	indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
532 	indio_dev->channels = nau7802_chan_array;
533 
534 	mutex_init(&st->lock);
535 	mutex_init(&st->data_lock);
536 
537 	return devm_iio_device_register(&client->dev, indio_dev);
538 }
539 
540 static const struct i2c_device_id nau7802_i2c_id[] = {
541 	{ "nau7802", 0 },
542 	{ }
543 };
544 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
545 
546 static const struct of_device_id nau7802_dt_ids[] = {
547 	{ .compatible = "nuvoton,nau7802" },
548 	{},
549 };
550 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
551 
552 static struct i2c_driver nau7802_driver = {
553 	.probe = nau7802_probe,
554 	.id_table = nau7802_i2c_id,
555 	.driver = {
556 		   .name = "nau7802",
557 		   .of_match_table = nau7802_dt_ids,
558 	},
559 };
560 
561 module_i2c_driver(nau7802_driver);
562 
563 MODULE_LICENSE("GPL");
564 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
565 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
566 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
567