xref: /linux/drivers/iio/adc/nau7802.c (revision 0e2b2a76278153d1ac312b0691cb65dabb9aef3e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Nuvoton NAU7802 ADC
4  *
5  * Copyright 2013 Free Electrons
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/i2c.h>
10 #include <linux/interrupt.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/wait.h>
15 #include <linux/log2.h>
16 
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 
20 #define NAU7802_REG_PUCTRL	0x00
21 #define NAU7802_PUCTRL_RR(x)		(x << 0)
22 #define NAU7802_PUCTRL_RR_BIT		NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x)		(x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT		NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x)		(x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT		NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x)		(x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT		NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x)		(x << 4)
30 #define NAU7802_PUCTRL_CS_BIT		NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x)		(x << 5)
32 #define NAU7802_PUCTRL_CR_BIT		NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x)		(x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT	NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1	0x01
36 #define NAU7802_CTRL1_VLDO(x)		(x << 3)
37 #define NAU7802_CTRL1_GAINS(x)		(x)
38 #define NAU7802_CTRL1_GAINS_BITS	0x07
39 #define NAU7802_REG_CTRL2	0x02
40 #define NAU7802_CTRL2_CHS(x)		(x << 7)
41 #define NAU7802_CTRL2_CRS(x)		(x << 4)
42 #define NAU7802_SAMP_FREQ_320	0x07
43 #define NAU7802_CTRL2_CHS_BIT		NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2	0x12
45 #define NAU7802_REG_ADC_B1	0x13
46 #define NAU7802_REG_ADC_B0	0x14
47 #define NAU7802_REG_ADC_CTRL	0x15
48 
49 #define NAU7802_MIN_CONVERSIONS 6
50 
51 struct nau7802_state {
52 	struct i2c_client	*client;
53 	s32			last_value;
54 	struct mutex		lock;
55 	struct mutex		data_lock;
56 	u32			vref_mv;
57 	u32			conversion_count;
58 	u32			min_conversions;
59 	u8			sample_rate;
60 	u32			scale_avail[8];
61 	struct completion	value_ok;
62 };
63 
64 #define NAU7802_CHANNEL(chan) {					\
65 	.type = IIO_VOLTAGE,					\
66 	.indexed = 1,						\
67 	.channel = (chan),					\
68 	.scan_index = (chan),					\
69 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
70 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
71 				BIT(IIO_CHAN_INFO_SAMP_FREQ)	\
72 }
73 
74 static const struct iio_chan_spec nau7802_chan_array[] = {
75 	NAU7802_CHANNEL(0),
76 	NAU7802_CHANNEL(1),
77 };
78 
79 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
80 						10, 10, 10, 320};
81 
82 static ssize_t nau7802_show_scales(struct device *dev,
83 				   struct device_attribute *attr, char *buf)
84 {
85 	struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
86 	int i, len = 0;
87 
88 	for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
89 		len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
90 				 st->scale_avail[i]);
91 
92 	buf[len-1] = '\n';
93 
94 	return len;
95 }
96 
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
98 
99 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
100 		       NULL, 0);
101 
102 static struct attribute *nau7802_attributes[] = {
103 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
104 	&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
105 	NULL
106 };
107 
108 static const struct attribute_group nau7802_attribute_group = {
109 	.attrs = nau7802_attributes,
110 };
111 
112 static int nau7802_set_gain(struct nau7802_state *st, int gain)
113 {
114 	int ret;
115 
116 	mutex_lock(&st->lock);
117 	st->conversion_count = 0;
118 
119 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
120 	if (ret < 0)
121 		goto nau7802_sysfs_set_gain_out;
122 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
123 					(ret & (~NAU7802_CTRL1_GAINS_BITS)) |
124 					gain);
125 
126 nau7802_sysfs_set_gain_out:
127 	mutex_unlock(&st->lock);
128 
129 	return ret;
130 }
131 
132 static int nau7802_read_conversion(struct nau7802_state *st)
133 {
134 	int data;
135 
136 	mutex_lock(&st->data_lock);
137 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
138 	if (data < 0)
139 		goto nau7802_read_conversion_out;
140 	st->last_value = data << 16;
141 
142 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
143 	if (data < 0)
144 		goto nau7802_read_conversion_out;
145 	st->last_value |= data << 8;
146 
147 	data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
148 	if (data < 0)
149 		goto nau7802_read_conversion_out;
150 	st->last_value |= data;
151 
152 	st->last_value = sign_extend32(st->last_value, 23);
153 
154 nau7802_read_conversion_out:
155 	mutex_unlock(&st->data_lock);
156 
157 	return data;
158 }
159 
160 /*
161  * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
162  */
163 static int nau7802_sync(struct nau7802_state *st)
164 {
165 	int ret;
166 
167 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
168 	if (ret < 0)
169 		return ret;
170 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
171 				ret | NAU7802_PUCTRL_CS_BIT);
172 
173 	return ret;
174 }
175 
176 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
177 {
178 	struct iio_dev *indio_dev = private;
179 	struct nau7802_state *st = iio_priv(indio_dev);
180 	int status;
181 
182 	status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
183 	if (status < 0)
184 		return IRQ_HANDLED;
185 
186 	if (!(status & NAU7802_PUCTRL_CR_BIT))
187 		return IRQ_NONE;
188 
189 	if (nau7802_read_conversion(st) < 0)
190 		return IRQ_HANDLED;
191 
192 	/*
193 	 * Because there is actually only one ADC for both channels, we have to
194 	 * wait for enough conversions to happen before getting a significant
195 	 * value when changing channels and the values are far apart.
196 	 */
197 	if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
198 		st->conversion_count++;
199 	if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
200 		complete(&st->value_ok);
201 
202 	return IRQ_HANDLED;
203 }
204 
205 static int nau7802_read_irq(struct iio_dev *indio_dev,
206 			struct iio_chan_spec const *chan,
207 			int *val)
208 {
209 	struct nau7802_state *st = iio_priv(indio_dev);
210 	int ret;
211 
212 	reinit_completion(&st->value_ok);
213 	enable_irq(st->client->irq);
214 
215 	nau7802_sync(st);
216 
217 	/* read registers to ensure we flush everything */
218 	ret = nau7802_read_conversion(st);
219 	if (ret < 0)
220 		goto read_chan_info_failure;
221 
222 	/* Wait for a conversion to finish */
223 	ret = wait_for_completion_interruptible_timeout(&st->value_ok,
224 			msecs_to_jiffies(1000));
225 	if (ret == 0)
226 		ret = -ETIMEDOUT;
227 
228 	if (ret < 0)
229 		goto read_chan_info_failure;
230 
231 	disable_irq(st->client->irq);
232 
233 	*val = st->last_value;
234 
235 	return IIO_VAL_INT;
236 
237 read_chan_info_failure:
238 	disable_irq(st->client->irq);
239 
240 	return ret;
241 }
242 
243 static int nau7802_read_poll(struct iio_dev *indio_dev,
244 			struct iio_chan_spec const *chan,
245 			int *val)
246 {
247 	struct nau7802_state *st = iio_priv(indio_dev);
248 	int ret;
249 
250 	nau7802_sync(st);
251 
252 	/* read registers to ensure we flush everything */
253 	ret = nau7802_read_conversion(st);
254 	if (ret < 0)
255 		return ret;
256 
257 	/*
258 	 * Because there is actually only one ADC for both channels, we have to
259 	 * wait for enough conversions to happen before getting a significant
260 	 * value when changing channels and the values are far appart.
261 	 */
262 	do {
263 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
264 		if (ret < 0)
265 			return ret;
266 
267 		while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
268 			if (st->sample_rate != NAU7802_SAMP_FREQ_320)
269 				msleep(20);
270 			else
271 				mdelay(4);
272 			ret = i2c_smbus_read_byte_data(st->client,
273 							NAU7802_REG_PUCTRL);
274 			if (ret < 0)
275 				return ret;
276 		}
277 
278 		ret = nau7802_read_conversion(st);
279 		if (ret < 0)
280 			return ret;
281 		if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
282 			st->conversion_count++;
283 	} while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
284 
285 	*val = st->last_value;
286 
287 	return IIO_VAL_INT;
288 }
289 
290 static int nau7802_read_raw(struct iio_dev *indio_dev,
291 			    struct iio_chan_spec const *chan,
292 			    int *val, int *val2, long mask)
293 {
294 	struct nau7802_state *st = iio_priv(indio_dev);
295 	int ret;
296 
297 	switch (mask) {
298 	case IIO_CHAN_INFO_RAW:
299 		mutex_lock(&st->lock);
300 		/*
301 		 * Select the channel to use
302 		 *   - Channel 1 is value 0 in the CHS register
303 		 *   - Channel 2 is value 1 in the CHS register
304 		 */
305 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
306 		if (ret < 0) {
307 			mutex_unlock(&st->lock);
308 			return ret;
309 		}
310 
311 		if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
312 				(!(ret & NAU7802_CTRL2_CHS_BIT) &&
313 				 chan->channel)) {
314 			st->conversion_count = 0;
315 			ret = i2c_smbus_write_byte_data(st->client,
316 					NAU7802_REG_CTRL2,
317 					NAU7802_CTRL2_CHS(chan->channel) |
318 					NAU7802_CTRL2_CRS(st->sample_rate));
319 
320 			if (ret < 0) {
321 				mutex_unlock(&st->lock);
322 				return ret;
323 			}
324 		}
325 
326 		if (st->client->irq)
327 			ret = nau7802_read_irq(indio_dev, chan, val);
328 		else
329 			ret = nau7802_read_poll(indio_dev, chan, val);
330 
331 		mutex_unlock(&st->lock);
332 		return ret;
333 
334 	case IIO_CHAN_INFO_SCALE:
335 		ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
336 		if (ret < 0)
337 			return ret;
338 
339 		/*
340 		 * We have 24 bits of signed data, that means 23 bits of data
341 		 * plus the sign bit
342 		 */
343 		*val = st->vref_mv;
344 		*val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
345 
346 		return IIO_VAL_FRACTIONAL_LOG2;
347 
348 	case IIO_CHAN_INFO_SAMP_FREQ:
349 		*val =  nau7802_sample_freq_avail[st->sample_rate];
350 		*val2 = 0;
351 		return IIO_VAL_INT;
352 
353 	default:
354 		break;
355 	}
356 
357 	return -EINVAL;
358 }
359 
360 static int nau7802_write_raw(struct iio_dev *indio_dev,
361 			     struct iio_chan_spec const *chan,
362 			     int val, int val2, long mask)
363 {
364 	struct nau7802_state *st = iio_priv(indio_dev);
365 	int i, ret;
366 
367 	switch (mask) {
368 	case IIO_CHAN_INFO_SCALE:
369 		for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
370 			if (val2 == st->scale_avail[i])
371 				return nau7802_set_gain(st, i);
372 
373 		break;
374 
375 	case IIO_CHAN_INFO_SAMP_FREQ:
376 		for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
377 			if (val == nau7802_sample_freq_avail[i]) {
378 				mutex_lock(&st->lock);
379 				st->sample_rate = i;
380 				st->conversion_count = 0;
381 				ret = i2c_smbus_write_byte_data(st->client,
382 					NAU7802_REG_CTRL2,
383 					NAU7802_CTRL2_CRS(st->sample_rate));
384 				mutex_unlock(&st->lock);
385 				return ret;
386 			}
387 
388 		break;
389 
390 	default:
391 		break;
392 	}
393 
394 	return -EINVAL;
395 }
396 
397 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
398 				     struct iio_chan_spec const *chan,
399 				     long mask)
400 {
401 	return IIO_VAL_INT_PLUS_NANO;
402 }
403 
404 static const struct iio_info nau7802_info = {
405 	.read_raw = &nau7802_read_raw,
406 	.write_raw = &nau7802_write_raw,
407 	.write_raw_get_fmt = nau7802_write_raw_get_fmt,
408 	.attrs = &nau7802_attribute_group,
409 };
410 
411 static int nau7802_probe(struct i2c_client *client)
412 {
413 	struct iio_dev *indio_dev;
414 	struct nau7802_state *st;
415 	int i, ret;
416 	u8 data;
417 	u32 tmp = 0;
418 
419 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
420 	if (indio_dev == NULL)
421 		return -ENOMEM;
422 
423 	st = iio_priv(indio_dev);
424 
425 	indio_dev->name = dev_name(&client->dev);
426 	indio_dev->modes = INDIO_DIRECT_MODE;
427 	indio_dev->info = &nau7802_info;
428 
429 	st->client = client;
430 
431 	/* Reset the device */
432 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
433 				  NAU7802_PUCTRL_RR_BIT);
434 	if (ret < 0)
435 		return ret;
436 
437 	/* Enter normal operation mode */
438 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
439 				  NAU7802_PUCTRL_PUD_BIT);
440 	if (ret < 0)
441 		return ret;
442 
443 	/*
444 	 * After about 200 usecs, the device should be ready and then
445 	 * the Power Up bit will be set to 1. If not, wait for it.
446 	 */
447 	udelay(210);
448 	ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
449 	if (ret < 0)
450 		return ret;
451 	if (!(ret & NAU7802_PUCTRL_PUR_BIT))
452 		return ret;
453 
454 	device_property_read_u32(&client->dev, "nuvoton,vldo", &tmp);
455 	st->vref_mv = tmp;
456 
457 	data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
458 		NAU7802_PUCTRL_CS_BIT;
459 	if (tmp >= 2400)
460 		data |= NAU7802_PUCTRL_AVDDS_BIT;
461 
462 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
463 	if (ret < 0)
464 		return ret;
465 	ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
466 	if (ret < 0)
467 		return ret;
468 
469 	if (tmp >= 2400) {
470 		data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
471 		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
472 						data);
473 		if (ret < 0)
474 			return ret;
475 	}
476 
477 	/* Populate available ADC input ranges */
478 	for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
479 		st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
480 					   >> (23 + i);
481 
482 	init_completion(&st->value_ok);
483 
484 	/*
485 	 * The ADC fires continuously and we can't do anything about
486 	 * it. So we need to have the IRQ disabled by default, and we
487 	 * will enable them back when we will need them..
488 	 */
489 	if (client->irq) {
490 		ret = devm_request_threaded_irq(&client->dev, client->irq,
491 						NULL,
492 						nau7802_eoc_trigger,
493 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
494 						IRQF_NO_AUTOEN,
495 						client->dev.driver->name,
496 						indio_dev);
497 		if (ret) {
498 			/*
499 			 * What may happen here is that our IRQ controller is
500 			 * not able to get level interrupt but this is required
501 			 * by this ADC as when going over 40 sample per second,
502 			 * the interrupt line may stay high between conversions.
503 			 * So, we continue no matter what but we switch to
504 			 * polling mode.
505 			 */
506 			dev_info(&client->dev,
507 				"Failed to allocate IRQ, using polling mode\n");
508 			client->irq = 0;
509 		}
510 	}
511 
512 	if (!client->irq) {
513 		/*
514 		 * We are polling, use the fastest sample rate by
515 		 * default
516 		 */
517 		st->sample_rate = NAU7802_SAMP_FREQ_320;
518 		ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
519 					  NAU7802_CTRL2_CRS(st->sample_rate));
520 		if (ret)
521 			return ret;
522 	}
523 
524 	/* Setup the ADC channels available on the board */
525 	indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
526 	indio_dev->channels = nau7802_chan_array;
527 
528 	mutex_init(&st->lock);
529 	mutex_init(&st->data_lock);
530 
531 	return devm_iio_device_register(&client->dev, indio_dev);
532 }
533 
534 static const struct i2c_device_id nau7802_i2c_id[] = {
535 	{ "nau7802", 0 },
536 	{ }
537 };
538 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
539 
540 static const struct of_device_id nau7802_dt_ids[] = {
541 	{ .compatible = "nuvoton,nau7802" },
542 	{},
543 };
544 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
545 
546 static struct i2c_driver nau7802_driver = {
547 	.probe = nau7802_probe,
548 	.id_table = nau7802_i2c_id,
549 	.driver = {
550 		   .name = "nau7802",
551 		   .of_match_table = nau7802_dt_ids,
552 	},
553 };
554 
555 module_i2c_driver(nau7802_driver);
556 
557 MODULE_LICENSE("GPL");
558 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
559 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
560 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
561