xref: /linux/drivers/iio/adc/mxs-lradc-adc.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale MXS LRADC ADC driver
4  *
5  * Copyright (c) 2012 DENX Software Engineering, GmbH.
6  * Copyright (c) 2017 Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
7  *
8  * Authors:
9  *  Marek Vasut <marex@denx.de>
10  *  Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
11  */
12 
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/mfd/core.h>
18 #include <linux/mfd/mxs-lradc.h>
19 #include <linux/module.h>
20 #include <linux/of_irq.h>
21 #include <linux/platform_device.h>
22 #include <linux/sysfs.h>
23 
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/iio/sysfs.h>
30 
31 /*
32  * Make this runtime configurable if necessary. Currently, if the buffered mode
33  * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
34  * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
35  * seconds. The result is that the samples arrive every 500mS.
36  */
37 #define LRADC_DELAY_TIMER_PER	200
38 #define LRADC_DELAY_TIMER_LOOP	5
39 
40 #define VREF_MV_BASE 1850
41 
42 static const char *mx23_lradc_adc_irq_names[] = {
43 	"mxs-lradc-channel0",
44 	"mxs-lradc-channel1",
45 	"mxs-lradc-channel2",
46 	"mxs-lradc-channel3",
47 	"mxs-lradc-channel4",
48 	"mxs-lradc-channel5",
49 };
50 
51 static const char *mx28_lradc_adc_irq_names[] = {
52 	"mxs-lradc-thresh0",
53 	"mxs-lradc-thresh1",
54 	"mxs-lradc-channel0",
55 	"mxs-lradc-channel1",
56 	"mxs-lradc-channel2",
57 	"mxs-lradc-channel3",
58 	"mxs-lradc-channel4",
59 	"mxs-lradc-channel5",
60 	"mxs-lradc-button0",
61 	"mxs-lradc-button1",
62 };
63 
64 static const u32 mxs_lradc_adc_vref_mv[][LRADC_MAX_TOTAL_CHANS] = {
65 	[IMX23_LRADC] = {
66 		VREF_MV_BASE,		/* CH0 */
67 		VREF_MV_BASE,		/* CH1 */
68 		VREF_MV_BASE,		/* CH2 */
69 		VREF_MV_BASE,		/* CH3 */
70 		VREF_MV_BASE,		/* CH4 */
71 		VREF_MV_BASE,		/* CH5 */
72 		VREF_MV_BASE * 2,	/* CH6 VDDIO */
73 		VREF_MV_BASE * 4,	/* CH7 VBATT */
74 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
75 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
76 		VREF_MV_BASE,		/* CH10 */
77 		VREF_MV_BASE,		/* CH11 */
78 		VREF_MV_BASE,		/* CH12 USB_DP */
79 		VREF_MV_BASE,		/* CH13 USB_DN */
80 		VREF_MV_BASE,		/* CH14 VBG */
81 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
82 	},
83 	[IMX28_LRADC] = {
84 		VREF_MV_BASE,		/* CH0 */
85 		VREF_MV_BASE,		/* CH1 */
86 		VREF_MV_BASE,		/* CH2 */
87 		VREF_MV_BASE,		/* CH3 */
88 		VREF_MV_BASE,		/* CH4 */
89 		VREF_MV_BASE,		/* CH5 */
90 		VREF_MV_BASE,		/* CH6 */
91 		VREF_MV_BASE * 4,	/* CH7 VBATT */
92 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
93 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
94 		VREF_MV_BASE * 2,	/* CH10 VDDIO */
95 		VREF_MV_BASE,		/* CH11 VTH */
96 		VREF_MV_BASE * 2,	/* CH12 VDDA */
97 		VREF_MV_BASE,		/* CH13 VDDD */
98 		VREF_MV_BASE,		/* CH14 VBG */
99 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
100 	},
101 };
102 
103 enum mxs_lradc_divbytwo {
104 	MXS_LRADC_DIV_DISABLED = 0,
105 	MXS_LRADC_DIV_ENABLED,
106 };
107 
108 struct mxs_lradc_scale {
109 	unsigned int		integer;
110 	unsigned int		nano;
111 };
112 
113 struct mxs_lradc_adc {
114 	struct mxs_lradc	*lradc;
115 	struct device		*dev;
116 
117 	void __iomem		*base;
118 	u32			buffer[10];
119 	struct iio_trigger	*trig;
120 	struct completion	completion;
121 	spinlock_t		lock;
122 
123 	const u32		*vref_mv;
124 	struct mxs_lradc_scale	scale_avail[LRADC_MAX_TOTAL_CHANS][2];
125 	unsigned long		is_divided;
126 };
127 
128 
129 /* Raw I/O operations */
130 static int mxs_lradc_adc_read_single(struct iio_dev *iio_dev, int chan,
131 				     int *val)
132 {
133 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
134 	struct mxs_lradc *lradc = adc->lradc;
135 	int ret;
136 
137 	/*
138 	 * See if there is no buffered operation in progress. If there is simply
139 	 * bail out. This can be improved to support both buffered and raw IO at
140 	 * the same time, yet the code becomes horribly complicated. Therefore I
141 	 * applied KISS principle here.
142 	 */
143 	ret = iio_device_claim_direct_mode(iio_dev);
144 	if (ret)
145 		return ret;
146 
147 	reinit_completion(&adc->completion);
148 
149 	/*
150 	 * No buffered operation in progress, map the channel and trigger it.
151 	 * Virtual channel 0 is always used here as the others are always not
152 	 * used if doing raw sampling.
153 	 */
154 	if (lradc->soc == IMX28_LRADC)
155 		writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
156 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
157 	writel(0x1, adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
158 
159 	/* Enable / disable the divider per requirement */
160 	if (test_bit(chan, &adc->is_divided))
161 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
162 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_SET);
163 	else
164 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
165 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_CLR);
166 
167 	/* Clean the slot's previous content, then set new one. */
168 	writel(LRADC_CTRL4_LRADCSELECT_MASK(0),
169 	       adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
170 	writel(chan, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
171 
172 	writel(0, adc->base + LRADC_CH(0));
173 
174 	/* Enable the IRQ and start sampling the channel. */
175 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
176 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
177 	writel(BIT(0), adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET);
178 
179 	/* Wait for completion on the channel, 1 second max. */
180 	ret = wait_for_completion_killable_timeout(&adc->completion, HZ);
181 	if (!ret)
182 		ret = -ETIMEDOUT;
183 	if (ret < 0)
184 		goto err;
185 
186 	/* Read the data. */
187 	*val = readl(adc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
188 	ret = IIO_VAL_INT;
189 
190 err:
191 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
192 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
193 
194 	iio_device_release_direct_mode(iio_dev);
195 
196 	return ret;
197 }
198 
199 static int mxs_lradc_adc_read_temp(struct iio_dev *iio_dev, int *val)
200 {
201 	int ret, min, max;
202 
203 	ret = mxs_lradc_adc_read_single(iio_dev, 8, &min);
204 	if (ret != IIO_VAL_INT)
205 		return ret;
206 
207 	ret = mxs_lradc_adc_read_single(iio_dev, 9, &max);
208 	if (ret != IIO_VAL_INT)
209 		return ret;
210 
211 	*val = max - min;
212 
213 	return IIO_VAL_INT;
214 }
215 
216 static int mxs_lradc_adc_read_raw(struct iio_dev *iio_dev,
217 			      const struct iio_chan_spec *chan,
218 			      int *val, int *val2, long m)
219 {
220 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
221 
222 	switch (m) {
223 	case IIO_CHAN_INFO_RAW:
224 		if (chan->type == IIO_TEMP)
225 			return mxs_lradc_adc_read_temp(iio_dev, val);
226 
227 		return mxs_lradc_adc_read_single(iio_dev, chan->channel, val);
228 
229 	case IIO_CHAN_INFO_SCALE:
230 		if (chan->type == IIO_TEMP) {
231 			/*
232 			 * From the datasheet, we have to multiply by 1.012 and
233 			 * divide by 4
234 			 */
235 			*val = 0;
236 			*val2 = 253000;
237 			return IIO_VAL_INT_PLUS_MICRO;
238 		}
239 
240 		*val = adc->vref_mv[chan->channel];
241 		*val2 = chan->scan_type.realbits -
242 			test_bit(chan->channel, &adc->is_divided);
243 		return IIO_VAL_FRACTIONAL_LOG2;
244 
245 	case IIO_CHAN_INFO_OFFSET:
246 		if (chan->type == IIO_TEMP) {
247 			/*
248 			 * The calculated value from the ADC is in Kelvin, we
249 			 * want Celsius for hwmon so the offset is -273.15
250 			 * The offset is applied before scaling so it is
251 			 * actually -213.15 * 4 / 1.012 = -1079.644268
252 			 */
253 			*val = -1079;
254 			*val2 = 644268;
255 
256 			return IIO_VAL_INT_PLUS_MICRO;
257 		}
258 
259 		return -EINVAL;
260 
261 	default:
262 		break;
263 	}
264 
265 	return -EINVAL;
266 }
267 
268 static int mxs_lradc_adc_write_raw(struct iio_dev *iio_dev,
269 				   const struct iio_chan_spec *chan,
270 				   int val, int val2, long m)
271 {
272 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
273 	struct mxs_lradc_scale *scale_avail =
274 			adc->scale_avail[chan->channel];
275 	int ret;
276 
277 	ret = iio_device_claim_direct_mode(iio_dev);
278 	if (ret)
279 		return ret;
280 
281 	switch (m) {
282 	case IIO_CHAN_INFO_SCALE:
283 		ret = -EINVAL;
284 		if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
285 		    val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
286 			/* divider by two disabled */
287 			clear_bit(chan->channel, &adc->is_divided);
288 			ret = 0;
289 		} else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
290 			   val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
291 			/* divider by two enabled */
292 			set_bit(chan->channel, &adc->is_divided);
293 			ret = 0;
294 		}
295 
296 		break;
297 	default:
298 		ret = -EINVAL;
299 		break;
300 	}
301 
302 	iio_device_release_direct_mode(iio_dev);
303 
304 	return ret;
305 }
306 
307 static int mxs_lradc_adc_write_raw_get_fmt(struct iio_dev *iio_dev,
308 					   const struct iio_chan_spec *chan,
309 					   long m)
310 {
311 	return IIO_VAL_INT_PLUS_NANO;
312 }
313 
314 static ssize_t mxs_lradc_adc_show_scale_avail(struct device *dev,
315 						 struct device_attribute *attr,
316 						 char *buf)
317 {
318 	struct iio_dev *iio = dev_to_iio_dev(dev);
319 	struct mxs_lradc_adc *adc = iio_priv(iio);
320 	struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
321 	int i, ch, len = 0;
322 
323 	ch = iio_attr->address;
324 	for (i = 0; i < ARRAY_SIZE(adc->scale_avail[ch]); i++)
325 		len += sprintf(buf + len, "%u.%09u ",
326 			       adc->scale_avail[ch][i].integer,
327 			       adc->scale_avail[ch][i].nano);
328 
329 	len += sprintf(buf + len, "\n");
330 
331 	return len;
332 }
333 
334 #define SHOW_SCALE_AVAILABLE_ATTR(ch)\
335 	IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, 0444,\
336 			mxs_lradc_adc_show_scale_avail, NULL, ch)
337 
338 static SHOW_SCALE_AVAILABLE_ATTR(0);
339 static SHOW_SCALE_AVAILABLE_ATTR(1);
340 static SHOW_SCALE_AVAILABLE_ATTR(2);
341 static SHOW_SCALE_AVAILABLE_ATTR(3);
342 static SHOW_SCALE_AVAILABLE_ATTR(4);
343 static SHOW_SCALE_AVAILABLE_ATTR(5);
344 static SHOW_SCALE_AVAILABLE_ATTR(6);
345 static SHOW_SCALE_AVAILABLE_ATTR(7);
346 static SHOW_SCALE_AVAILABLE_ATTR(10);
347 static SHOW_SCALE_AVAILABLE_ATTR(11);
348 static SHOW_SCALE_AVAILABLE_ATTR(12);
349 static SHOW_SCALE_AVAILABLE_ATTR(13);
350 static SHOW_SCALE_AVAILABLE_ATTR(14);
351 static SHOW_SCALE_AVAILABLE_ATTR(15);
352 
353 static struct attribute *mxs_lradc_adc_attributes[] = {
354 	&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
355 	&iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
356 	&iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
357 	&iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
358 	&iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
359 	&iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
360 	&iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
361 	&iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
362 	&iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
363 	&iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
364 	&iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
365 	&iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
366 	&iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
367 	&iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
368 	NULL
369 };
370 
371 static const struct attribute_group mxs_lradc_adc_attribute_group = {
372 	.attrs = mxs_lradc_adc_attributes,
373 };
374 
375 static const struct iio_info mxs_lradc_adc_iio_info = {
376 	.read_raw		= mxs_lradc_adc_read_raw,
377 	.write_raw		= mxs_lradc_adc_write_raw,
378 	.write_raw_get_fmt	= mxs_lradc_adc_write_raw_get_fmt,
379 	.attrs			= &mxs_lradc_adc_attribute_group,
380 };
381 
382 /* IRQ Handling */
383 static irqreturn_t mxs_lradc_adc_handle_irq(int irq, void *data)
384 {
385 	struct iio_dev *iio = data;
386 	struct mxs_lradc_adc *adc = iio_priv(iio);
387 	struct mxs_lradc *lradc = adc->lradc;
388 	unsigned long reg = readl(adc->base + LRADC_CTRL1);
389 	unsigned long flags;
390 
391 	if (!(reg & mxs_lradc_irq_mask(lradc)))
392 		return IRQ_NONE;
393 
394 	if (iio_buffer_enabled(iio)) {
395 		if (reg & lradc->buffer_vchans) {
396 			spin_lock_irqsave(&adc->lock, flags);
397 			iio_trigger_poll(iio->trig);
398 			spin_unlock_irqrestore(&adc->lock, flags);
399 		}
400 	} else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
401 		complete(&adc->completion);
402 	}
403 
404 	writel(reg & mxs_lradc_irq_mask(lradc),
405 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
406 
407 	return IRQ_HANDLED;
408 }
409 
410 
411 /* Trigger handling */
412 static irqreturn_t mxs_lradc_adc_trigger_handler(int irq, void *p)
413 {
414 	struct iio_poll_func *pf = p;
415 	struct iio_dev *iio = pf->indio_dev;
416 	struct mxs_lradc_adc *adc = iio_priv(iio);
417 	const u32 chan_value = LRADC_CH_ACCUMULATE |
418 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
419 	unsigned int i, j = 0;
420 
421 	for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
422 		adc->buffer[j] = readl(adc->base + LRADC_CH(j));
423 		writel(chan_value, adc->base + LRADC_CH(j));
424 		adc->buffer[j] &= LRADC_CH_VALUE_MASK;
425 		adc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
426 		j++;
427 	}
428 
429 	iio_push_to_buffers_with_timestamp(iio, adc->buffer, pf->timestamp);
430 
431 	iio_trigger_notify_done(iio->trig);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 static int mxs_lradc_adc_configure_trigger(struct iio_trigger *trig, bool state)
437 {
438 	struct iio_dev *iio = iio_trigger_get_drvdata(trig);
439 	struct mxs_lradc_adc *adc = iio_priv(iio);
440 	const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
441 
442 	writel(LRADC_DELAY_KICK, adc->base + (LRADC_DELAY(0) + st));
443 
444 	return 0;
445 }
446 
447 static const struct iio_trigger_ops mxs_lradc_adc_trigger_ops = {
448 	.set_trigger_state = &mxs_lradc_adc_configure_trigger,
449 };
450 
451 static int mxs_lradc_adc_trigger_init(struct iio_dev *iio)
452 {
453 	int ret;
454 	struct iio_trigger *trig;
455 	struct mxs_lradc_adc *adc = iio_priv(iio);
456 
457 	trig = devm_iio_trigger_alloc(&iio->dev, "%s-dev%i", iio->name,
458 				      iio->id);
459 	if (!trig)
460 		return -ENOMEM;
461 
462 	trig->dev.parent = adc->dev;
463 	iio_trigger_set_drvdata(trig, iio);
464 	trig->ops = &mxs_lradc_adc_trigger_ops;
465 
466 	ret = iio_trigger_register(trig);
467 	if (ret)
468 		return ret;
469 
470 	adc->trig = trig;
471 
472 	return 0;
473 }
474 
475 static void mxs_lradc_adc_trigger_remove(struct iio_dev *iio)
476 {
477 	struct mxs_lradc_adc *adc = iio_priv(iio);
478 
479 	iio_trigger_unregister(adc->trig);
480 }
481 
482 static int mxs_lradc_adc_buffer_preenable(struct iio_dev *iio)
483 {
484 	struct mxs_lradc_adc *adc = iio_priv(iio);
485 	struct mxs_lradc *lradc = adc->lradc;
486 	int chan, ofs = 0;
487 	unsigned long enable = 0;
488 	u32 ctrl4_set = 0;
489 	u32 ctrl4_clr = 0;
490 	u32 ctrl1_irq = 0;
491 	const u32 chan_value = LRADC_CH_ACCUMULATE |
492 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
493 
494 	if (lradc->soc == IMX28_LRADC)
495 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
496 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
497 	writel(lradc->buffer_vchans,
498 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
499 
500 	for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
501 		ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
502 		ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
503 		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
504 		writel(chan_value, adc->base + LRADC_CH(ofs));
505 		bitmap_set(&enable, ofs, 1);
506 		ofs++;
507 	}
508 
509 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
510 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
511 	writel(ctrl4_clr, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
512 	writel(ctrl4_set, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
513 	writel(ctrl1_irq, adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
514 	writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
515 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET);
516 
517 	return 0;
518 }
519 
520 static int mxs_lradc_adc_buffer_postdisable(struct iio_dev *iio)
521 {
522 	struct mxs_lradc_adc *adc = iio_priv(iio);
523 	struct mxs_lradc *lradc = adc->lradc;
524 
525 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
526 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
527 
528 	writel(lradc->buffer_vchans,
529 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
530 	if (lradc->soc == IMX28_LRADC)
531 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
532 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
533 
534 	return 0;
535 }
536 
537 static bool mxs_lradc_adc_validate_scan_mask(struct iio_dev *iio,
538 					     const unsigned long *mask)
539 {
540 	struct mxs_lradc_adc *adc = iio_priv(iio);
541 	struct mxs_lradc *lradc = adc->lradc;
542 	const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
543 	int rsvd_chans = 0;
544 	unsigned long rsvd_mask = 0;
545 
546 	if (lradc->use_touchbutton)
547 		rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
548 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_4WIRE)
549 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
550 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_5WIRE)
551 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
552 
553 	if (lradc->use_touchbutton)
554 		rsvd_chans++;
555 	if (lradc->touchscreen_wire)
556 		rsvd_chans += 2;
557 
558 	/* Test for attempts to map channels with special mode of operation. */
559 	if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
560 		return false;
561 
562 	/* Test for attempts to map more channels then available slots. */
563 	if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
564 		return false;
565 
566 	return true;
567 }
568 
569 static const struct iio_buffer_setup_ops mxs_lradc_adc_buffer_ops = {
570 	.preenable = &mxs_lradc_adc_buffer_preenable,
571 	.postdisable = &mxs_lradc_adc_buffer_postdisable,
572 	.validate_scan_mask = &mxs_lradc_adc_validate_scan_mask,
573 };
574 
575 /* Driver initialization */
576 #define MXS_ADC_CHAN(idx, chan_type, name) {			\
577 	.type = (chan_type),					\
578 	.indexed = 1,						\
579 	.scan_index = (idx),					\
580 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
581 			      BIT(IIO_CHAN_INFO_SCALE),		\
582 	.channel = (idx),					\
583 	.address = (idx),					\
584 	.scan_type = {						\
585 		.sign = 'u',					\
586 		.realbits = LRADC_RESOLUTION,			\
587 		.storagebits = 32,				\
588 	},							\
589 	.datasheet_name = (name),				\
590 }
591 
592 static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
593 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
594 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
595 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
596 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
597 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
598 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
599 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
600 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
601 	/* Combined Temperature sensors */
602 	{
603 		.type = IIO_TEMP,
604 		.indexed = 1,
605 		.scan_index = 8,
606 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
607 				      BIT(IIO_CHAN_INFO_OFFSET) |
608 				      BIT(IIO_CHAN_INFO_SCALE),
609 		.channel = 8,
610 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
611 		.datasheet_name = "TEMP_DIE",
612 	},
613 	/* Hidden channel to keep indexes */
614 	{
615 		.type = IIO_TEMP,
616 		.indexed = 1,
617 		.scan_index = -1,
618 		.channel = 9,
619 	},
620 	MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
621 	MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
622 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
623 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
624 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
625 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
626 };
627 
628 static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
629 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
630 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
631 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
632 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
633 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
634 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
635 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
636 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
637 	/* Combined Temperature sensors */
638 	{
639 		.type = IIO_TEMP,
640 		.indexed = 1,
641 		.scan_index = 8,
642 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
643 				      BIT(IIO_CHAN_INFO_OFFSET) |
644 				      BIT(IIO_CHAN_INFO_SCALE),
645 		.channel = 8,
646 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
647 		.datasheet_name = "TEMP_DIE",
648 	},
649 	/* Hidden channel to keep indexes */
650 	{
651 		.type = IIO_TEMP,
652 		.indexed = 1,
653 		.scan_index = -1,
654 		.channel = 9,
655 	},
656 	MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
657 	MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
658 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
659 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
660 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
661 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
662 };
663 
664 static void mxs_lradc_adc_hw_init(struct mxs_lradc_adc *adc)
665 {
666 	/* The ADC always uses DELAY CHANNEL 0. */
667 	const u32 adc_cfg =
668 		(1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
669 		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
670 
671 	/* Configure DELAY CHANNEL 0 for generic ADC sampling. */
672 	writel(adc_cfg, adc->base + LRADC_DELAY(0));
673 
674 	/*
675 	 * Start internal temperature sensing by clearing bit
676 	 * HW_LRADC_CTRL2_TEMPSENSE_PWD. This bit can be left cleared
677 	 * after power up.
678 	 */
679 	writel(0, adc->base + LRADC_CTRL2);
680 }
681 
682 static void mxs_lradc_adc_hw_stop(struct mxs_lradc_adc *adc)
683 {
684 	writel(0, adc->base + LRADC_DELAY(0));
685 }
686 
687 static int mxs_lradc_adc_probe(struct platform_device *pdev)
688 {
689 	struct device *dev = &pdev->dev;
690 	struct mxs_lradc *lradc = dev_get_drvdata(dev->parent);
691 	struct mxs_lradc_adc *adc;
692 	struct iio_dev *iio;
693 	struct resource *iores;
694 	int ret, irq, virq, i, s, n;
695 	u64 scale_uv;
696 	const char **irq_name;
697 
698 	/* Allocate the IIO device. */
699 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
700 	if (!iio) {
701 		dev_err(dev, "Failed to allocate IIO device\n");
702 		return -ENOMEM;
703 	}
704 
705 	adc = iio_priv(iio);
706 	adc->lradc = lradc;
707 	adc->dev = dev;
708 
709 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
710 	if (!iores)
711 		return -EINVAL;
712 
713 	adc->base = devm_ioremap(dev, iores->start, resource_size(iores));
714 	if (!adc->base)
715 		return -ENOMEM;
716 
717 	init_completion(&adc->completion);
718 	spin_lock_init(&adc->lock);
719 
720 	platform_set_drvdata(pdev, iio);
721 
722 	iio->name = pdev->name;
723 	iio->dev.of_node = dev->parent->of_node;
724 	iio->info = &mxs_lradc_adc_iio_info;
725 	iio->modes = INDIO_DIRECT_MODE;
726 	iio->masklength = LRADC_MAX_TOTAL_CHANS;
727 
728 	if (lradc->soc == IMX23_LRADC) {
729 		iio->channels = mx23_lradc_chan_spec;
730 		iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
731 		irq_name = mx23_lradc_adc_irq_names;
732 		n = ARRAY_SIZE(mx23_lradc_adc_irq_names);
733 	} else {
734 		iio->channels = mx28_lradc_chan_spec;
735 		iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
736 		irq_name = mx28_lradc_adc_irq_names;
737 		n = ARRAY_SIZE(mx28_lradc_adc_irq_names);
738 	}
739 
740 	ret = stmp_reset_block(adc->base);
741 	if (ret)
742 		return ret;
743 
744 	for (i = 0; i < n; i++) {
745 		irq = platform_get_irq_byname(pdev, irq_name[i]);
746 		if (irq < 0)
747 			return irq;
748 
749 		virq = irq_of_parse_and_map(dev->parent->of_node, irq);
750 
751 		ret = devm_request_irq(dev, virq, mxs_lradc_adc_handle_irq,
752 				       0, irq_name[i], iio);
753 		if (ret)
754 			return ret;
755 	}
756 
757 	ret = mxs_lradc_adc_trigger_init(iio);
758 	if (ret)
759 		goto err_trig;
760 
761 	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
762 					 &mxs_lradc_adc_trigger_handler,
763 					 &mxs_lradc_adc_buffer_ops);
764 	if (ret)
765 		return ret;
766 
767 	adc->vref_mv = mxs_lradc_adc_vref_mv[lradc->soc];
768 
769 	/* Populate available ADC input ranges */
770 	for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
771 		for (s = 0; s < ARRAY_SIZE(adc->scale_avail[i]); s++) {
772 			/*
773 			 * [s=0] = optional divider by two disabled (default)
774 			 * [s=1] = optional divider by two enabled
775 			 *
776 			 * The scale is calculated by doing:
777 			 *   Vref >> (realbits - s)
778 			 * which multiplies by two on the second component
779 			 * of the array.
780 			 */
781 			scale_uv = ((u64)adc->vref_mv[i] * 100000000) >>
782 				   (LRADC_RESOLUTION - s);
783 			adc->scale_avail[i][s].nano =
784 					do_div(scale_uv, 100000000) * 10;
785 			adc->scale_avail[i][s].integer = scale_uv;
786 		}
787 	}
788 
789 	/* Configure the hardware. */
790 	mxs_lradc_adc_hw_init(adc);
791 
792 	/* Register IIO device. */
793 	ret = iio_device_register(iio);
794 	if (ret) {
795 		dev_err(dev, "Failed to register IIO device\n");
796 		goto err_dev;
797 	}
798 
799 	return 0;
800 
801 err_dev:
802 	mxs_lradc_adc_hw_stop(adc);
803 	mxs_lradc_adc_trigger_remove(iio);
804 err_trig:
805 	iio_triggered_buffer_cleanup(iio);
806 	return ret;
807 }
808 
809 static int mxs_lradc_adc_remove(struct platform_device *pdev)
810 {
811 	struct iio_dev *iio = platform_get_drvdata(pdev);
812 	struct mxs_lradc_adc *adc = iio_priv(iio);
813 
814 	iio_device_unregister(iio);
815 	mxs_lradc_adc_hw_stop(adc);
816 	mxs_lradc_adc_trigger_remove(iio);
817 	iio_triggered_buffer_cleanup(iio);
818 
819 	return 0;
820 }
821 
822 static struct platform_driver mxs_lradc_adc_driver = {
823 	.driver = {
824 		.name	= "mxs-lradc-adc",
825 	},
826 	.probe	= mxs_lradc_adc_probe,
827 	.remove = mxs_lradc_adc_remove,
828 };
829 module_platform_driver(mxs_lradc_adc_driver);
830 
831 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
832 MODULE_DESCRIPTION("Freescale MXS LRADC driver general purpose ADC driver");
833 MODULE_LICENSE("GPL");
834 MODULE_ALIAS("platform:mxs-lradc-adc");
835