xref: /linux/drivers/iio/adc/meson_saradc.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
4  *
5  * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/iio/iio.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/interrupt.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/mfd/syscon.h>
24 
25 #define MESON_SAR_ADC_REG0					0x00
26 	#define MESON_SAR_ADC_REG0_PANEL_DETECT			BIT(31)
27 	#define MESON_SAR_ADC_REG0_BUSY_MASK			GENMASK(30, 28)
28 	#define MESON_SAR_ADC_REG0_DELTA_BUSY			BIT(30)
29 	#define MESON_SAR_ADC_REG0_AVG_BUSY			BIT(29)
30 	#define MESON_SAR_ADC_REG0_SAMPLE_BUSY			BIT(28)
31 	#define MESON_SAR_ADC_REG0_FIFO_FULL			BIT(27)
32 	#define MESON_SAR_ADC_REG0_FIFO_EMPTY			BIT(26)
33 	#define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK		GENMASK(25, 21)
34 	#define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK		GENMASK(20, 19)
35 	#define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK		GENMASK(18, 16)
36 	#define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL		BIT(15)
37 	#define MESON_SAR_ADC_REG0_SAMPLING_STOP		BIT(14)
38 	#define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK		GENMASK(13, 12)
39 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_POL		BIT(10)
40 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_EN		BIT(9)
41 	#define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK		GENMASK(8, 4)
42 	#define MESON_SAR_ADC_REG0_FIFO_IRQ_EN			BIT(3)
43 	#define MESON_SAR_ADC_REG0_SAMPLING_START		BIT(2)
44 	#define MESON_SAR_ADC_REG0_CONTINUOUS_EN		BIT(1)
45 	#define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE		BIT(0)
46 
47 #define MESON_SAR_ADC_CHAN_LIST					0x04
48 	#define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK		GENMASK(26, 24)
49 	#define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan)	\
50 					(GENMASK(2, 0) << ((_chan) * 3))
51 
52 #define MESON_SAR_ADC_AVG_CNTL					0x08
53 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan)	\
54 					(16 + ((_chan) * 2))
55 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan)	\
56 					(GENMASK(17, 16) << ((_chan) * 2))
57 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan)	\
58 					(0 + ((_chan) * 2))
59 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan)	\
60 					(GENMASK(1, 0) << ((_chan) * 2))
61 
62 #define MESON_SAR_ADC_REG3					0x0c
63 	#define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY		BIT(31)
64 	#define MESON_SAR_ADC_REG3_CLK_EN			BIT(30)
65 	#define MESON_SAR_ADC_REG3_BL30_INITIALIZED		BIT(28)
66 	#define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN	BIT(27)
67 	#define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE	BIT(26)
68 	#define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK	GENMASK(25, 23)
69 	#define MESON_SAR_ADC_REG3_DETECT_EN			BIT(22)
70 	#define MESON_SAR_ADC_REG3_ADC_EN			BIT(21)
71 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK	GENMASK(20, 18)
72 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK	GENMASK(17, 16)
73 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT		10
74 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH		6
75 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK		GENMASK(9, 8)
76 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK		GENMASK(7, 0)
77 
78 #define MESON_SAR_ADC_DELAY					0x10
79 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK		GENMASK(25, 24)
80 	#define MESON_SAR_ADC_DELAY_BL30_BUSY			BIT(15)
81 	#define MESON_SAR_ADC_DELAY_KERNEL_BUSY			BIT(14)
82 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK		GENMASK(23, 16)
83 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK		GENMASK(9, 8)
84 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK		GENMASK(7, 0)
85 
86 #define MESON_SAR_ADC_LAST_RD					0x14
87 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK	GENMASK(23, 16)
88 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK	GENMASK(9, 0)
89 
90 #define MESON_SAR_ADC_FIFO_RD					0x18
91 	#define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK		GENMASK(14, 12)
92 	#define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK		GENMASK(11, 0)
93 
94 #define MESON_SAR_ADC_AUX_SW					0x1c
95 	#define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan)	\
96 					(8 + (((_chan) - 2) * 3))
97 	#define MESON_SAR_ADC_AUX_SW_VREF_P_MUX			BIT(6)
98 	#define MESON_SAR_ADC_AUX_SW_VREF_N_MUX			BIT(5)
99 	#define MESON_SAR_ADC_AUX_SW_MODE_SEL			BIT(4)
100 	#define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW		BIT(3)
101 	#define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW		BIT(2)
102 	#define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW		BIT(1)
103 	#define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW		BIT(0)
104 
105 #define MESON_SAR_ADC_CHAN_10_SW				0x20
106 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK	GENMASK(25, 23)
107 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX	BIT(22)
108 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX	BIT(21)
109 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL		BIT(20)
110 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW	BIT(19)
111 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW	BIT(18)
112 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW	BIT(17)
113 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW	BIT(16)
114 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK	GENMASK(9, 7)
115 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX	BIT(6)
116 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX	BIT(5)
117 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL		BIT(4)
118 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW	BIT(3)
119 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW	BIT(2)
120 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW	BIT(1)
121 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW	BIT(0)
122 
123 #define MESON_SAR_ADC_DETECT_IDLE_SW				0x24
124 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN	BIT(26)
125 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK	GENMASK(25, 23)
126 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX	BIT(22)
127 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX	BIT(21)
128 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL	BIT(20)
129 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW	BIT(19)
130 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW	BIT(18)
131 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW	BIT(17)
132 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW	BIT(16)
133 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK	GENMASK(9, 7)
134 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX	BIT(6)
135 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX	BIT(5)
136 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL	BIT(4)
137 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW	BIT(3)
138 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW	BIT(2)
139 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW	BIT(1)
140 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW	BIT(0)
141 
142 #define MESON_SAR_ADC_DELTA_10					0x28
143 	#define MESON_SAR_ADC_DELTA_10_TEMP_SEL			BIT(27)
144 	#define MESON_SAR_ADC_DELTA_10_TS_REVE1			BIT(26)
145 	#define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK	GENMASK(25, 16)
146 	#define MESON_SAR_ADC_DELTA_10_TS_REVE0			BIT(15)
147 	#define MESON_SAR_ADC_DELTA_10_TS_C_MASK		GENMASK(14, 11)
148 	#define MESON_SAR_ADC_DELTA_10_TS_VBG_EN		BIT(10)
149 	#define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK	GENMASK(9, 0)
150 
151 /*
152  * NOTE: registers from here are undocumented (the vendor Linux kernel driver
153  * and u-boot source served as reference). These only seem to be relevant on
154  * GXBB and newer.
155  */
156 #define MESON_SAR_ADC_REG11					0x2c
157 	#define MESON_SAR_ADC_REG11_BANDGAP_EN			BIT(13)
158 	#define MESON_SAR_ADC_REG11_CMV_SEL                     BIT(6)
159 	#define MESON_SAR_ADC_REG11_VREF_VOLTAGE                BIT(5)
160 	#define MESON_SAR_ADC_REG11_EOC                         BIT(1)
161 	#define MESON_SAR_ADC_REG11_VREF_SEL                    BIT(0)
162 
163 #define MESON_SAR_ADC_REG13					0x34
164 	#define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK	GENMASK(13, 8)
165 
166 #define MESON_SAR_ADC_MAX_FIFO_SIZE				32
167 #define MESON_SAR_ADC_TIMEOUT					100 /* ms */
168 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL			6
169 #define MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL			7
170 #define MESON_SAR_ADC_TEMP_OFFSET				27
171 
172 /* temperature sensor calibration information in eFuse */
173 #define MESON_SAR_ADC_EFUSE_BYTES				4
174 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL			GENMASK(6, 0)
175 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED			BIT(7)
176 
177 #define MESON_HHI_DPLL_TOP_0					0x318
178 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4				BIT(9)
179 
180 /* for use with IIO_VAL_INT_PLUS_MICRO */
181 #define MILLION							1000000
182 
183 #define MESON_SAR_ADC_CHAN(_chan) {					\
184 	.type = IIO_VOLTAGE,						\
185 	.indexed = 1,							\
186 	.channel = _chan,						\
187 	.address = _chan,						\
188 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
189 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
190 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
191 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
192 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
193 	.datasheet_name = "SAR_ADC_CH"#_chan,				\
194 }
195 
196 #define MESON_SAR_ADC_TEMP_CHAN(_chan) {				\
197 	.type = IIO_TEMP,						\
198 	.channel = _chan,						\
199 	.address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL,		\
200 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
201 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
202 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |		\
203 					BIT(IIO_CHAN_INFO_SCALE),	\
204 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
205 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
206 	.datasheet_name = "TEMP_SENSOR",				\
207 }
208 
209 #define MESON_SAR_ADC_MUX(_chan, _sel) {				\
210 	.type = IIO_VOLTAGE,						\
211 	.channel = _chan,						\
212 	.indexed = 1,							\
213 	.address = MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL,		\
214 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
215 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
216 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
217 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
218 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
219 	.datasheet_name = "SAR_ADC_MUX_"#_sel,				\
220 }
221 
222 enum meson_sar_adc_vref_sel {
223 	VREF_CALIBATION_VOLTAGE = 0,
224 	VREF_VDDA = 1,
225 };
226 
227 enum meson_sar_adc_avg_mode {
228 	NO_AVERAGING = 0x0,
229 	MEAN_AVERAGING = 0x1,
230 	MEDIAN_AVERAGING = 0x2,
231 };
232 
233 enum meson_sar_adc_num_samples {
234 	ONE_SAMPLE = 0x0,
235 	TWO_SAMPLES = 0x1,
236 	FOUR_SAMPLES = 0x2,
237 	EIGHT_SAMPLES = 0x3,
238 };
239 
240 enum meson_sar_adc_chan7_mux_sel {
241 	CHAN7_MUX_VSS = 0x0,
242 	CHAN7_MUX_VDD_DIV4 = 0x1,
243 	CHAN7_MUX_VDD_DIV2 = 0x2,
244 	CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
245 	CHAN7_MUX_VDD = 0x4,
246 	CHAN7_MUX_CH7_INPUT = 0x7,
247 };
248 
249 enum meson_sar_adc_channel_index {
250 	NUM_CHAN_0,
251 	NUM_CHAN_1,
252 	NUM_CHAN_2,
253 	NUM_CHAN_3,
254 	NUM_CHAN_4,
255 	NUM_CHAN_5,
256 	NUM_CHAN_6,
257 	NUM_CHAN_7,
258 	NUM_CHAN_TEMP,
259 	NUM_MUX_0_VSS,
260 	NUM_MUX_1_VDD_DIV4,
261 	NUM_MUX_2_VDD_DIV2,
262 	NUM_MUX_3_VDD_MUL3_DIV4,
263 	NUM_MUX_4_VDD,
264 };
265 
266 static enum meson_sar_adc_chan7_mux_sel chan7_mux_values[] = {
267 	CHAN7_MUX_VSS,
268 	CHAN7_MUX_VDD_DIV4,
269 	CHAN7_MUX_VDD_DIV2,
270 	CHAN7_MUX_VDD_MUL3_DIV4,
271 	CHAN7_MUX_VDD,
272 };
273 
274 static const char * const chan7_mux_names[] = {
275 	[CHAN7_MUX_VSS] = "gnd",
276 	[CHAN7_MUX_VDD_DIV4] = "0.25vdd",
277 	[CHAN7_MUX_VDD_DIV2] = "0.5vdd",
278 	[CHAN7_MUX_VDD_MUL3_DIV4] = "0.75vdd",
279 	[CHAN7_MUX_VDD] = "vdd",
280 };
281 
282 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
283 	MESON_SAR_ADC_CHAN(NUM_CHAN_0),
284 	MESON_SAR_ADC_CHAN(NUM_CHAN_1),
285 	MESON_SAR_ADC_CHAN(NUM_CHAN_2),
286 	MESON_SAR_ADC_CHAN(NUM_CHAN_3),
287 	MESON_SAR_ADC_CHAN(NUM_CHAN_4),
288 	MESON_SAR_ADC_CHAN(NUM_CHAN_5),
289 	MESON_SAR_ADC_CHAN(NUM_CHAN_6),
290 	MESON_SAR_ADC_CHAN(NUM_CHAN_7),
291 	MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
292 	MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
293 	MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
294 	MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
295 	MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
296 };
297 
298 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
299 	MESON_SAR_ADC_CHAN(NUM_CHAN_0),
300 	MESON_SAR_ADC_CHAN(NUM_CHAN_1),
301 	MESON_SAR_ADC_CHAN(NUM_CHAN_2),
302 	MESON_SAR_ADC_CHAN(NUM_CHAN_3),
303 	MESON_SAR_ADC_CHAN(NUM_CHAN_4),
304 	MESON_SAR_ADC_CHAN(NUM_CHAN_5),
305 	MESON_SAR_ADC_CHAN(NUM_CHAN_6),
306 	MESON_SAR_ADC_CHAN(NUM_CHAN_7),
307 	MESON_SAR_ADC_TEMP_CHAN(NUM_CHAN_TEMP),
308 	MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
309 	MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
310 	MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
311 	MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
312 	MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
313 };
314 
315 struct meson_sar_adc_param {
316 	bool					has_bl30_integration;
317 	unsigned long				clock_rate;
318 	u32					bandgap_reg;
319 	unsigned int				resolution;
320 	const struct regmap_config		*regmap_config;
321 	u8					temperature_trimming_bits;
322 	unsigned int				temperature_multiplier;
323 	unsigned int				temperature_divider;
324 	u8					disable_ring_counter;
325 	bool					has_reg11;
326 	bool					has_vref_select;
327 	u8					vref_select;
328 	u8					cmv_select;
329 	u8					adc_eoc;
330 	enum meson_sar_adc_vref_sel		vref_volatge;
331 };
332 
333 struct meson_sar_adc_data {
334 	const struct meson_sar_adc_param	*param;
335 	const char				*name;
336 };
337 
338 struct meson_sar_adc_priv {
339 	struct regmap				*regmap;
340 	struct regulator			*vref;
341 	const struct meson_sar_adc_param	*param;
342 	struct clk				*clkin;
343 	struct clk				*core_clk;
344 	struct clk				*adc_sel_clk;
345 	struct clk				*adc_clk;
346 	struct clk_gate				clk_gate;
347 	struct clk				*adc_div_clk;
348 	struct clk_divider			clk_div;
349 	struct completion			done;
350 	/* lock to protect against multiple access to the device */
351 	struct mutex				lock;
352 	int					calibbias;
353 	int					calibscale;
354 	struct regmap				*tsc_regmap;
355 	bool					temperature_sensor_calibrated;
356 	u8					temperature_sensor_coefficient;
357 	u16					temperature_sensor_adc_val;
358 	enum meson_sar_adc_chan7_mux_sel	chan7_mux_sel;
359 };
360 
361 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
362 	.reg_bits = 8,
363 	.val_bits = 32,
364 	.reg_stride = 4,
365 	.max_register = MESON_SAR_ADC_REG13,
366 };
367 
368 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
369 	.reg_bits = 8,
370 	.val_bits = 32,
371 	.reg_stride = 4,
372 	.max_register = MESON_SAR_ADC_DELTA_10,
373 };
374 
375 static const struct iio_chan_spec *
376 find_channel_by_num(struct iio_dev *indio_dev, int num)
377 {
378 	int i;
379 
380 	for (i = 0; i < indio_dev->num_channels; i++)
381 		if (indio_dev->channels[i].channel == num)
382 			return &indio_dev->channels[i];
383 	return NULL;
384 }
385 
386 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
387 {
388 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
389 	u32 regval;
390 
391 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
392 
393 	return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
394 }
395 
396 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
397 {
398 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
399 	int tmp;
400 
401 	/* use val_calib = scale * val_raw + offset calibration function */
402 	tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
403 
404 	return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
405 }
406 
407 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
408 {
409 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
410 	int val;
411 
412 	/*
413 	 * NOTE: we need a small delay before reading the status, otherwise
414 	 * the sample engine may not have started internally (which would
415 	 * seem to us that sampling is already finished).
416 	 */
417 	udelay(1);
418 	return regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_REG0, val,
419 					       !FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, val),
420 					       1, 10000);
421 }
422 
423 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
424 					enum meson_sar_adc_chan7_mux_sel sel)
425 {
426 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
427 	u32 regval;
428 
429 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
430 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
431 			   MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
432 
433 	usleep_range(10, 20);
434 
435 	priv->chan7_mux_sel = sel;
436 }
437 
438 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
439 					 const struct iio_chan_spec *chan,
440 					 int *val)
441 {
442 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
443 	struct device *dev = indio_dev->dev.parent;
444 	int regval, fifo_chan, fifo_val, count;
445 
446 	if (!wait_for_completion_timeout(&priv->done,
447 				msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
448 		return -ETIMEDOUT;
449 
450 	count = meson_sar_adc_get_fifo_count(indio_dev);
451 	if (count != 1) {
452 		dev_err(dev, "ADC FIFO has %d element(s) instead of one\n", count);
453 		return -EINVAL;
454 	}
455 
456 	regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &regval);
457 	fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
458 	if (fifo_chan != chan->address) {
459 		dev_err(dev, "ADC FIFO entry belongs to channel %d instead of %lu\n",
460 			fifo_chan, chan->address);
461 		return -EINVAL;
462 	}
463 
464 	fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
465 	fifo_val &= GENMASK(priv->param->resolution - 1, 0);
466 	*val = meson_sar_adc_calib_val(indio_dev, fifo_val);
467 
468 	return 0;
469 }
470 
471 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
472 					const struct iio_chan_spec *chan,
473 					enum meson_sar_adc_avg_mode mode,
474 					enum meson_sar_adc_num_samples samples)
475 {
476 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
477 	int val, address = chan->address;
478 
479 	val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
480 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
481 			   MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
482 			   val);
483 
484 	val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
485 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
486 			   MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
487 }
488 
489 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
490 					const struct iio_chan_spec *chan)
491 {
492 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
493 	u32 regval;
494 
495 	/*
496 	 * the SAR ADC engine allows sampling multiple channels at the same
497 	 * time. to keep it simple we're only working with one *internal*
498 	 * channel, which starts counting at index 0 (which means: count = 1).
499 	 */
500 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
501 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
502 			   MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
503 
504 	/* map channel index 0 to the channel which we want to read */
505 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
506 			    chan->address);
507 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
508 			   MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
509 
510 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
511 			    chan->address);
512 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
513 			   MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
514 			   regval);
515 
516 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
517 			    chan->address);
518 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
519 			   MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
520 			   regval);
521 
522 	if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
523 		if (chan->type == IIO_TEMP)
524 			regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
525 		else
526 			regval = 0;
527 
528 		regmap_update_bits(priv->regmap,
529 				   MESON_SAR_ADC_DELTA_10,
530 				   MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
531 	} else if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL) {
532 		enum meson_sar_adc_chan7_mux_sel sel;
533 
534 		if (chan->channel == NUM_CHAN_7)
535 			sel = CHAN7_MUX_CH7_INPUT;
536 		else
537 			sel = chan7_mux_values[chan->channel - NUM_MUX_0_VSS];
538 		if (sel != priv->chan7_mux_sel)
539 			meson_sar_adc_set_chan7_mux(indio_dev, sel);
540 	}
541 }
542 
543 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
544 {
545 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
546 
547 	reinit_completion(&priv->done);
548 
549 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
550 			MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
551 
552 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
553 			MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
554 
555 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
556 			MESON_SAR_ADC_REG0_SAMPLING_START);
557 }
558 
559 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
560 {
561 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
562 
563 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
564 			  MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
565 
566 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG0,
567 			MESON_SAR_ADC_REG0_SAMPLING_STOP);
568 
569 	/* wait until all modules are stopped */
570 	meson_sar_adc_wait_busy_clear(indio_dev);
571 
572 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
573 			  MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
574 }
575 
576 static int meson_sar_adc_lock(struct iio_dev *indio_dev)
577 {
578 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
579 	int val, ret;
580 
581 	mutex_lock(&priv->lock);
582 
583 	if (priv->param->has_bl30_integration) {
584 		/* prevent BL30 from using the SAR ADC while we are using it */
585 		regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELAY,
586 				MESON_SAR_ADC_DELAY_KERNEL_BUSY);
587 
588 		udelay(1);
589 
590 		/*
591 		 * wait until BL30 releases it's lock (so we can use the SAR
592 		 * ADC)
593 		 */
594 		ret = regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_DELAY, val,
595 						      !(val & MESON_SAR_ADC_DELAY_BL30_BUSY),
596 						      1, 10000);
597 		if (ret) {
598 			mutex_unlock(&priv->lock);
599 			return ret;
600 		}
601 	}
602 
603 	return 0;
604 }
605 
606 static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
607 {
608 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
609 
610 	if (priv->param->has_bl30_integration)
611 		/* allow BL30 to use the SAR ADC again */
612 		regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELAY,
613 				  MESON_SAR_ADC_DELAY_KERNEL_BUSY);
614 
615 	mutex_unlock(&priv->lock);
616 }
617 
618 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
619 {
620 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
621 	unsigned int count, tmp;
622 
623 	for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
624 		if (!meson_sar_adc_get_fifo_count(indio_dev))
625 			break;
626 
627 		regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
628 	}
629 }
630 
631 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
632 				    const struct iio_chan_spec *chan,
633 				    enum meson_sar_adc_avg_mode avg_mode,
634 				    enum meson_sar_adc_num_samples avg_samples,
635 				    int *val)
636 {
637 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
638 	struct device *dev = indio_dev->dev.parent;
639 	int ret;
640 
641 	if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
642 		return -ENOTSUPP;
643 
644 	ret = meson_sar_adc_lock(indio_dev);
645 	if (ret)
646 		return ret;
647 
648 	/* clear the FIFO to make sure we're not reading old values */
649 	meson_sar_adc_clear_fifo(indio_dev);
650 
651 	meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
652 
653 	meson_sar_adc_enable_channel(indio_dev, chan);
654 
655 	meson_sar_adc_start_sample_engine(indio_dev);
656 	ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
657 	meson_sar_adc_stop_sample_engine(indio_dev);
658 
659 	meson_sar_adc_unlock(indio_dev);
660 
661 	if (ret) {
662 		dev_warn(dev, "failed to read sample for channel %lu: %d\n",
663 			 chan->address, ret);
664 		return ret;
665 	}
666 
667 	return IIO_VAL_INT;
668 }
669 
670 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
671 					   const struct iio_chan_spec *chan,
672 					   int *val, int *val2, long mask)
673 {
674 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
675 	struct device *dev = indio_dev->dev.parent;
676 	int ret;
677 
678 	switch (mask) {
679 	case IIO_CHAN_INFO_RAW:
680 		return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
681 						ONE_SAMPLE, val);
682 
683 	case IIO_CHAN_INFO_AVERAGE_RAW:
684 		return meson_sar_adc_get_sample(indio_dev, chan,
685 						MEAN_AVERAGING, EIGHT_SAMPLES,
686 						val);
687 
688 	case IIO_CHAN_INFO_SCALE:
689 		if (chan->type == IIO_VOLTAGE) {
690 			ret = regulator_get_voltage(priv->vref);
691 			if (ret < 0) {
692 				dev_err(dev, "failed to get vref voltage: %d\n", ret);
693 				return ret;
694 			}
695 
696 			*val = ret / 1000;
697 			*val2 = priv->param->resolution;
698 			return IIO_VAL_FRACTIONAL_LOG2;
699 		} else if (chan->type == IIO_TEMP) {
700 			/* SoC specific multiplier and divider */
701 			*val = priv->param->temperature_multiplier;
702 			*val2 = priv->param->temperature_divider;
703 
704 			/* celsius to millicelsius */
705 			*val *= 1000;
706 
707 			return IIO_VAL_FRACTIONAL;
708 		} else {
709 			return -EINVAL;
710 		}
711 
712 	case IIO_CHAN_INFO_CALIBBIAS:
713 		*val = priv->calibbias;
714 		return IIO_VAL_INT;
715 
716 	case IIO_CHAN_INFO_CALIBSCALE:
717 		*val = priv->calibscale / MILLION;
718 		*val2 = priv->calibscale % MILLION;
719 		return IIO_VAL_INT_PLUS_MICRO;
720 
721 	case IIO_CHAN_INFO_OFFSET:
722 		*val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
723 					 priv->param->temperature_divider,
724 					 priv->param->temperature_multiplier);
725 		*val -= priv->temperature_sensor_adc_val;
726 		return IIO_VAL_INT;
727 
728 	default:
729 		return -EINVAL;
730 	}
731 }
732 
733 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
734 				  void __iomem *base)
735 {
736 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
737 	struct device *dev = indio_dev->dev.parent;
738 	struct clk_init_data init;
739 	const char *clk_parents[1];
740 
741 	init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_div", dev_name(dev));
742 	if (!init.name)
743 		return -ENOMEM;
744 
745 	init.flags = 0;
746 	init.ops = &clk_divider_ops;
747 	clk_parents[0] = __clk_get_name(priv->clkin);
748 	init.parent_names = clk_parents;
749 	init.num_parents = 1;
750 
751 	priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
752 	priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
753 	priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
754 	priv->clk_div.hw.init = &init;
755 	priv->clk_div.flags = 0;
756 
757 	priv->adc_div_clk = devm_clk_register(dev, &priv->clk_div.hw);
758 	if (WARN_ON(IS_ERR(priv->adc_div_clk)))
759 		return PTR_ERR(priv->adc_div_clk);
760 
761 	init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_en", dev_name(dev));
762 	if (!init.name)
763 		return -ENOMEM;
764 
765 	init.flags = CLK_SET_RATE_PARENT;
766 	init.ops = &clk_gate_ops;
767 	clk_parents[0] = __clk_get_name(priv->adc_div_clk);
768 	init.parent_names = clk_parents;
769 	init.num_parents = 1;
770 
771 	priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
772 	priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
773 	priv->clk_gate.hw.init = &init;
774 
775 	priv->adc_clk = devm_clk_register(dev, &priv->clk_gate.hw);
776 	if (WARN_ON(IS_ERR(priv->adc_clk)))
777 		return PTR_ERR(priv->adc_clk);
778 
779 	return 0;
780 }
781 
782 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
783 {
784 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
785 	u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
786 	struct device *dev = indio_dev->dev.parent;
787 	struct nvmem_cell *temperature_calib;
788 	size_t read_len;
789 	int ret;
790 
791 	temperature_calib = devm_nvmem_cell_get(dev, "temperature_calib");
792 	if (IS_ERR(temperature_calib)) {
793 		ret = PTR_ERR(temperature_calib);
794 
795 		/*
796 		 * leave the temperature sensor disabled if no calibration data
797 		 * was passed via nvmem-cells.
798 		 */
799 		if (ret == -ENODEV)
800 			return 0;
801 
802 		return dev_err_probe(dev, ret, "failed to get temperature_calib cell\n");
803 	}
804 
805 	priv->tsc_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,hhi-sysctrl");
806 	if (IS_ERR(priv->tsc_regmap))
807 		return dev_err_probe(dev, PTR_ERR(priv->tsc_regmap),
808 				     "failed to get amlogic,hhi-sysctrl regmap\n");
809 
810 	read_len = MESON_SAR_ADC_EFUSE_BYTES;
811 	buf = nvmem_cell_read(temperature_calib, &read_len);
812 	if (IS_ERR(buf))
813 		return dev_err_probe(dev, PTR_ERR(buf), "failed to read temperature_calib cell\n");
814 	if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
815 		kfree(buf);
816 		return dev_err_probe(dev, -EINVAL, "invalid read size of temperature_calib cell\n");
817 	}
818 
819 	trimming_bits = priv->param->temperature_trimming_bits;
820 	trimming_mask = BIT(trimming_bits) - 1;
821 
822 	priv->temperature_sensor_calibrated =
823 		buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
824 	priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
825 
826 	upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
827 				  buf[3]);
828 
829 	priv->temperature_sensor_adc_val = buf[2];
830 	priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
831 	priv->temperature_sensor_adc_val >>= trimming_bits;
832 
833 	kfree(buf);
834 
835 	return 0;
836 }
837 
838 static int meson_sar_adc_init(struct iio_dev *indio_dev)
839 {
840 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
841 	struct device *dev = indio_dev->dev.parent;
842 	int regval, i, ret;
843 
844 	/*
845 	 * make sure we start at CH7 input since the other muxes are only used
846 	 * for internal calibration.
847 	 */
848 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
849 
850 	if (priv->param->has_bl30_integration) {
851 		/*
852 		 * leave sampling delay and the input clocks as configured by
853 		 * BL30 to make sure BL30 gets the values it expects when
854 		 * reading the temperature sensor.
855 		 */
856 		regmap_read(priv->regmap, MESON_SAR_ADC_REG3, &regval);
857 		if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
858 			return 0;
859 	}
860 
861 	meson_sar_adc_stop_sample_engine(indio_dev);
862 
863 	/*
864 	 * disable this bit as seems to be only relevant for Meson6 (based
865 	 * on the vendor driver), which we don't support at the moment.
866 	 */
867 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG0,
868 			  MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL);
869 
870 	/* disable all channels by default */
871 	regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
872 
873 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
874 			  MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE);
875 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG3,
876 			MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
877 
878 	/* delay between two samples = (10+1) * 1uS */
879 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
880 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
881 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
882 				      10));
883 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
884 			   MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
885 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
886 				      0));
887 
888 	/* delay between two samples = (10+1) * 1uS */
889 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
890 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
891 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
892 				      10));
893 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
894 			   MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
895 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
896 				      1));
897 
898 	/*
899 	 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
900 	 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
901 	 */
902 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
903 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
904 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
905 			   regval);
906 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
907 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
908 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
909 			   regval);
910 
911 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
912 			MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW);
913 
914 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
915 			MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW);
916 
917 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
918 			MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW);
919 
920 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
921 			MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW);
922 
923 	/*
924 	 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
925 	 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
926 	 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
927 	 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
928 	 */
929 	regval = 0;
930 	for (i = 2; i <= 7; i++)
931 		regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
932 	regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
933 	regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
934 	regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
935 
936 	if (priv->temperature_sensor_calibrated) {
937 		regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
938 				MESON_SAR_ADC_DELTA_10_TS_REVE1);
939 		regmap_set_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
940 				MESON_SAR_ADC_DELTA_10_TS_REVE0);
941 
942 		/*
943 		 * set bits [3:0] of the TSC (temperature sensor coefficient)
944 		 * to get the correct values when reading the temperature.
945 		 */
946 		regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
947 				    priv->temperature_sensor_coefficient);
948 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
949 				   MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
950 
951 		if (priv->param->temperature_trimming_bits == 5) {
952 			if (priv->temperature_sensor_coefficient & BIT(4))
953 				regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
954 			else
955 				regval = 0;
956 
957 			/*
958 			 * bit [4] (the 5th bit when starting to count at 1)
959 			 * of the TSC is located in the HHI register area.
960 			 */
961 			regmap_update_bits(priv->tsc_regmap,
962 					   MESON_HHI_DPLL_TOP_0,
963 					   MESON_HHI_DPLL_TOP_0_TSC_BIT4,
964 					   regval);
965 		}
966 	} else {
967 		regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
968 				  MESON_SAR_ADC_DELTA_10_TS_REVE1);
969 		regmap_clear_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
970 				  MESON_SAR_ADC_DELTA_10_TS_REVE0);
971 	}
972 
973 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
974 			    priv->param->disable_ring_counter);
975 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
976 			   MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
977 			   regval);
978 
979 	if (priv->param->has_reg11) {
980 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_EOC, priv->param->adc_eoc);
981 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
982 				   MESON_SAR_ADC_REG11_EOC, regval);
983 
984 		if (priv->param->has_vref_select) {
985 			regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_SEL,
986 					    priv->param->vref_select);
987 			regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
988 					   MESON_SAR_ADC_REG11_VREF_SEL, regval);
989 		}
990 
991 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_VOLTAGE,
992 				    priv->param->vref_volatge);
993 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
994 				   MESON_SAR_ADC_REG11_VREF_VOLTAGE, regval);
995 
996 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_CMV_SEL,
997 				    priv->param->cmv_select);
998 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
999 				   MESON_SAR_ADC_REG11_CMV_SEL, regval);
1000 	}
1001 
1002 	ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
1003 	if (ret)
1004 		return dev_err_probe(dev, ret, "failed to set adc parent to clkin\n");
1005 
1006 	ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
1007 	if (ret)
1008 		return dev_err_probe(dev, ret, "failed to set adc clock rate\n");
1009 
1010 	return 0;
1011 }
1012 
1013 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
1014 {
1015 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1016 	const struct meson_sar_adc_param *param = priv->param;
1017 	u32 enable_mask;
1018 
1019 	if (param->bandgap_reg == MESON_SAR_ADC_REG11)
1020 		enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
1021 	else
1022 		enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
1023 
1024 	regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask,
1025 			   on_off ? enable_mask : 0);
1026 }
1027 
1028 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
1029 {
1030 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1031 	struct device *dev = indio_dev->dev.parent;
1032 	int ret;
1033 	u32 regval;
1034 
1035 	ret = meson_sar_adc_lock(indio_dev);
1036 	if (ret) {
1037 		dev_err(dev, "failed to lock adc\n");
1038 		goto err_lock;
1039 	}
1040 
1041 	ret = regulator_enable(priv->vref);
1042 	if (ret < 0) {
1043 		dev_err(dev, "failed to enable vref regulator\n");
1044 		goto err_vref;
1045 	}
1046 
1047 	regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
1048 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
1049 			   MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1050 
1051 	meson_sar_adc_set_bandgap(indio_dev, true);
1052 
1053 	regmap_set_bits(priv->regmap, MESON_SAR_ADC_REG3,
1054 			MESON_SAR_ADC_REG3_ADC_EN);
1055 
1056 	udelay(5);
1057 
1058 	ret = clk_prepare_enable(priv->adc_clk);
1059 	if (ret) {
1060 		dev_err(dev, "failed to enable adc clk\n");
1061 		goto err_adc_clk;
1062 	}
1063 
1064 	meson_sar_adc_unlock(indio_dev);
1065 
1066 	return 0;
1067 
1068 err_adc_clk:
1069 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
1070 			  MESON_SAR_ADC_REG3_ADC_EN);
1071 	meson_sar_adc_set_bandgap(indio_dev, false);
1072 	regulator_disable(priv->vref);
1073 err_vref:
1074 	meson_sar_adc_unlock(indio_dev);
1075 err_lock:
1076 	return ret;
1077 }
1078 
1079 static void meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
1080 {
1081 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1082 	int ret;
1083 
1084 	/*
1085 	 * If taking the lock fails we have to assume that BL30 is broken. The
1086 	 * best we can do then is to release the resources anyhow.
1087 	 */
1088 	ret = meson_sar_adc_lock(indio_dev);
1089 	if (ret)
1090 		dev_err(indio_dev->dev.parent, "Failed to lock ADC (%pE)\n", ERR_PTR(ret));
1091 
1092 	clk_disable_unprepare(priv->adc_clk);
1093 
1094 	regmap_clear_bits(priv->regmap, MESON_SAR_ADC_REG3,
1095 			  MESON_SAR_ADC_REG3_ADC_EN);
1096 
1097 	meson_sar_adc_set_bandgap(indio_dev, false);
1098 
1099 	regulator_disable(priv->vref);
1100 
1101 	if (!ret)
1102 		meson_sar_adc_unlock(indio_dev);
1103 }
1104 
1105 static irqreturn_t meson_sar_adc_irq(int irq, void *data)
1106 {
1107 	struct iio_dev *indio_dev = data;
1108 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1109 	unsigned int cnt, threshold;
1110 	u32 regval;
1111 
1112 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
1113 	cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
1114 	threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1115 
1116 	if (cnt < threshold)
1117 		return IRQ_NONE;
1118 
1119 	complete(&priv->done);
1120 
1121 	return IRQ_HANDLED;
1122 }
1123 
1124 static int meson_sar_adc_calib(struct iio_dev *indio_dev)
1125 {
1126 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1127 	int ret, nominal0, nominal1, value0, value1;
1128 
1129 	/* use points 25% and 75% for calibration */
1130 	nominal0 = (1 << priv->param->resolution) / 4;
1131 	nominal1 = (1 << priv->param->resolution) * 3 / 4;
1132 
1133 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
1134 	usleep_range(10, 20);
1135 	ret = meson_sar_adc_get_sample(indio_dev,
1136 				       find_channel_by_num(indio_dev,
1137 							   NUM_MUX_1_VDD_DIV4),
1138 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
1139 	if (ret < 0)
1140 		goto out;
1141 
1142 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
1143 	usleep_range(10, 20);
1144 	ret = meson_sar_adc_get_sample(indio_dev,
1145 				       find_channel_by_num(indio_dev,
1146 							   NUM_MUX_3_VDD_MUL3_DIV4),
1147 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
1148 	if (ret < 0)
1149 		goto out;
1150 
1151 	if (value1 <= value0) {
1152 		ret = -EINVAL;
1153 		goto out;
1154 	}
1155 
1156 	priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
1157 				   value1 - value0);
1158 	priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
1159 					     MILLION);
1160 	ret = 0;
1161 out:
1162 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
1163 
1164 	return ret;
1165 }
1166 
1167 static int read_label(struct iio_dev *indio_dev,
1168 		      struct iio_chan_spec const *chan,
1169 		      char *label)
1170 {
1171 	if (chan->type == IIO_TEMP)
1172 		return sprintf(label, "temp-sensor\n");
1173 	if (chan->type == IIO_VOLTAGE && chan->channel >= NUM_MUX_0_VSS)
1174 		return sprintf(label, "%s\n",
1175 			       chan7_mux_names[chan->channel - NUM_MUX_0_VSS]);
1176 	if (chan->type == IIO_VOLTAGE)
1177 		return sprintf(label, "channel-%d\n", chan->channel);
1178 	return 0;
1179 }
1180 
1181 static const struct iio_info meson_sar_adc_iio_info = {
1182 	.read_raw = meson_sar_adc_iio_info_read_raw,
1183 	.read_label = read_label,
1184 };
1185 
1186 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
1187 	.has_bl30_integration = false,
1188 	.clock_rate = 1150000,
1189 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1190 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1191 	.resolution = 10,
1192 	.temperature_trimming_bits = 4,
1193 	.temperature_multiplier = 18 * 10000,
1194 	.temperature_divider = 1024 * 10 * 85,
1195 };
1196 
1197 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
1198 	.has_bl30_integration = false,
1199 	.clock_rate = 1150000,
1200 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1201 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1202 	.resolution = 10,
1203 	.temperature_trimming_bits = 5,
1204 	.temperature_multiplier = 10,
1205 	.temperature_divider = 32,
1206 };
1207 
1208 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
1209 	.has_bl30_integration = true,
1210 	.clock_rate = 1200000,
1211 	.bandgap_reg = MESON_SAR_ADC_REG11,
1212 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1213 	.resolution = 10,
1214 	.has_reg11 = true,
1215 	.vref_volatge = 1,
1216 	.cmv_select = 1,
1217 };
1218 
1219 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
1220 	.has_bl30_integration = true,
1221 	.clock_rate = 1200000,
1222 	.bandgap_reg = MESON_SAR_ADC_REG11,
1223 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1224 	.resolution = 12,
1225 	.disable_ring_counter = 1,
1226 	.has_reg11 = true,
1227 	.vref_volatge = 1,
1228 	.cmv_select = 1,
1229 };
1230 
1231 static const struct meson_sar_adc_param meson_sar_adc_axg_param = {
1232 	.has_bl30_integration = true,
1233 	.clock_rate = 1200000,
1234 	.bandgap_reg = MESON_SAR_ADC_REG11,
1235 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1236 	.resolution = 12,
1237 	.disable_ring_counter = 1,
1238 	.has_reg11 = true,
1239 	.vref_volatge = 1,
1240 	.has_vref_select = true,
1241 	.vref_select = VREF_VDDA,
1242 	.cmv_select = 1,
1243 };
1244 
1245 static const struct meson_sar_adc_param meson_sar_adc_g12a_param = {
1246 	.has_bl30_integration = false,
1247 	.clock_rate = 1200000,
1248 	.bandgap_reg = MESON_SAR_ADC_REG11,
1249 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1250 	.resolution = 12,
1251 	.disable_ring_counter = 1,
1252 	.has_reg11 = true,
1253 	.adc_eoc = 1,
1254 	.has_vref_select = true,
1255 	.vref_select = VREF_VDDA,
1256 };
1257 
1258 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
1259 	.param = &meson_sar_adc_meson8_param,
1260 	.name = "meson-meson8-saradc",
1261 };
1262 
1263 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
1264 	.param = &meson_sar_adc_meson8b_param,
1265 	.name = "meson-meson8b-saradc",
1266 };
1267 
1268 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
1269 	.param = &meson_sar_adc_meson8b_param,
1270 	.name = "meson-meson8m2-saradc",
1271 };
1272 
1273 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
1274 	.param = &meson_sar_adc_gxbb_param,
1275 	.name = "meson-gxbb-saradc",
1276 };
1277 
1278 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
1279 	.param = &meson_sar_adc_gxl_param,
1280 	.name = "meson-gxl-saradc",
1281 };
1282 
1283 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
1284 	.param = &meson_sar_adc_gxl_param,
1285 	.name = "meson-gxm-saradc",
1286 };
1287 
1288 static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
1289 	.param = &meson_sar_adc_axg_param,
1290 	.name = "meson-axg-saradc",
1291 };
1292 
1293 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
1294 	.param = &meson_sar_adc_g12a_param,
1295 	.name = "meson-g12a-saradc",
1296 };
1297 
1298 static const struct of_device_id meson_sar_adc_of_match[] = {
1299 	{
1300 		.compatible = "amlogic,meson8-saradc",
1301 		.data = &meson_sar_adc_meson8_data,
1302 	}, {
1303 		.compatible = "amlogic,meson8b-saradc",
1304 		.data = &meson_sar_adc_meson8b_data,
1305 	}, {
1306 		.compatible = "amlogic,meson8m2-saradc",
1307 		.data = &meson_sar_adc_meson8m2_data,
1308 	}, {
1309 		.compatible = "amlogic,meson-gxbb-saradc",
1310 		.data = &meson_sar_adc_gxbb_data,
1311 	}, {
1312 		.compatible = "amlogic,meson-gxl-saradc",
1313 		.data = &meson_sar_adc_gxl_data,
1314 	}, {
1315 		.compatible = "amlogic,meson-gxm-saradc",
1316 		.data = &meson_sar_adc_gxm_data,
1317 	}, {
1318 		.compatible = "amlogic,meson-axg-saradc",
1319 		.data = &meson_sar_adc_axg_data,
1320 	}, {
1321 		.compatible = "amlogic,meson-g12a-saradc",
1322 		.data = &meson_sar_adc_g12a_data,
1323 	},
1324 	{ /* sentinel */ }
1325 };
1326 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
1327 
1328 static int meson_sar_adc_probe(struct platform_device *pdev)
1329 {
1330 	const struct meson_sar_adc_data *match_data;
1331 	struct meson_sar_adc_priv *priv;
1332 	struct device *dev = &pdev->dev;
1333 	struct iio_dev *indio_dev;
1334 	void __iomem *base;
1335 	int irq, ret;
1336 
1337 	indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1338 	if (!indio_dev)
1339 		return dev_err_probe(dev, -ENOMEM, "failed allocating iio device\n");
1340 
1341 	priv = iio_priv(indio_dev);
1342 	init_completion(&priv->done);
1343 
1344 	match_data = of_device_get_match_data(dev);
1345 	if (!match_data)
1346 		return dev_err_probe(dev, -ENODEV, "failed to get match data\n");
1347 
1348 	priv->param = match_data->param;
1349 
1350 	indio_dev->name = match_data->name;
1351 	indio_dev->modes = INDIO_DIRECT_MODE;
1352 	indio_dev->info = &meson_sar_adc_iio_info;
1353 
1354 	base = devm_platform_ioremap_resource(pdev, 0);
1355 	if (IS_ERR(base))
1356 		return PTR_ERR(base);
1357 
1358 	priv->regmap = devm_regmap_init_mmio(dev, base, priv->param->regmap_config);
1359 	if (IS_ERR(priv->regmap))
1360 		return dev_err_probe(dev, PTR_ERR(priv->regmap), "failed to init regmap\n");
1361 
1362 	irq = irq_of_parse_and_map(dev->of_node, 0);
1363 	if (!irq)
1364 		return dev_err_probe(dev, -EINVAL, "failed to get irq\n");
1365 
1366 	ret = devm_request_irq(dev, irq, meson_sar_adc_irq, IRQF_SHARED, dev_name(dev), indio_dev);
1367 	if (ret)
1368 		return dev_err_probe(dev, ret, "failed to request irq\n");
1369 
1370 	priv->clkin = devm_clk_get(dev, "clkin");
1371 	if (IS_ERR(priv->clkin))
1372 		return dev_err_probe(dev, PTR_ERR(priv->clkin), "failed to get clkin\n");
1373 
1374 	priv->core_clk = devm_clk_get_enabled(dev, "core");
1375 	if (IS_ERR(priv->core_clk))
1376 		return dev_err_probe(dev, PTR_ERR(priv->core_clk), "failed to get core clk\n");
1377 
1378 	priv->adc_clk = devm_clk_get_optional(dev, "adc_clk");
1379 	if (IS_ERR(priv->adc_clk))
1380 		return dev_err_probe(dev, PTR_ERR(priv->adc_clk), "failed to get adc clk\n");
1381 
1382 	priv->adc_sel_clk = devm_clk_get_optional(dev, "adc_sel");
1383 	if (IS_ERR(priv->adc_sel_clk))
1384 		return dev_err_probe(dev, PTR_ERR(priv->adc_sel_clk), "failed to get adc_sel clk\n");
1385 
1386 	/* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
1387 	if (!priv->adc_clk) {
1388 		ret = meson_sar_adc_clk_init(indio_dev, base);
1389 		if (ret)
1390 			return dev_err_probe(dev, ret, "failed to init internal clk\n");
1391 	}
1392 
1393 	priv->vref = devm_regulator_get(dev, "vref");
1394 	if (IS_ERR(priv->vref))
1395 		return dev_err_probe(dev, PTR_ERR(priv->vref), "failed to get vref regulator\n");
1396 
1397 	priv->calibscale = MILLION;
1398 
1399 	if (priv->param->temperature_trimming_bits) {
1400 		ret = meson_sar_adc_temp_sensor_init(indio_dev);
1401 		if (ret)
1402 			return ret;
1403 	}
1404 
1405 	if (priv->temperature_sensor_calibrated) {
1406 		indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
1407 		indio_dev->num_channels =
1408 			ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
1409 	} else {
1410 		indio_dev->channels = meson_sar_adc_iio_channels;
1411 		indio_dev->num_channels =
1412 			ARRAY_SIZE(meson_sar_adc_iio_channels);
1413 	}
1414 
1415 	ret = meson_sar_adc_init(indio_dev);
1416 	if (ret)
1417 		goto err;
1418 
1419 	mutex_init(&priv->lock);
1420 
1421 	ret = meson_sar_adc_hw_enable(indio_dev);
1422 	if (ret)
1423 		goto err;
1424 
1425 	ret = meson_sar_adc_calib(indio_dev);
1426 	if (ret)
1427 		dev_warn(dev, "calibration failed\n");
1428 
1429 	platform_set_drvdata(pdev, indio_dev);
1430 
1431 	ret = iio_device_register(indio_dev);
1432 	if (ret) {
1433 		dev_err_probe(dev, ret, "failed to register iio device\n");
1434 		goto err_hw;
1435 	}
1436 
1437 	return 0;
1438 
1439 err_hw:
1440 	meson_sar_adc_hw_disable(indio_dev);
1441 err:
1442 	return ret;
1443 }
1444 
1445 static void meson_sar_adc_remove(struct platform_device *pdev)
1446 {
1447 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1448 
1449 	iio_device_unregister(indio_dev);
1450 
1451 	meson_sar_adc_hw_disable(indio_dev);
1452 }
1453 
1454 static int meson_sar_adc_suspend(struct device *dev)
1455 {
1456 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1457 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1458 
1459 	meson_sar_adc_hw_disable(indio_dev);
1460 
1461 	clk_disable_unprepare(priv->core_clk);
1462 
1463 	return 0;
1464 }
1465 
1466 static int meson_sar_adc_resume(struct device *dev)
1467 {
1468 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1469 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1470 	int ret;
1471 
1472 	ret = clk_prepare_enable(priv->core_clk);
1473 	if (ret) {
1474 		dev_err(dev, "failed to enable core clk\n");
1475 		return ret;
1476 	}
1477 
1478 	return meson_sar_adc_hw_enable(indio_dev);
1479 }
1480 
1481 static DEFINE_SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
1482 				meson_sar_adc_suspend, meson_sar_adc_resume);
1483 
1484 static struct platform_driver meson_sar_adc_driver = {
1485 	.probe		= meson_sar_adc_probe,
1486 	.remove_new	= meson_sar_adc_remove,
1487 	.driver		= {
1488 		.name	= "meson-saradc",
1489 		.of_match_table = meson_sar_adc_of_match,
1490 		.pm = pm_sleep_ptr(&meson_sar_adc_pm_ops),
1491 	},
1492 };
1493 
1494 module_platform_driver(meson_sar_adc_driver);
1495 
1496 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
1497 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
1498 MODULE_LICENSE("GPL v2");
1499