1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Amlogic Meson Successive Approximation Register (SAR) A/D Converter 4 * 5 * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com> 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/delay.h> 12 #include <linux/io.h> 13 #include <linux/iio/iio.h> 14 #include <linux/module.h> 15 #include <linux/nvmem-consumer.h> 16 #include <linux/interrupt.h> 17 #include <linux/of.h> 18 #include <linux/of_irq.h> 19 #include <linux/of_device.h> 20 #include <linux/platform_device.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/mfd/syscon.h> 24 25 #define MESON_SAR_ADC_REG0 0x00 26 #define MESON_SAR_ADC_REG0_PANEL_DETECT BIT(31) 27 #define MESON_SAR_ADC_REG0_BUSY_MASK GENMASK(30, 28) 28 #define MESON_SAR_ADC_REG0_DELTA_BUSY BIT(30) 29 #define MESON_SAR_ADC_REG0_AVG_BUSY BIT(29) 30 #define MESON_SAR_ADC_REG0_SAMPLE_BUSY BIT(28) 31 #define MESON_SAR_ADC_REG0_FIFO_FULL BIT(27) 32 #define MESON_SAR_ADC_REG0_FIFO_EMPTY BIT(26) 33 #define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK GENMASK(25, 21) 34 #define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK GENMASK(20, 19) 35 #define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK GENMASK(18, 16) 36 #define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL BIT(15) 37 #define MESON_SAR_ADC_REG0_SAMPLING_STOP BIT(14) 38 #define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK GENMASK(13, 12) 39 #define MESON_SAR_ADC_REG0_DETECT_IRQ_POL BIT(10) 40 #define MESON_SAR_ADC_REG0_DETECT_IRQ_EN BIT(9) 41 #define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK GENMASK(8, 4) 42 #define MESON_SAR_ADC_REG0_FIFO_IRQ_EN BIT(3) 43 #define MESON_SAR_ADC_REG0_SAMPLING_START BIT(2) 44 #define MESON_SAR_ADC_REG0_CONTINUOUS_EN BIT(1) 45 #define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE BIT(0) 46 47 #define MESON_SAR_ADC_CHAN_LIST 0x04 48 #define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK GENMASK(26, 24) 49 #define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan) \ 50 (GENMASK(2, 0) << ((_chan) * 3)) 51 52 #define MESON_SAR_ADC_AVG_CNTL 0x08 53 #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan) \ 54 (16 + ((_chan) * 2)) 55 #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan) \ 56 (GENMASK(17, 16) << ((_chan) * 2)) 57 #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan) \ 58 (0 + ((_chan) * 2)) 59 #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan) \ 60 (GENMASK(1, 0) << ((_chan) * 2)) 61 62 #define MESON_SAR_ADC_REG3 0x0c 63 #define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY BIT(31) 64 #define MESON_SAR_ADC_REG3_CLK_EN BIT(30) 65 #define MESON_SAR_ADC_REG3_BL30_INITIALIZED BIT(28) 66 #define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN BIT(27) 67 #define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE BIT(26) 68 #define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK GENMASK(25, 23) 69 #define MESON_SAR_ADC_REG3_DETECT_EN BIT(22) 70 #define MESON_SAR_ADC_REG3_ADC_EN BIT(21) 71 #define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK GENMASK(20, 18) 72 #define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK GENMASK(17, 16) 73 #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT 10 74 #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH 5 75 #define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK GENMASK(9, 8) 76 #define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK GENMASK(7, 0) 77 78 #define MESON_SAR_ADC_DELAY 0x10 79 #define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK GENMASK(25, 24) 80 #define MESON_SAR_ADC_DELAY_BL30_BUSY BIT(15) 81 #define MESON_SAR_ADC_DELAY_KERNEL_BUSY BIT(14) 82 #define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK GENMASK(23, 16) 83 #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK GENMASK(9, 8) 84 #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK GENMASK(7, 0) 85 86 #define MESON_SAR_ADC_LAST_RD 0x14 87 #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK GENMASK(23, 16) 88 #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK GENMASK(9, 0) 89 90 #define MESON_SAR_ADC_FIFO_RD 0x18 91 #define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK GENMASK(14, 12) 92 #define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK GENMASK(11, 0) 93 94 #define MESON_SAR_ADC_AUX_SW 0x1c 95 #define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan) \ 96 (8 + (((_chan) - 2) * 3)) 97 #define MESON_SAR_ADC_AUX_SW_VREF_P_MUX BIT(6) 98 #define MESON_SAR_ADC_AUX_SW_VREF_N_MUX BIT(5) 99 #define MESON_SAR_ADC_AUX_SW_MODE_SEL BIT(4) 100 #define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW BIT(3) 101 #define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW BIT(2) 102 #define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW BIT(1) 103 #define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW BIT(0) 104 105 #define MESON_SAR_ADC_CHAN_10_SW 0x20 106 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK GENMASK(25, 23) 107 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX BIT(22) 108 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX BIT(21) 109 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL BIT(20) 110 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW BIT(19) 111 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW BIT(18) 112 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW BIT(17) 113 #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW BIT(16) 114 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK GENMASK(9, 7) 115 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX BIT(6) 116 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX BIT(5) 117 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL BIT(4) 118 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW BIT(3) 119 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW BIT(2) 120 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW BIT(1) 121 #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW BIT(0) 122 123 #define MESON_SAR_ADC_DETECT_IDLE_SW 0x24 124 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN BIT(26) 125 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK GENMASK(25, 23) 126 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX BIT(22) 127 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX BIT(21) 128 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL BIT(20) 129 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW BIT(19) 130 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW BIT(18) 131 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW BIT(17) 132 #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW BIT(16) 133 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK GENMASK(9, 7) 134 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX BIT(6) 135 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX BIT(5) 136 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL BIT(4) 137 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW BIT(3) 138 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW BIT(2) 139 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW BIT(1) 140 #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW BIT(0) 141 142 #define MESON_SAR_ADC_DELTA_10 0x28 143 #define MESON_SAR_ADC_DELTA_10_TEMP_SEL BIT(27) 144 #define MESON_SAR_ADC_DELTA_10_TS_REVE1 BIT(26) 145 #define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK GENMASK(25, 16) 146 #define MESON_SAR_ADC_DELTA_10_TS_REVE0 BIT(15) 147 #define MESON_SAR_ADC_DELTA_10_TS_C_MASK GENMASK(14, 11) 148 #define MESON_SAR_ADC_DELTA_10_TS_VBG_EN BIT(10) 149 #define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK GENMASK(9, 0) 150 151 /* 152 * NOTE: registers from here are undocumented (the vendor Linux kernel driver 153 * and u-boot source served as reference). These only seem to be relevant on 154 * GXBB and newer. 155 */ 156 #define MESON_SAR_ADC_REG11 0x2c 157 #define MESON_SAR_ADC_REG11_BANDGAP_EN BIT(13) 158 159 #define MESON_SAR_ADC_REG13 0x34 160 #define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK GENMASK(13, 8) 161 162 #define MESON_SAR_ADC_MAX_FIFO_SIZE 32 163 #define MESON_SAR_ADC_TIMEOUT 100 /* ms */ 164 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL 6 165 #define MESON_SAR_ADC_TEMP_OFFSET 27 166 167 /* temperature sensor calibration information in eFuse */ 168 #define MESON_SAR_ADC_EFUSE_BYTES 4 169 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL GENMASK(6, 0) 170 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED BIT(7) 171 172 #define MESON_HHI_DPLL_TOP_0 0x318 173 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4 BIT(9) 174 175 /* for use with IIO_VAL_INT_PLUS_MICRO */ 176 #define MILLION 1000000 177 178 #define MESON_SAR_ADC_CHAN(_chan) { \ 179 .type = IIO_VOLTAGE, \ 180 .indexed = 1, \ 181 .channel = _chan, \ 182 .address = _chan, \ 183 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 184 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 185 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 186 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \ 187 BIT(IIO_CHAN_INFO_CALIBSCALE), \ 188 .datasheet_name = "SAR_ADC_CH"#_chan, \ 189 } 190 191 #define MESON_SAR_ADC_TEMP_CHAN(_chan) { \ 192 .type = IIO_TEMP, \ 193 .channel = _chan, \ 194 .address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL, \ 195 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 196 BIT(IIO_CHAN_INFO_AVERAGE_RAW), \ 197 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | \ 198 BIT(IIO_CHAN_INFO_SCALE), \ 199 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \ 200 BIT(IIO_CHAN_INFO_CALIBSCALE), \ 201 .datasheet_name = "TEMP_SENSOR", \ 202 } 203 204 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = { 205 MESON_SAR_ADC_CHAN(0), 206 MESON_SAR_ADC_CHAN(1), 207 MESON_SAR_ADC_CHAN(2), 208 MESON_SAR_ADC_CHAN(3), 209 MESON_SAR_ADC_CHAN(4), 210 MESON_SAR_ADC_CHAN(5), 211 MESON_SAR_ADC_CHAN(6), 212 MESON_SAR_ADC_CHAN(7), 213 IIO_CHAN_SOFT_TIMESTAMP(8), 214 }; 215 216 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = { 217 MESON_SAR_ADC_CHAN(0), 218 MESON_SAR_ADC_CHAN(1), 219 MESON_SAR_ADC_CHAN(2), 220 MESON_SAR_ADC_CHAN(3), 221 MESON_SAR_ADC_CHAN(4), 222 MESON_SAR_ADC_CHAN(5), 223 MESON_SAR_ADC_CHAN(6), 224 MESON_SAR_ADC_CHAN(7), 225 MESON_SAR_ADC_TEMP_CHAN(8), 226 IIO_CHAN_SOFT_TIMESTAMP(9), 227 }; 228 229 enum meson_sar_adc_avg_mode { 230 NO_AVERAGING = 0x0, 231 MEAN_AVERAGING = 0x1, 232 MEDIAN_AVERAGING = 0x2, 233 }; 234 235 enum meson_sar_adc_num_samples { 236 ONE_SAMPLE = 0x0, 237 TWO_SAMPLES = 0x1, 238 FOUR_SAMPLES = 0x2, 239 EIGHT_SAMPLES = 0x3, 240 }; 241 242 enum meson_sar_adc_chan7_mux_sel { 243 CHAN7_MUX_VSS = 0x0, 244 CHAN7_MUX_VDD_DIV4 = 0x1, 245 CHAN7_MUX_VDD_DIV2 = 0x2, 246 CHAN7_MUX_VDD_MUL3_DIV4 = 0x3, 247 CHAN7_MUX_VDD = 0x4, 248 CHAN7_MUX_CH7_INPUT = 0x7, 249 }; 250 251 struct meson_sar_adc_param { 252 bool has_bl30_integration; 253 unsigned long clock_rate; 254 u32 bandgap_reg; 255 unsigned int resolution; 256 const struct regmap_config *regmap_config; 257 u8 temperature_trimming_bits; 258 unsigned int temperature_multiplier; 259 unsigned int temperature_divider; 260 }; 261 262 struct meson_sar_adc_data { 263 const struct meson_sar_adc_param *param; 264 const char *name; 265 }; 266 267 struct meson_sar_adc_priv { 268 struct regmap *regmap; 269 struct regulator *vref; 270 const struct meson_sar_adc_param *param; 271 struct clk *clkin; 272 struct clk *core_clk; 273 struct clk *adc_sel_clk; 274 struct clk *adc_clk; 275 struct clk_gate clk_gate; 276 struct clk *adc_div_clk; 277 struct clk_divider clk_div; 278 struct completion done; 279 int calibbias; 280 int calibscale; 281 struct regmap *tsc_regmap; 282 bool temperature_sensor_calibrated; 283 u8 temperature_sensor_coefficient; 284 u16 temperature_sensor_adc_val; 285 }; 286 287 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = { 288 .reg_bits = 8, 289 .val_bits = 32, 290 .reg_stride = 4, 291 .max_register = MESON_SAR_ADC_REG13, 292 }; 293 294 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = { 295 .reg_bits = 8, 296 .val_bits = 32, 297 .reg_stride = 4, 298 .max_register = MESON_SAR_ADC_DELTA_10, 299 }; 300 301 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev) 302 { 303 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 304 u32 regval; 305 306 regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val); 307 308 return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval); 309 } 310 311 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val) 312 { 313 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 314 int tmp; 315 316 /* use val_calib = scale * val_raw + offset calibration function */ 317 tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias; 318 319 return clamp(tmp, 0, (1 << priv->param->resolution) - 1); 320 } 321 322 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev) 323 { 324 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 325 int regval, timeout = 10000; 326 327 /* 328 * NOTE: we need a small delay before reading the status, otherwise 329 * the sample engine may not have started internally (which would 330 * seem to us that sampling is already finished). 331 */ 332 do { 333 udelay(1); 334 regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val); 335 } while (FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, regval) && timeout--); 336 337 if (timeout < 0) 338 return -ETIMEDOUT; 339 340 return 0; 341 } 342 343 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev, 344 const struct iio_chan_spec *chan, 345 int *val) 346 { 347 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 348 int regval, fifo_chan, fifo_val, count; 349 350 if (!wait_for_completion_timeout(&priv->done, 351 msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT))) 352 return -ETIMEDOUT; 353 354 count = meson_sar_adc_get_fifo_count(indio_dev); 355 if (count != 1) { 356 dev_err(&indio_dev->dev, 357 "ADC FIFO has %d element(s) instead of one\n", count); 358 return -EINVAL; 359 } 360 361 regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, ®val); 362 fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval); 363 if (fifo_chan != chan->address) { 364 dev_err(&indio_dev->dev, 365 "ADC FIFO entry belongs to channel %d instead of %lu\n", 366 fifo_chan, chan->address); 367 return -EINVAL; 368 } 369 370 fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval); 371 fifo_val &= GENMASK(priv->param->resolution - 1, 0); 372 *val = meson_sar_adc_calib_val(indio_dev, fifo_val); 373 374 return 0; 375 } 376 377 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev, 378 const struct iio_chan_spec *chan, 379 enum meson_sar_adc_avg_mode mode, 380 enum meson_sar_adc_num_samples samples) 381 { 382 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 383 int val, address = chan->address; 384 385 val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address); 386 regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL, 387 MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address), 388 val); 389 390 val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address); 391 regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL, 392 MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val); 393 } 394 395 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev, 396 const struct iio_chan_spec *chan) 397 { 398 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 399 u32 regval; 400 401 /* 402 * the SAR ADC engine allows sampling multiple channels at the same 403 * time. to keep it simple we're only working with one *internal* 404 * channel, which starts counting at index 0 (which means: count = 1). 405 */ 406 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0); 407 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 408 MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval); 409 410 /* map channel index 0 to the channel which we want to read */ 411 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), 412 chan->address); 413 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 414 MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval); 415 416 regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK, 417 chan->address); 418 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW, 419 MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK, 420 regval); 421 422 regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK, 423 chan->address); 424 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW, 425 MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK, 426 regval); 427 428 if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) { 429 if (chan->type == IIO_TEMP) 430 regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL; 431 else 432 regval = 0; 433 434 regmap_update_bits(priv->regmap, 435 MESON_SAR_ADC_DELTA_10, 436 MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval); 437 } 438 } 439 440 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev, 441 enum meson_sar_adc_chan7_mux_sel sel) 442 { 443 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 444 u32 regval; 445 446 regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel); 447 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 448 MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval); 449 450 usleep_range(10, 20); 451 } 452 453 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev) 454 { 455 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 456 457 reinit_completion(&priv->done); 458 459 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 460 MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 461 MESON_SAR_ADC_REG0_FIFO_IRQ_EN); 462 463 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 464 MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 465 MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE); 466 467 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 468 MESON_SAR_ADC_REG0_SAMPLING_START, 469 MESON_SAR_ADC_REG0_SAMPLING_START); 470 } 471 472 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev) 473 { 474 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 475 476 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 477 MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0); 478 479 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 480 MESON_SAR_ADC_REG0_SAMPLING_STOP, 481 MESON_SAR_ADC_REG0_SAMPLING_STOP); 482 483 /* wait until all modules are stopped */ 484 meson_sar_adc_wait_busy_clear(indio_dev); 485 486 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 487 MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0); 488 } 489 490 static int meson_sar_adc_lock(struct iio_dev *indio_dev) 491 { 492 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 493 int val, timeout = 10000; 494 495 mutex_lock(&indio_dev->mlock); 496 497 if (priv->param->has_bl30_integration) { 498 /* prevent BL30 from using the SAR ADC while we are using it */ 499 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 500 MESON_SAR_ADC_DELAY_KERNEL_BUSY, 501 MESON_SAR_ADC_DELAY_KERNEL_BUSY); 502 503 /* 504 * wait until BL30 releases it's lock (so we can use the SAR 505 * ADC) 506 */ 507 do { 508 udelay(1); 509 regmap_read(priv->regmap, MESON_SAR_ADC_DELAY, &val); 510 } while (val & MESON_SAR_ADC_DELAY_BL30_BUSY && timeout--); 511 512 if (timeout < 0) { 513 mutex_unlock(&indio_dev->mlock); 514 return -ETIMEDOUT; 515 } 516 } 517 518 return 0; 519 } 520 521 static void meson_sar_adc_unlock(struct iio_dev *indio_dev) 522 { 523 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 524 525 if (priv->param->has_bl30_integration) 526 /* allow BL30 to use the SAR ADC again */ 527 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 528 MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0); 529 530 mutex_unlock(&indio_dev->mlock); 531 } 532 533 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev) 534 { 535 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 536 unsigned int count, tmp; 537 538 for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) { 539 if (!meson_sar_adc_get_fifo_count(indio_dev)) 540 break; 541 542 regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp); 543 } 544 } 545 546 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev, 547 const struct iio_chan_spec *chan, 548 enum meson_sar_adc_avg_mode avg_mode, 549 enum meson_sar_adc_num_samples avg_samples, 550 int *val) 551 { 552 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 553 int ret; 554 555 if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated) 556 return -ENOTSUPP; 557 558 ret = meson_sar_adc_lock(indio_dev); 559 if (ret) 560 return ret; 561 562 /* clear the FIFO to make sure we're not reading old values */ 563 meson_sar_adc_clear_fifo(indio_dev); 564 565 meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples); 566 567 meson_sar_adc_enable_channel(indio_dev, chan); 568 569 meson_sar_adc_start_sample_engine(indio_dev); 570 ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val); 571 meson_sar_adc_stop_sample_engine(indio_dev); 572 573 meson_sar_adc_unlock(indio_dev); 574 575 if (ret) { 576 dev_warn(indio_dev->dev.parent, 577 "failed to read sample for channel %lu: %d\n", 578 chan->address, ret); 579 return ret; 580 } 581 582 return IIO_VAL_INT; 583 } 584 585 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev, 586 const struct iio_chan_spec *chan, 587 int *val, int *val2, long mask) 588 { 589 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 590 int ret; 591 592 switch (mask) { 593 case IIO_CHAN_INFO_RAW: 594 return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING, 595 ONE_SAMPLE, val); 596 597 case IIO_CHAN_INFO_AVERAGE_RAW: 598 return meson_sar_adc_get_sample(indio_dev, chan, 599 MEAN_AVERAGING, EIGHT_SAMPLES, 600 val); 601 602 case IIO_CHAN_INFO_SCALE: 603 if (chan->type == IIO_VOLTAGE) { 604 ret = regulator_get_voltage(priv->vref); 605 if (ret < 0) { 606 dev_err(indio_dev->dev.parent, 607 "failed to get vref voltage: %d\n", 608 ret); 609 return ret; 610 } 611 612 *val = ret / 1000; 613 *val2 = priv->param->resolution; 614 return IIO_VAL_FRACTIONAL_LOG2; 615 } else if (chan->type == IIO_TEMP) { 616 /* SoC specific multiplier and divider */ 617 *val = priv->param->temperature_multiplier; 618 *val2 = priv->param->temperature_divider; 619 620 /* celsius to millicelsius */ 621 *val *= 1000; 622 623 return IIO_VAL_FRACTIONAL; 624 } else { 625 return -EINVAL; 626 } 627 628 case IIO_CHAN_INFO_CALIBBIAS: 629 *val = priv->calibbias; 630 return IIO_VAL_INT; 631 632 case IIO_CHAN_INFO_CALIBSCALE: 633 *val = priv->calibscale / MILLION; 634 *val2 = priv->calibscale % MILLION; 635 return IIO_VAL_INT_PLUS_MICRO; 636 637 case IIO_CHAN_INFO_OFFSET: 638 *val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET * 639 priv->param->temperature_divider, 640 priv->param->temperature_multiplier); 641 *val -= priv->temperature_sensor_adc_val; 642 return IIO_VAL_INT; 643 644 default: 645 return -EINVAL; 646 } 647 } 648 649 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev, 650 void __iomem *base) 651 { 652 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 653 struct clk_init_data init; 654 const char *clk_parents[1]; 655 656 init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_div", 657 dev_name(indio_dev->dev.parent)); 658 if (!init.name) 659 return -ENOMEM; 660 661 init.flags = 0; 662 init.ops = &clk_divider_ops; 663 clk_parents[0] = __clk_get_name(priv->clkin); 664 init.parent_names = clk_parents; 665 init.num_parents = 1; 666 667 priv->clk_div.reg = base + MESON_SAR_ADC_REG3; 668 priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT; 669 priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH; 670 priv->clk_div.hw.init = &init; 671 priv->clk_div.flags = 0; 672 673 priv->adc_div_clk = devm_clk_register(&indio_dev->dev, 674 &priv->clk_div.hw); 675 if (WARN_ON(IS_ERR(priv->adc_div_clk))) 676 return PTR_ERR(priv->adc_div_clk); 677 678 init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_en", 679 dev_name(indio_dev->dev.parent)); 680 if (!init.name) 681 return -ENOMEM; 682 683 init.flags = CLK_SET_RATE_PARENT; 684 init.ops = &clk_gate_ops; 685 clk_parents[0] = __clk_get_name(priv->adc_div_clk); 686 init.parent_names = clk_parents; 687 init.num_parents = 1; 688 689 priv->clk_gate.reg = base + MESON_SAR_ADC_REG3; 690 priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN); 691 priv->clk_gate.hw.init = &init; 692 693 priv->adc_clk = devm_clk_register(&indio_dev->dev, &priv->clk_gate.hw); 694 if (WARN_ON(IS_ERR(priv->adc_clk))) 695 return PTR_ERR(priv->adc_clk); 696 697 return 0; 698 } 699 700 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev) 701 { 702 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 703 u8 *buf, trimming_bits, trimming_mask, upper_adc_val; 704 struct nvmem_cell *temperature_calib; 705 size_t read_len; 706 int ret; 707 708 temperature_calib = devm_nvmem_cell_get(indio_dev->dev.parent, 709 "temperature_calib"); 710 if (IS_ERR(temperature_calib)) { 711 ret = PTR_ERR(temperature_calib); 712 713 /* 714 * leave the temperature sensor disabled if no calibration data 715 * was passed via nvmem-cells. 716 */ 717 if (ret == -ENODEV) 718 return 0; 719 720 return dev_err_probe(indio_dev->dev.parent, ret, 721 "failed to get temperature_calib cell\n"); 722 } 723 724 priv->tsc_regmap = 725 syscon_regmap_lookup_by_phandle(indio_dev->dev.parent->of_node, 726 "amlogic,hhi-sysctrl"); 727 if (IS_ERR(priv->tsc_regmap)) { 728 dev_err(indio_dev->dev.parent, 729 "failed to get amlogic,hhi-sysctrl regmap\n"); 730 return PTR_ERR(priv->tsc_regmap); 731 } 732 733 read_len = MESON_SAR_ADC_EFUSE_BYTES; 734 buf = nvmem_cell_read(temperature_calib, &read_len); 735 if (IS_ERR(buf)) { 736 dev_err(indio_dev->dev.parent, 737 "failed to read temperature_calib cell\n"); 738 return PTR_ERR(buf); 739 } else if (read_len != MESON_SAR_ADC_EFUSE_BYTES) { 740 kfree(buf); 741 dev_err(indio_dev->dev.parent, 742 "invalid read size of temperature_calib cell\n"); 743 return -EINVAL; 744 } 745 746 trimming_bits = priv->param->temperature_trimming_bits; 747 trimming_mask = BIT(trimming_bits) - 1; 748 749 priv->temperature_sensor_calibrated = 750 buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED; 751 priv->temperature_sensor_coefficient = buf[2] & trimming_mask; 752 753 upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL, 754 buf[3]); 755 756 priv->temperature_sensor_adc_val = buf[2]; 757 priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE; 758 priv->temperature_sensor_adc_val >>= trimming_bits; 759 760 kfree(buf); 761 762 return 0; 763 } 764 765 static int meson_sar_adc_init(struct iio_dev *indio_dev) 766 { 767 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 768 int regval, i, ret; 769 770 /* 771 * make sure we start at CH7 input since the other muxes are only used 772 * for internal calibration. 773 */ 774 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT); 775 776 if (priv->param->has_bl30_integration) { 777 /* 778 * leave sampling delay and the input clocks as configured by 779 * BL30 to make sure BL30 gets the values it expects when 780 * reading the temperature sensor. 781 */ 782 regmap_read(priv->regmap, MESON_SAR_ADC_REG3, ®val); 783 if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED) 784 return 0; 785 } 786 787 meson_sar_adc_stop_sample_engine(indio_dev); 788 789 /* 790 * disable this bit as seems to be only relevant for Meson6 (based 791 * on the vendor driver), which we don't support at the moment. 792 */ 793 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 794 MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL, 0); 795 796 /* disable all channels by default */ 797 regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0); 798 799 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 800 MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0); 801 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 802 MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY, 803 MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY); 804 805 /* delay between two samples = (10+1) * 1uS */ 806 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 807 MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK, 808 FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK, 809 10)); 810 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 811 MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK, 812 FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK, 813 0)); 814 815 /* delay between two samples = (10+1) * 1uS */ 816 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 817 MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK, 818 FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK, 819 10)); 820 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY, 821 MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK, 822 FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK, 823 1)); 824 825 /* 826 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW 827 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1) 828 */ 829 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0); 830 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW, 831 MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 832 regval); 833 regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1); 834 regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW, 835 MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 836 regval); 837 838 /* 839 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW 840 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable 841 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and 842 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver. 843 */ 844 regval = 0; 845 for (i = 2; i <= 7; i++) 846 regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i); 847 regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW; 848 regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW; 849 regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval); 850 851 if (priv->temperature_sensor_calibrated) { 852 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10, 853 MESON_SAR_ADC_DELTA_10_TS_REVE1, 854 MESON_SAR_ADC_DELTA_10_TS_REVE1); 855 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10, 856 MESON_SAR_ADC_DELTA_10_TS_REVE0, 857 MESON_SAR_ADC_DELTA_10_TS_REVE0); 858 859 /* 860 * set bits [3:0] of the TSC (temperature sensor coefficient) 861 * to get the correct values when reading the temperature. 862 */ 863 regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK, 864 priv->temperature_sensor_coefficient); 865 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10, 866 MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval); 867 868 if (priv->param->temperature_trimming_bits == 5) { 869 if (priv->temperature_sensor_coefficient & BIT(4)) 870 regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4; 871 else 872 regval = 0; 873 874 /* 875 * bit [4] (the 5th bit when starting to count at 1) 876 * of the TSC is located in the HHI register area. 877 */ 878 regmap_update_bits(priv->tsc_regmap, 879 MESON_HHI_DPLL_TOP_0, 880 MESON_HHI_DPLL_TOP_0_TSC_BIT4, 881 regval); 882 } 883 } else { 884 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10, 885 MESON_SAR_ADC_DELTA_10_TS_REVE1, 0); 886 regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10, 887 MESON_SAR_ADC_DELTA_10_TS_REVE0, 0); 888 } 889 890 ret = clk_set_parent(priv->adc_sel_clk, priv->clkin); 891 if (ret) { 892 dev_err(indio_dev->dev.parent, 893 "failed to set adc parent to clkin\n"); 894 return ret; 895 } 896 897 ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate); 898 if (ret) { 899 dev_err(indio_dev->dev.parent, 900 "failed to set adc clock rate\n"); 901 return ret; 902 } 903 904 return 0; 905 } 906 907 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off) 908 { 909 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 910 const struct meson_sar_adc_param *param = priv->param; 911 u32 enable_mask; 912 913 if (param->bandgap_reg == MESON_SAR_ADC_REG11) 914 enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN; 915 else 916 enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN; 917 918 regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask, 919 on_off ? enable_mask : 0); 920 } 921 922 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev) 923 { 924 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 925 int ret; 926 u32 regval; 927 928 ret = meson_sar_adc_lock(indio_dev); 929 if (ret) 930 goto err_lock; 931 932 ret = regulator_enable(priv->vref); 933 if (ret < 0) { 934 dev_err(indio_dev->dev.parent, 935 "failed to enable vref regulator\n"); 936 goto err_vref; 937 } 938 939 ret = clk_prepare_enable(priv->core_clk); 940 if (ret) { 941 dev_err(indio_dev->dev.parent, "failed to enable core clk\n"); 942 goto err_core_clk; 943 } 944 945 regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1); 946 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0, 947 MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval); 948 949 meson_sar_adc_set_bandgap(indio_dev, true); 950 951 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 952 MESON_SAR_ADC_REG3_ADC_EN, 953 MESON_SAR_ADC_REG3_ADC_EN); 954 955 udelay(5); 956 957 ret = clk_prepare_enable(priv->adc_clk); 958 if (ret) { 959 dev_err(indio_dev->dev.parent, "failed to enable adc clk\n"); 960 goto err_adc_clk; 961 } 962 963 meson_sar_adc_unlock(indio_dev); 964 965 return 0; 966 967 err_adc_clk: 968 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 969 MESON_SAR_ADC_REG3_ADC_EN, 0); 970 meson_sar_adc_set_bandgap(indio_dev, false); 971 clk_disable_unprepare(priv->core_clk); 972 err_core_clk: 973 regulator_disable(priv->vref); 974 err_vref: 975 meson_sar_adc_unlock(indio_dev); 976 err_lock: 977 return ret; 978 } 979 980 static int meson_sar_adc_hw_disable(struct iio_dev *indio_dev) 981 { 982 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 983 int ret; 984 985 ret = meson_sar_adc_lock(indio_dev); 986 if (ret) 987 return ret; 988 989 clk_disable_unprepare(priv->adc_clk); 990 991 regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3, 992 MESON_SAR_ADC_REG3_ADC_EN, 0); 993 994 meson_sar_adc_set_bandgap(indio_dev, false); 995 996 clk_disable_unprepare(priv->core_clk); 997 998 regulator_disable(priv->vref); 999 1000 meson_sar_adc_unlock(indio_dev); 1001 1002 return 0; 1003 } 1004 1005 static irqreturn_t meson_sar_adc_irq(int irq, void *data) 1006 { 1007 struct iio_dev *indio_dev = data; 1008 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 1009 unsigned int cnt, threshold; 1010 u32 regval; 1011 1012 regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val); 1013 cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval); 1014 threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval); 1015 1016 if (cnt < threshold) 1017 return IRQ_NONE; 1018 1019 complete(&priv->done); 1020 1021 return IRQ_HANDLED; 1022 } 1023 1024 static int meson_sar_adc_calib(struct iio_dev *indio_dev) 1025 { 1026 struct meson_sar_adc_priv *priv = iio_priv(indio_dev); 1027 int ret, nominal0, nominal1, value0, value1; 1028 1029 /* use points 25% and 75% for calibration */ 1030 nominal0 = (1 << priv->param->resolution) / 4; 1031 nominal1 = (1 << priv->param->resolution) * 3 / 4; 1032 1033 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4); 1034 usleep_range(10, 20); 1035 ret = meson_sar_adc_get_sample(indio_dev, 1036 &indio_dev->channels[7], 1037 MEAN_AVERAGING, EIGHT_SAMPLES, &value0); 1038 if (ret < 0) 1039 goto out; 1040 1041 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4); 1042 usleep_range(10, 20); 1043 ret = meson_sar_adc_get_sample(indio_dev, 1044 &indio_dev->channels[7], 1045 MEAN_AVERAGING, EIGHT_SAMPLES, &value1); 1046 if (ret < 0) 1047 goto out; 1048 1049 if (value1 <= value0) { 1050 ret = -EINVAL; 1051 goto out; 1052 } 1053 1054 priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION, 1055 value1 - value0); 1056 priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale, 1057 MILLION); 1058 ret = 0; 1059 out: 1060 meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT); 1061 1062 return ret; 1063 } 1064 1065 static const struct iio_info meson_sar_adc_iio_info = { 1066 .read_raw = meson_sar_adc_iio_info_read_raw, 1067 }; 1068 1069 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = { 1070 .has_bl30_integration = false, 1071 .clock_rate = 1150000, 1072 .bandgap_reg = MESON_SAR_ADC_DELTA_10, 1073 .regmap_config = &meson_sar_adc_regmap_config_meson8, 1074 .resolution = 10, 1075 .temperature_trimming_bits = 4, 1076 .temperature_multiplier = 18 * 10000, 1077 .temperature_divider = 1024 * 10 * 85, 1078 }; 1079 1080 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = { 1081 .has_bl30_integration = false, 1082 .clock_rate = 1150000, 1083 .bandgap_reg = MESON_SAR_ADC_DELTA_10, 1084 .regmap_config = &meson_sar_adc_regmap_config_meson8, 1085 .resolution = 10, 1086 .temperature_trimming_bits = 5, 1087 .temperature_multiplier = 10, 1088 .temperature_divider = 32, 1089 }; 1090 1091 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = { 1092 .has_bl30_integration = true, 1093 .clock_rate = 1200000, 1094 .bandgap_reg = MESON_SAR_ADC_REG11, 1095 .regmap_config = &meson_sar_adc_regmap_config_gxbb, 1096 .resolution = 10, 1097 }; 1098 1099 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = { 1100 .has_bl30_integration = true, 1101 .clock_rate = 1200000, 1102 .bandgap_reg = MESON_SAR_ADC_REG11, 1103 .regmap_config = &meson_sar_adc_regmap_config_gxbb, 1104 .resolution = 12, 1105 }; 1106 1107 static const struct meson_sar_adc_param meson_sar_adc_g12a_param = { 1108 .has_bl30_integration = false, 1109 .clock_rate = 1200000, 1110 .bandgap_reg = MESON_SAR_ADC_REG11, 1111 .regmap_config = &meson_sar_adc_regmap_config_gxbb, 1112 .resolution = 12, 1113 }; 1114 1115 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = { 1116 .param = &meson_sar_adc_meson8_param, 1117 .name = "meson-meson8-saradc", 1118 }; 1119 1120 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = { 1121 .param = &meson_sar_adc_meson8b_param, 1122 .name = "meson-meson8b-saradc", 1123 }; 1124 1125 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = { 1126 .param = &meson_sar_adc_meson8b_param, 1127 .name = "meson-meson8m2-saradc", 1128 }; 1129 1130 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = { 1131 .param = &meson_sar_adc_gxbb_param, 1132 .name = "meson-gxbb-saradc", 1133 }; 1134 1135 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = { 1136 .param = &meson_sar_adc_gxl_param, 1137 .name = "meson-gxl-saradc", 1138 }; 1139 1140 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = { 1141 .param = &meson_sar_adc_gxl_param, 1142 .name = "meson-gxm-saradc", 1143 }; 1144 1145 static const struct meson_sar_adc_data meson_sar_adc_axg_data = { 1146 .param = &meson_sar_adc_gxl_param, 1147 .name = "meson-axg-saradc", 1148 }; 1149 1150 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = { 1151 .param = &meson_sar_adc_g12a_param, 1152 .name = "meson-g12a-saradc", 1153 }; 1154 1155 static const struct of_device_id meson_sar_adc_of_match[] = { 1156 { 1157 .compatible = "amlogic,meson8-saradc", 1158 .data = &meson_sar_adc_meson8_data, 1159 }, { 1160 .compatible = "amlogic,meson8b-saradc", 1161 .data = &meson_sar_adc_meson8b_data, 1162 }, { 1163 .compatible = "amlogic,meson8m2-saradc", 1164 .data = &meson_sar_adc_meson8m2_data, 1165 }, { 1166 .compatible = "amlogic,meson-gxbb-saradc", 1167 .data = &meson_sar_adc_gxbb_data, 1168 }, { 1169 .compatible = "amlogic,meson-gxl-saradc", 1170 .data = &meson_sar_adc_gxl_data, 1171 }, { 1172 .compatible = "amlogic,meson-gxm-saradc", 1173 .data = &meson_sar_adc_gxm_data, 1174 }, { 1175 .compatible = "amlogic,meson-axg-saradc", 1176 .data = &meson_sar_adc_axg_data, 1177 }, { 1178 .compatible = "amlogic,meson-g12a-saradc", 1179 .data = &meson_sar_adc_g12a_data, 1180 }, 1181 { /* sentinel */ } 1182 }; 1183 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match); 1184 1185 static int meson_sar_adc_probe(struct platform_device *pdev) 1186 { 1187 const struct meson_sar_adc_data *match_data; 1188 struct meson_sar_adc_priv *priv; 1189 struct iio_dev *indio_dev; 1190 void __iomem *base; 1191 int irq, ret; 1192 1193 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv)); 1194 if (!indio_dev) { 1195 dev_err(&pdev->dev, "failed allocating iio device\n"); 1196 return -ENOMEM; 1197 } 1198 1199 priv = iio_priv(indio_dev); 1200 init_completion(&priv->done); 1201 1202 match_data = of_device_get_match_data(&pdev->dev); 1203 if (!match_data) { 1204 dev_err(&pdev->dev, "failed to get match data\n"); 1205 return -ENODEV; 1206 } 1207 1208 priv->param = match_data->param; 1209 1210 indio_dev->name = match_data->name; 1211 indio_dev->modes = INDIO_DIRECT_MODE; 1212 indio_dev->info = &meson_sar_adc_iio_info; 1213 1214 base = devm_platform_ioremap_resource(pdev, 0); 1215 if (IS_ERR(base)) 1216 return PTR_ERR(base); 1217 1218 priv->regmap = devm_regmap_init_mmio(&pdev->dev, base, 1219 priv->param->regmap_config); 1220 if (IS_ERR(priv->regmap)) 1221 return PTR_ERR(priv->regmap); 1222 1223 irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1224 if (!irq) 1225 return -EINVAL; 1226 1227 ret = devm_request_irq(&pdev->dev, irq, meson_sar_adc_irq, IRQF_SHARED, 1228 dev_name(&pdev->dev), indio_dev); 1229 if (ret) 1230 return ret; 1231 1232 priv->clkin = devm_clk_get(&pdev->dev, "clkin"); 1233 if (IS_ERR(priv->clkin)) { 1234 dev_err(&pdev->dev, "failed to get clkin\n"); 1235 return PTR_ERR(priv->clkin); 1236 } 1237 1238 priv->core_clk = devm_clk_get(&pdev->dev, "core"); 1239 if (IS_ERR(priv->core_clk)) { 1240 dev_err(&pdev->dev, "failed to get core clk\n"); 1241 return PTR_ERR(priv->core_clk); 1242 } 1243 1244 priv->adc_clk = devm_clk_get(&pdev->dev, "adc_clk"); 1245 if (IS_ERR(priv->adc_clk)) { 1246 if (PTR_ERR(priv->adc_clk) == -ENOENT) { 1247 priv->adc_clk = NULL; 1248 } else { 1249 dev_err(&pdev->dev, "failed to get adc clk\n"); 1250 return PTR_ERR(priv->adc_clk); 1251 } 1252 } 1253 1254 priv->adc_sel_clk = devm_clk_get(&pdev->dev, "adc_sel"); 1255 if (IS_ERR(priv->adc_sel_clk)) { 1256 if (PTR_ERR(priv->adc_sel_clk) == -ENOENT) { 1257 priv->adc_sel_clk = NULL; 1258 } else { 1259 dev_err(&pdev->dev, "failed to get adc_sel clk\n"); 1260 return PTR_ERR(priv->adc_sel_clk); 1261 } 1262 } 1263 1264 /* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */ 1265 if (!priv->adc_clk) { 1266 ret = meson_sar_adc_clk_init(indio_dev, base); 1267 if (ret) 1268 return ret; 1269 } 1270 1271 priv->vref = devm_regulator_get(&pdev->dev, "vref"); 1272 if (IS_ERR(priv->vref)) { 1273 dev_err(&pdev->dev, "failed to get vref regulator\n"); 1274 return PTR_ERR(priv->vref); 1275 } 1276 1277 priv->calibscale = MILLION; 1278 1279 if (priv->param->temperature_trimming_bits) { 1280 ret = meson_sar_adc_temp_sensor_init(indio_dev); 1281 if (ret) 1282 return ret; 1283 } 1284 1285 if (priv->temperature_sensor_calibrated) { 1286 indio_dev->channels = meson_sar_adc_and_temp_iio_channels; 1287 indio_dev->num_channels = 1288 ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels); 1289 } else { 1290 indio_dev->channels = meson_sar_adc_iio_channels; 1291 indio_dev->num_channels = 1292 ARRAY_SIZE(meson_sar_adc_iio_channels); 1293 } 1294 1295 ret = meson_sar_adc_init(indio_dev); 1296 if (ret) 1297 goto err; 1298 1299 ret = meson_sar_adc_hw_enable(indio_dev); 1300 if (ret) 1301 goto err; 1302 1303 ret = meson_sar_adc_calib(indio_dev); 1304 if (ret) 1305 dev_warn(&pdev->dev, "calibration failed\n"); 1306 1307 platform_set_drvdata(pdev, indio_dev); 1308 1309 ret = iio_device_register(indio_dev); 1310 if (ret) 1311 goto err_hw; 1312 1313 return 0; 1314 1315 err_hw: 1316 meson_sar_adc_hw_disable(indio_dev); 1317 err: 1318 return ret; 1319 } 1320 1321 static int meson_sar_adc_remove(struct platform_device *pdev) 1322 { 1323 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 1324 1325 iio_device_unregister(indio_dev); 1326 1327 return meson_sar_adc_hw_disable(indio_dev); 1328 } 1329 1330 static int __maybe_unused meson_sar_adc_suspend(struct device *dev) 1331 { 1332 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1333 1334 return meson_sar_adc_hw_disable(indio_dev); 1335 } 1336 1337 static int __maybe_unused meson_sar_adc_resume(struct device *dev) 1338 { 1339 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1340 1341 return meson_sar_adc_hw_enable(indio_dev); 1342 } 1343 1344 static SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops, 1345 meson_sar_adc_suspend, meson_sar_adc_resume); 1346 1347 static struct platform_driver meson_sar_adc_driver = { 1348 .probe = meson_sar_adc_probe, 1349 .remove = meson_sar_adc_remove, 1350 .driver = { 1351 .name = "meson-saradc", 1352 .of_match_table = meson_sar_adc_of_match, 1353 .pm = &meson_sar_adc_pm_ops, 1354 }, 1355 }; 1356 1357 module_platform_driver(meson_sar_adc_driver); 1358 1359 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>"); 1360 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver"); 1361 MODULE_LICENSE("GPL v2"); 1362