xref: /linux/drivers/iio/adc/meson_saradc.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
4  *
5  * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/iio/iio.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/interrupt.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/mfd/syscon.h>
24 
25 #define MESON_SAR_ADC_REG0					0x00
26 	#define MESON_SAR_ADC_REG0_PANEL_DETECT			BIT(31)
27 	#define MESON_SAR_ADC_REG0_BUSY_MASK			GENMASK(30, 28)
28 	#define MESON_SAR_ADC_REG0_DELTA_BUSY			BIT(30)
29 	#define MESON_SAR_ADC_REG0_AVG_BUSY			BIT(29)
30 	#define MESON_SAR_ADC_REG0_SAMPLE_BUSY			BIT(28)
31 	#define MESON_SAR_ADC_REG0_FIFO_FULL			BIT(27)
32 	#define MESON_SAR_ADC_REG0_FIFO_EMPTY			BIT(26)
33 	#define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK		GENMASK(25, 21)
34 	#define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK		GENMASK(20, 19)
35 	#define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK		GENMASK(18, 16)
36 	#define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL		BIT(15)
37 	#define MESON_SAR_ADC_REG0_SAMPLING_STOP		BIT(14)
38 	#define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK		GENMASK(13, 12)
39 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_POL		BIT(10)
40 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_EN		BIT(9)
41 	#define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK		GENMASK(8, 4)
42 	#define MESON_SAR_ADC_REG0_FIFO_IRQ_EN			BIT(3)
43 	#define MESON_SAR_ADC_REG0_SAMPLING_START		BIT(2)
44 	#define MESON_SAR_ADC_REG0_CONTINUOUS_EN		BIT(1)
45 	#define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE		BIT(0)
46 
47 #define MESON_SAR_ADC_CHAN_LIST					0x04
48 	#define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK		GENMASK(26, 24)
49 	#define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan)	\
50 					(GENMASK(2, 0) << ((_chan) * 3))
51 
52 #define MESON_SAR_ADC_AVG_CNTL					0x08
53 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan)	\
54 					(16 + ((_chan) * 2))
55 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan)	\
56 					(GENMASK(17, 16) << ((_chan) * 2))
57 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan)	\
58 					(0 + ((_chan) * 2))
59 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan)	\
60 					(GENMASK(1, 0) << ((_chan) * 2))
61 
62 #define MESON_SAR_ADC_REG3					0x0c
63 	#define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY		BIT(31)
64 	#define MESON_SAR_ADC_REG3_CLK_EN			BIT(30)
65 	#define MESON_SAR_ADC_REG3_BL30_INITIALIZED		BIT(28)
66 	#define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN	BIT(27)
67 	#define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE	BIT(26)
68 	#define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK	GENMASK(25, 23)
69 	#define MESON_SAR_ADC_REG3_DETECT_EN			BIT(22)
70 	#define MESON_SAR_ADC_REG3_ADC_EN			BIT(21)
71 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK	GENMASK(20, 18)
72 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK	GENMASK(17, 16)
73 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT		10
74 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH		6
75 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK		GENMASK(9, 8)
76 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK		GENMASK(7, 0)
77 
78 #define MESON_SAR_ADC_DELAY					0x10
79 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK		GENMASK(25, 24)
80 	#define MESON_SAR_ADC_DELAY_BL30_BUSY			BIT(15)
81 	#define MESON_SAR_ADC_DELAY_KERNEL_BUSY			BIT(14)
82 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK		GENMASK(23, 16)
83 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK		GENMASK(9, 8)
84 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK		GENMASK(7, 0)
85 
86 #define MESON_SAR_ADC_LAST_RD					0x14
87 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK	GENMASK(23, 16)
88 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK	GENMASK(9, 0)
89 
90 #define MESON_SAR_ADC_FIFO_RD					0x18
91 	#define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK		GENMASK(14, 12)
92 	#define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK		GENMASK(11, 0)
93 
94 #define MESON_SAR_ADC_AUX_SW					0x1c
95 	#define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan)	\
96 					(8 + (((_chan) - 2) * 3))
97 	#define MESON_SAR_ADC_AUX_SW_VREF_P_MUX			BIT(6)
98 	#define MESON_SAR_ADC_AUX_SW_VREF_N_MUX			BIT(5)
99 	#define MESON_SAR_ADC_AUX_SW_MODE_SEL			BIT(4)
100 	#define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW		BIT(3)
101 	#define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW		BIT(2)
102 	#define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW		BIT(1)
103 	#define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW		BIT(0)
104 
105 #define MESON_SAR_ADC_CHAN_10_SW				0x20
106 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK	GENMASK(25, 23)
107 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX	BIT(22)
108 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX	BIT(21)
109 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL		BIT(20)
110 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW	BIT(19)
111 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW	BIT(18)
112 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW	BIT(17)
113 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW	BIT(16)
114 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK	GENMASK(9, 7)
115 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX	BIT(6)
116 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX	BIT(5)
117 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL		BIT(4)
118 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW	BIT(3)
119 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW	BIT(2)
120 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW	BIT(1)
121 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW	BIT(0)
122 
123 #define MESON_SAR_ADC_DETECT_IDLE_SW				0x24
124 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN	BIT(26)
125 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK	GENMASK(25, 23)
126 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX	BIT(22)
127 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX	BIT(21)
128 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL	BIT(20)
129 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW	BIT(19)
130 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW	BIT(18)
131 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW	BIT(17)
132 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW	BIT(16)
133 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK	GENMASK(9, 7)
134 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX	BIT(6)
135 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX	BIT(5)
136 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL	BIT(4)
137 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW	BIT(3)
138 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW	BIT(2)
139 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW	BIT(1)
140 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW	BIT(0)
141 
142 #define MESON_SAR_ADC_DELTA_10					0x28
143 	#define MESON_SAR_ADC_DELTA_10_TEMP_SEL			BIT(27)
144 	#define MESON_SAR_ADC_DELTA_10_TS_REVE1			BIT(26)
145 	#define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK	GENMASK(25, 16)
146 	#define MESON_SAR_ADC_DELTA_10_TS_REVE0			BIT(15)
147 	#define MESON_SAR_ADC_DELTA_10_TS_C_MASK		GENMASK(14, 11)
148 	#define MESON_SAR_ADC_DELTA_10_TS_VBG_EN		BIT(10)
149 	#define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK	GENMASK(9, 0)
150 
151 /*
152  * NOTE: registers from here are undocumented (the vendor Linux kernel driver
153  * and u-boot source served as reference). These only seem to be relevant on
154  * GXBB and newer.
155  */
156 #define MESON_SAR_ADC_REG11					0x2c
157 	#define MESON_SAR_ADC_REG11_BANDGAP_EN			BIT(13)
158 	#define MESON_SAR_ADC_REG11_CMV_SEL                     BIT(6)
159 	#define MESON_SAR_ADC_REG11_VREF_VOLTAGE                BIT(5)
160 	#define MESON_SAR_ADC_REG11_EOC                         BIT(1)
161 	#define MESON_SAR_ADC_REG11_VREF_SEL                    BIT(0)
162 
163 #define MESON_SAR_ADC_REG13					0x34
164 	#define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK	GENMASK(13, 8)
165 
166 #define MESON_SAR_ADC_MAX_FIFO_SIZE				32
167 #define MESON_SAR_ADC_TIMEOUT					100 /* ms */
168 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL			6
169 #define MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL			7
170 #define MESON_SAR_ADC_TEMP_OFFSET				27
171 
172 /* temperature sensor calibration information in eFuse */
173 #define MESON_SAR_ADC_EFUSE_BYTES				4
174 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL			GENMASK(6, 0)
175 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED			BIT(7)
176 
177 #define MESON_HHI_DPLL_TOP_0					0x318
178 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4				BIT(9)
179 
180 /* for use with IIO_VAL_INT_PLUS_MICRO */
181 #define MILLION							1000000
182 
183 #define MESON_SAR_ADC_CHAN(_chan) {					\
184 	.type = IIO_VOLTAGE,						\
185 	.indexed = 1,							\
186 	.channel = _chan,						\
187 	.address = _chan,						\
188 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
189 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
190 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
191 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
192 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
193 	.datasheet_name = "SAR_ADC_CH"#_chan,				\
194 }
195 
196 #define MESON_SAR_ADC_TEMP_CHAN(_chan) {				\
197 	.type = IIO_TEMP,						\
198 	.channel = _chan,						\
199 	.address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL,		\
200 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
201 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
202 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |		\
203 					BIT(IIO_CHAN_INFO_SCALE),	\
204 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
205 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
206 	.datasheet_name = "TEMP_SENSOR",				\
207 }
208 
209 #define MESON_SAR_ADC_MUX(_chan, _sel) {				\
210 	.type = IIO_VOLTAGE,						\
211 	.channel = _chan,						\
212 	.indexed = 1,							\
213 	.address = MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL,		\
214 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
215 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
216 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
217 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
218 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
219 	.datasheet_name = "SAR_ADC_MUX_"#_sel,				\
220 }
221 
222 enum meson_sar_adc_vref_sel {
223 	VREF_CALIBATION_VOLTAGE = 0,
224 	VREF_VDDA = 1,
225 };
226 
227 enum meson_sar_adc_avg_mode {
228 	NO_AVERAGING = 0x0,
229 	MEAN_AVERAGING = 0x1,
230 	MEDIAN_AVERAGING = 0x2,
231 };
232 
233 enum meson_sar_adc_num_samples {
234 	ONE_SAMPLE = 0x0,
235 	TWO_SAMPLES = 0x1,
236 	FOUR_SAMPLES = 0x2,
237 	EIGHT_SAMPLES = 0x3,
238 };
239 
240 enum meson_sar_adc_chan7_mux_sel {
241 	CHAN7_MUX_VSS = 0x0,
242 	CHAN7_MUX_VDD_DIV4 = 0x1,
243 	CHAN7_MUX_VDD_DIV2 = 0x2,
244 	CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
245 	CHAN7_MUX_VDD = 0x4,
246 	CHAN7_MUX_CH7_INPUT = 0x7,
247 };
248 
249 enum meson_sar_adc_channel_index {
250 	NUM_CHAN_0,
251 	NUM_CHAN_1,
252 	NUM_CHAN_2,
253 	NUM_CHAN_3,
254 	NUM_CHAN_4,
255 	NUM_CHAN_5,
256 	NUM_CHAN_6,
257 	NUM_CHAN_7,
258 	NUM_CHAN_TEMP,
259 	NUM_MUX_0_VSS,
260 	NUM_MUX_1_VDD_DIV4,
261 	NUM_MUX_2_VDD_DIV2,
262 	NUM_MUX_3_VDD_MUL3_DIV4,
263 	NUM_MUX_4_VDD,
264 };
265 
266 static enum meson_sar_adc_chan7_mux_sel chan7_mux_values[] = {
267 	CHAN7_MUX_VSS,
268 	CHAN7_MUX_VDD_DIV4,
269 	CHAN7_MUX_VDD_DIV2,
270 	CHAN7_MUX_VDD_MUL3_DIV4,
271 	CHAN7_MUX_VDD,
272 };
273 
274 static const char * const chan7_mux_names[] = {
275 	[CHAN7_MUX_VSS] = "gnd",
276 	[CHAN7_MUX_VDD_DIV4] = "0.25vdd",
277 	[CHAN7_MUX_VDD_DIV2] = "0.5vdd",
278 	[CHAN7_MUX_VDD_MUL3_DIV4] = "0.75vdd",
279 	[CHAN7_MUX_VDD] = "vdd",
280 };
281 
282 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
283 	MESON_SAR_ADC_CHAN(NUM_CHAN_0),
284 	MESON_SAR_ADC_CHAN(NUM_CHAN_1),
285 	MESON_SAR_ADC_CHAN(NUM_CHAN_2),
286 	MESON_SAR_ADC_CHAN(NUM_CHAN_3),
287 	MESON_SAR_ADC_CHAN(NUM_CHAN_4),
288 	MESON_SAR_ADC_CHAN(NUM_CHAN_5),
289 	MESON_SAR_ADC_CHAN(NUM_CHAN_6),
290 	MESON_SAR_ADC_CHAN(NUM_CHAN_7),
291 	MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
292 	MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
293 	MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
294 	MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
295 	MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
296 };
297 
298 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
299 	MESON_SAR_ADC_CHAN(NUM_CHAN_0),
300 	MESON_SAR_ADC_CHAN(NUM_CHAN_1),
301 	MESON_SAR_ADC_CHAN(NUM_CHAN_2),
302 	MESON_SAR_ADC_CHAN(NUM_CHAN_3),
303 	MESON_SAR_ADC_CHAN(NUM_CHAN_4),
304 	MESON_SAR_ADC_CHAN(NUM_CHAN_5),
305 	MESON_SAR_ADC_CHAN(NUM_CHAN_6),
306 	MESON_SAR_ADC_CHAN(NUM_CHAN_7),
307 	MESON_SAR_ADC_TEMP_CHAN(NUM_CHAN_TEMP),
308 	MESON_SAR_ADC_MUX(NUM_MUX_0_VSS, 0),
309 	MESON_SAR_ADC_MUX(NUM_MUX_1_VDD_DIV4, 1),
310 	MESON_SAR_ADC_MUX(NUM_MUX_2_VDD_DIV2, 2),
311 	MESON_SAR_ADC_MUX(NUM_MUX_3_VDD_MUL3_DIV4, 3),
312 	MESON_SAR_ADC_MUX(NUM_MUX_4_VDD, 4),
313 };
314 
315 struct meson_sar_adc_param {
316 	bool					has_bl30_integration;
317 	unsigned long				clock_rate;
318 	u32					bandgap_reg;
319 	unsigned int				resolution;
320 	const struct regmap_config		*regmap_config;
321 	u8					temperature_trimming_bits;
322 	unsigned int				temperature_multiplier;
323 	unsigned int				temperature_divider;
324 	u8					disable_ring_counter;
325 	bool					has_reg11;
326 	bool					has_vref_select;
327 	u8					vref_select;
328 	u8					cmv_select;
329 	u8					adc_eoc;
330 	enum meson_sar_adc_vref_sel		vref_volatge;
331 };
332 
333 struct meson_sar_adc_data {
334 	const struct meson_sar_adc_param	*param;
335 	const char				*name;
336 };
337 
338 struct meson_sar_adc_priv {
339 	struct regmap				*regmap;
340 	struct regulator			*vref;
341 	const struct meson_sar_adc_param	*param;
342 	struct clk				*clkin;
343 	struct clk				*core_clk;
344 	struct clk				*adc_sel_clk;
345 	struct clk				*adc_clk;
346 	struct clk_gate				clk_gate;
347 	struct clk				*adc_div_clk;
348 	struct clk_divider			clk_div;
349 	struct completion			done;
350 	/* lock to protect against multiple access to the device */
351 	struct mutex				lock;
352 	int					calibbias;
353 	int					calibscale;
354 	struct regmap				*tsc_regmap;
355 	bool					temperature_sensor_calibrated;
356 	u8					temperature_sensor_coefficient;
357 	u16					temperature_sensor_adc_val;
358 	enum meson_sar_adc_chan7_mux_sel	chan7_mux_sel;
359 };
360 
361 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
362 	.reg_bits = 8,
363 	.val_bits = 32,
364 	.reg_stride = 4,
365 	.max_register = MESON_SAR_ADC_REG13,
366 };
367 
368 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
369 	.reg_bits = 8,
370 	.val_bits = 32,
371 	.reg_stride = 4,
372 	.max_register = MESON_SAR_ADC_DELTA_10,
373 };
374 
375 static const struct iio_chan_spec *
376 find_channel_by_num(struct iio_dev *indio_dev, int num)
377 {
378 	int i;
379 
380 	for (i = 0; i < indio_dev->num_channels; i++)
381 		if (indio_dev->channels[i].channel == num)
382 			return &indio_dev->channels[i];
383 	return NULL;
384 }
385 
386 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
387 {
388 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
389 	u32 regval;
390 
391 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
392 
393 	return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
394 }
395 
396 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
397 {
398 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
399 	int tmp;
400 
401 	/* use val_calib = scale * val_raw + offset calibration function */
402 	tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
403 
404 	return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
405 }
406 
407 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
408 {
409 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
410 	int val;
411 
412 	/*
413 	 * NOTE: we need a small delay before reading the status, otherwise
414 	 * the sample engine may not have started internally (which would
415 	 * seem to us that sampling is already finished).
416 	 */
417 	udelay(1);
418 	return regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_REG0, val,
419 					       !FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, val),
420 					       1, 10000);
421 }
422 
423 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
424 					enum meson_sar_adc_chan7_mux_sel sel)
425 {
426 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
427 	u32 regval;
428 
429 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
430 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
431 			   MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
432 
433 	usleep_range(10, 20);
434 
435 	priv->chan7_mux_sel = sel;
436 }
437 
438 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
439 					 const struct iio_chan_spec *chan,
440 					 int *val)
441 {
442 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
443 	struct device *dev = indio_dev->dev.parent;
444 	int regval, fifo_chan, fifo_val, count;
445 
446 	if (!wait_for_completion_timeout(&priv->done,
447 				msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
448 		return -ETIMEDOUT;
449 
450 	count = meson_sar_adc_get_fifo_count(indio_dev);
451 	if (count != 1) {
452 		dev_err(dev, "ADC FIFO has %d element(s) instead of one\n", count);
453 		return -EINVAL;
454 	}
455 
456 	regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &regval);
457 	fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
458 	if (fifo_chan != chan->address) {
459 		dev_err(dev, "ADC FIFO entry belongs to channel %d instead of %lu\n",
460 			fifo_chan, chan->address);
461 		return -EINVAL;
462 	}
463 
464 	fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
465 	fifo_val &= GENMASK(priv->param->resolution - 1, 0);
466 	*val = meson_sar_adc_calib_val(indio_dev, fifo_val);
467 
468 	return 0;
469 }
470 
471 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
472 					const struct iio_chan_spec *chan,
473 					enum meson_sar_adc_avg_mode mode,
474 					enum meson_sar_adc_num_samples samples)
475 {
476 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
477 	int val, address = chan->address;
478 
479 	val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
480 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
481 			   MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
482 			   val);
483 
484 	val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
485 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
486 			   MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
487 }
488 
489 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
490 					const struct iio_chan_spec *chan)
491 {
492 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
493 	u32 regval;
494 
495 	/*
496 	 * the SAR ADC engine allows sampling multiple channels at the same
497 	 * time. to keep it simple we're only working with one *internal*
498 	 * channel, which starts counting at index 0 (which means: count = 1).
499 	 */
500 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
501 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
502 			   MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
503 
504 	/* map channel index 0 to the channel which we want to read */
505 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
506 			    chan->address);
507 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
508 			   MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
509 
510 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
511 			    chan->address);
512 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
513 			   MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
514 			   regval);
515 
516 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
517 			    chan->address);
518 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
519 			   MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
520 			   regval);
521 
522 	if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
523 		if (chan->type == IIO_TEMP)
524 			regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
525 		else
526 			regval = 0;
527 
528 		regmap_update_bits(priv->regmap,
529 				   MESON_SAR_ADC_DELTA_10,
530 				   MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
531 	} else if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_MUX_CHANNEL) {
532 		enum meson_sar_adc_chan7_mux_sel sel;
533 
534 		if (chan->channel == NUM_CHAN_7)
535 			sel = CHAN7_MUX_CH7_INPUT;
536 		else
537 			sel = chan7_mux_values[chan->channel - NUM_MUX_0_VSS];
538 		if (sel != priv->chan7_mux_sel)
539 			meson_sar_adc_set_chan7_mux(indio_dev, sel);
540 	}
541 }
542 
543 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
544 {
545 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
546 
547 	reinit_completion(&priv->done);
548 
549 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
550 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN,
551 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
552 
553 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
554 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE,
555 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
556 
557 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
558 			   MESON_SAR_ADC_REG0_SAMPLING_START,
559 			   MESON_SAR_ADC_REG0_SAMPLING_START);
560 }
561 
562 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
563 {
564 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
565 
566 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
567 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0);
568 
569 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
570 			   MESON_SAR_ADC_REG0_SAMPLING_STOP,
571 			   MESON_SAR_ADC_REG0_SAMPLING_STOP);
572 
573 	/* wait until all modules are stopped */
574 	meson_sar_adc_wait_busy_clear(indio_dev);
575 
576 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
577 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0);
578 }
579 
580 static int meson_sar_adc_lock(struct iio_dev *indio_dev)
581 {
582 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
583 	int val, ret;
584 
585 	mutex_lock(&priv->lock);
586 
587 	if (priv->param->has_bl30_integration) {
588 		/* prevent BL30 from using the SAR ADC while we are using it */
589 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
590 				   MESON_SAR_ADC_DELAY_KERNEL_BUSY,
591 				   MESON_SAR_ADC_DELAY_KERNEL_BUSY);
592 
593 		udelay(1);
594 
595 		/*
596 		 * wait until BL30 releases it's lock (so we can use the SAR
597 		 * ADC)
598 		 */
599 		ret = regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_DELAY, val,
600 						      !(val & MESON_SAR_ADC_DELAY_BL30_BUSY),
601 						      1, 10000);
602 		if (ret) {
603 			mutex_unlock(&priv->lock);
604 			return ret;
605 		}
606 	}
607 
608 	return 0;
609 }
610 
611 static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
612 {
613 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
614 
615 	if (priv->param->has_bl30_integration)
616 		/* allow BL30 to use the SAR ADC again */
617 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
618 				   MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0);
619 
620 	mutex_unlock(&priv->lock);
621 }
622 
623 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
624 {
625 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
626 	unsigned int count, tmp;
627 
628 	for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
629 		if (!meson_sar_adc_get_fifo_count(indio_dev))
630 			break;
631 
632 		regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
633 	}
634 }
635 
636 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
637 				    const struct iio_chan_spec *chan,
638 				    enum meson_sar_adc_avg_mode avg_mode,
639 				    enum meson_sar_adc_num_samples avg_samples,
640 				    int *val)
641 {
642 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
643 	struct device *dev = indio_dev->dev.parent;
644 	int ret;
645 
646 	if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
647 		return -ENOTSUPP;
648 
649 	ret = meson_sar_adc_lock(indio_dev);
650 	if (ret)
651 		return ret;
652 
653 	/* clear the FIFO to make sure we're not reading old values */
654 	meson_sar_adc_clear_fifo(indio_dev);
655 
656 	meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
657 
658 	meson_sar_adc_enable_channel(indio_dev, chan);
659 
660 	meson_sar_adc_start_sample_engine(indio_dev);
661 	ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
662 	meson_sar_adc_stop_sample_engine(indio_dev);
663 
664 	meson_sar_adc_unlock(indio_dev);
665 
666 	if (ret) {
667 		dev_warn(dev, "failed to read sample for channel %lu: %d\n",
668 			 chan->address, ret);
669 		return ret;
670 	}
671 
672 	return IIO_VAL_INT;
673 }
674 
675 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
676 					   const struct iio_chan_spec *chan,
677 					   int *val, int *val2, long mask)
678 {
679 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
680 	struct device *dev = indio_dev->dev.parent;
681 	int ret;
682 
683 	switch (mask) {
684 	case IIO_CHAN_INFO_RAW:
685 		return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
686 						ONE_SAMPLE, val);
687 
688 	case IIO_CHAN_INFO_AVERAGE_RAW:
689 		return meson_sar_adc_get_sample(indio_dev, chan,
690 						MEAN_AVERAGING, EIGHT_SAMPLES,
691 						val);
692 
693 	case IIO_CHAN_INFO_SCALE:
694 		if (chan->type == IIO_VOLTAGE) {
695 			ret = regulator_get_voltage(priv->vref);
696 			if (ret < 0) {
697 				dev_err(dev, "failed to get vref voltage: %d\n", ret);
698 				return ret;
699 			}
700 
701 			*val = ret / 1000;
702 			*val2 = priv->param->resolution;
703 			return IIO_VAL_FRACTIONAL_LOG2;
704 		} else if (chan->type == IIO_TEMP) {
705 			/* SoC specific multiplier and divider */
706 			*val = priv->param->temperature_multiplier;
707 			*val2 = priv->param->temperature_divider;
708 
709 			/* celsius to millicelsius */
710 			*val *= 1000;
711 
712 			return IIO_VAL_FRACTIONAL;
713 		} else {
714 			return -EINVAL;
715 		}
716 
717 	case IIO_CHAN_INFO_CALIBBIAS:
718 		*val = priv->calibbias;
719 		return IIO_VAL_INT;
720 
721 	case IIO_CHAN_INFO_CALIBSCALE:
722 		*val = priv->calibscale / MILLION;
723 		*val2 = priv->calibscale % MILLION;
724 		return IIO_VAL_INT_PLUS_MICRO;
725 
726 	case IIO_CHAN_INFO_OFFSET:
727 		*val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
728 					 priv->param->temperature_divider,
729 					 priv->param->temperature_multiplier);
730 		*val -= priv->temperature_sensor_adc_val;
731 		return IIO_VAL_INT;
732 
733 	default:
734 		return -EINVAL;
735 	}
736 }
737 
738 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
739 				  void __iomem *base)
740 {
741 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
742 	struct device *dev = indio_dev->dev.parent;
743 	struct clk_init_data init;
744 	const char *clk_parents[1];
745 
746 	init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_div", dev_name(dev));
747 	if (!init.name)
748 		return -ENOMEM;
749 
750 	init.flags = 0;
751 	init.ops = &clk_divider_ops;
752 	clk_parents[0] = __clk_get_name(priv->clkin);
753 	init.parent_names = clk_parents;
754 	init.num_parents = 1;
755 
756 	priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
757 	priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
758 	priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
759 	priv->clk_div.hw.init = &init;
760 	priv->clk_div.flags = 0;
761 
762 	priv->adc_div_clk = devm_clk_register(dev, &priv->clk_div.hw);
763 	if (WARN_ON(IS_ERR(priv->adc_div_clk)))
764 		return PTR_ERR(priv->adc_div_clk);
765 
766 	init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_en", dev_name(dev));
767 	if (!init.name)
768 		return -ENOMEM;
769 
770 	init.flags = CLK_SET_RATE_PARENT;
771 	init.ops = &clk_gate_ops;
772 	clk_parents[0] = __clk_get_name(priv->adc_div_clk);
773 	init.parent_names = clk_parents;
774 	init.num_parents = 1;
775 
776 	priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
777 	priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
778 	priv->clk_gate.hw.init = &init;
779 
780 	priv->adc_clk = devm_clk_register(dev, &priv->clk_gate.hw);
781 	if (WARN_ON(IS_ERR(priv->adc_clk)))
782 		return PTR_ERR(priv->adc_clk);
783 
784 	return 0;
785 }
786 
787 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
788 {
789 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
790 	u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
791 	struct device *dev = indio_dev->dev.parent;
792 	struct nvmem_cell *temperature_calib;
793 	size_t read_len;
794 	int ret;
795 
796 	temperature_calib = devm_nvmem_cell_get(dev, "temperature_calib");
797 	if (IS_ERR(temperature_calib)) {
798 		ret = PTR_ERR(temperature_calib);
799 
800 		/*
801 		 * leave the temperature sensor disabled if no calibration data
802 		 * was passed via nvmem-cells.
803 		 */
804 		if (ret == -ENODEV)
805 			return 0;
806 
807 		return dev_err_probe(dev, ret, "failed to get temperature_calib cell\n");
808 	}
809 
810 	priv->tsc_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,hhi-sysctrl");
811 	if (IS_ERR(priv->tsc_regmap))
812 		return dev_err_probe(dev, PTR_ERR(priv->tsc_regmap),
813 				     "failed to get amlogic,hhi-sysctrl regmap\n");
814 
815 	read_len = MESON_SAR_ADC_EFUSE_BYTES;
816 	buf = nvmem_cell_read(temperature_calib, &read_len);
817 	if (IS_ERR(buf))
818 		return dev_err_probe(dev, PTR_ERR(buf), "failed to read temperature_calib cell\n");
819 	if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
820 		kfree(buf);
821 		return dev_err_probe(dev, -EINVAL, "invalid read size of temperature_calib cell\n");
822 	}
823 
824 	trimming_bits = priv->param->temperature_trimming_bits;
825 	trimming_mask = BIT(trimming_bits) - 1;
826 
827 	priv->temperature_sensor_calibrated =
828 		buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
829 	priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
830 
831 	upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
832 				  buf[3]);
833 
834 	priv->temperature_sensor_adc_val = buf[2];
835 	priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
836 	priv->temperature_sensor_adc_val >>= trimming_bits;
837 
838 	kfree(buf);
839 
840 	return 0;
841 }
842 
843 static int meson_sar_adc_init(struct iio_dev *indio_dev)
844 {
845 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
846 	struct device *dev = indio_dev->dev.parent;
847 	int regval, i, ret;
848 
849 	/*
850 	 * make sure we start at CH7 input since the other muxes are only used
851 	 * for internal calibration.
852 	 */
853 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
854 
855 	if (priv->param->has_bl30_integration) {
856 		/*
857 		 * leave sampling delay and the input clocks as configured by
858 		 * BL30 to make sure BL30 gets the values it expects when
859 		 * reading the temperature sensor.
860 		 */
861 		regmap_read(priv->regmap, MESON_SAR_ADC_REG3, &regval);
862 		if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
863 			return 0;
864 	}
865 
866 	meson_sar_adc_stop_sample_engine(indio_dev);
867 
868 	/*
869 	 * disable this bit as seems to be only relevant for Meson6 (based
870 	 * on the vendor driver), which we don't support at the moment.
871 	 */
872 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
873 			   MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL, 0);
874 
875 	/* disable all channels by default */
876 	regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
877 
878 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
879 			   MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0);
880 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
881 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY,
882 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
883 
884 	/* delay between two samples = (10+1) * 1uS */
885 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
886 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
887 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
888 				      10));
889 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
890 			   MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
891 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
892 				      0));
893 
894 	/* delay between two samples = (10+1) * 1uS */
895 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
896 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
897 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
898 				      10));
899 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
900 			   MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
901 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
902 				      1));
903 
904 	/*
905 	 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
906 	 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
907 	 */
908 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
909 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
910 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
911 			   regval);
912 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
913 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
914 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
915 			   regval);
916 
917 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
918 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW,
919 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW);
920 
921 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
922 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW,
923 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW);
924 
925 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
926 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW,
927 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW);
928 
929 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
930 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW,
931 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW);
932 
933 	/*
934 	 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
935 	 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
936 	 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
937 	 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
938 	 */
939 	regval = 0;
940 	for (i = 2; i <= 7; i++)
941 		regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
942 	regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
943 	regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
944 	regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
945 
946 	if (priv->temperature_sensor_calibrated) {
947 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
948 				   MESON_SAR_ADC_DELTA_10_TS_REVE1,
949 				   MESON_SAR_ADC_DELTA_10_TS_REVE1);
950 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
951 				   MESON_SAR_ADC_DELTA_10_TS_REVE0,
952 				   MESON_SAR_ADC_DELTA_10_TS_REVE0);
953 
954 		/*
955 		 * set bits [3:0] of the TSC (temperature sensor coefficient)
956 		 * to get the correct values when reading the temperature.
957 		 */
958 		regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
959 				    priv->temperature_sensor_coefficient);
960 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
961 				   MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
962 
963 		if (priv->param->temperature_trimming_bits == 5) {
964 			if (priv->temperature_sensor_coefficient & BIT(4))
965 				regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
966 			else
967 				regval = 0;
968 
969 			/*
970 			 * bit [4] (the 5th bit when starting to count at 1)
971 			 * of the TSC is located in the HHI register area.
972 			 */
973 			regmap_update_bits(priv->tsc_regmap,
974 					   MESON_HHI_DPLL_TOP_0,
975 					   MESON_HHI_DPLL_TOP_0_TSC_BIT4,
976 					   regval);
977 		}
978 	} else {
979 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
980 				   MESON_SAR_ADC_DELTA_10_TS_REVE1, 0);
981 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
982 				   MESON_SAR_ADC_DELTA_10_TS_REVE0, 0);
983 	}
984 
985 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
986 			    priv->param->disable_ring_counter);
987 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
988 			   MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN,
989 			   regval);
990 
991 	if (priv->param->has_reg11) {
992 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_EOC, priv->param->adc_eoc);
993 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
994 				   MESON_SAR_ADC_REG11_EOC, regval);
995 
996 		if (priv->param->has_vref_select) {
997 			regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_SEL,
998 					    priv->param->vref_select);
999 			regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
1000 					   MESON_SAR_ADC_REG11_VREF_SEL, regval);
1001 		}
1002 
1003 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_VREF_VOLTAGE,
1004 				    priv->param->vref_volatge);
1005 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
1006 				   MESON_SAR_ADC_REG11_VREF_VOLTAGE, regval);
1007 
1008 		regval = FIELD_PREP(MESON_SAR_ADC_REG11_CMV_SEL,
1009 				    priv->param->cmv_select);
1010 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG11,
1011 				   MESON_SAR_ADC_REG11_CMV_SEL, regval);
1012 	}
1013 
1014 	ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
1015 	if (ret)
1016 		return dev_err_probe(dev, ret, "failed to set adc parent to clkin\n");
1017 
1018 	ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
1019 	if (ret)
1020 		return dev_err_probe(dev, ret, "failed to set adc clock rate\n");
1021 
1022 	return 0;
1023 }
1024 
1025 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
1026 {
1027 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1028 	const struct meson_sar_adc_param *param = priv->param;
1029 	u32 enable_mask;
1030 
1031 	if (param->bandgap_reg == MESON_SAR_ADC_REG11)
1032 		enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
1033 	else
1034 		enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
1035 
1036 	regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask,
1037 			   on_off ? enable_mask : 0);
1038 }
1039 
1040 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
1041 {
1042 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1043 	struct device *dev = indio_dev->dev.parent;
1044 	int ret;
1045 	u32 regval;
1046 
1047 	ret = meson_sar_adc_lock(indio_dev);
1048 	if (ret)
1049 		goto err_lock;
1050 
1051 	ret = regulator_enable(priv->vref);
1052 	if (ret < 0) {
1053 		dev_err(dev, "failed to enable vref regulator\n");
1054 		goto err_vref;
1055 	}
1056 
1057 	regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
1058 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
1059 			   MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1060 
1061 	meson_sar_adc_set_bandgap(indio_dev, true);
1062 
1063 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
1064 			   MESON_SAR_ADC_REG3_ADC_EN,
1065 			   MESON_SAR_ADC_REG3_ADC_EN);
1066 
1067 	udelay(5);
1068 
1069 	ret = clk_prepare_enable(priv->adc_clk);
1070 	if (ret) {
1071 		dev_err(dev, "failed to enable adc clk\n");
1072 		goto err_adc_clk;
1073 	}
1074 
1075 	meson_sar_adc_unlock(indio_dev);
1076 
1077 	return 0;
1078 
1079 err_adc_clk:
1080 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
1081 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
1082 	meson_sar_adc_set_bandgap(indio_dev, false);
1083 	regulator_disable(priv->vref);
1084 err_vref:
1085 	meson_sar_adc_unlock(indio_dev);
1086 err_lock:
1087 	return ret;
1088 }
1089 
1090 static void meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
1091 {
1092 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1093 	int ret;
1094 
1095 	/*
1096 	 * If taking the lock fails we have to assume that BL30 is broken. The
1097 	 * best we can do then is to release the resources anyhow.
1098 	 */
1099 	ret = meson_sar_adc_lock(indio_dev);
1100 	if (ret)
1101 		dev_err(indio_dev->dev.parent, "Failed to lock ADC (%pE)\n", ERR_PTR(ret));
1102 
1103 	clk_disable_unprepare(priv->adc_clk);
1104 
1105 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
1106 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
1107 
1108 	meson_sar_adc_set_bandgap(indio_dev, false);
1109 
1110 	regulator_disable(priv->vref);
1111 
1112 	if (!ret)
1113 		meson_sar_adc_unlock(indio_dev);
1114 }
1115 
1116 static irqreturn_t meson_sar_adc_irq(int irq, void *data)
1117 {
1118 	struct iio_dev *indio_dev = data;
1119 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1120 	unsigned int cnt, threshold;
1121 	u32 regval;
1122 
1123 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
1124 	cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
1125 	threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1126 
1127 	if (cnt < threshold)
1128 		return IRQ_NONE;
1129 
1130 	complete(&priv->done);
1131 
1132 	return IRQ_HANDLED;
1133 }
1134 
1135 static int meson_sar_adc_calib(struct iio_dev *indio_dev)
1136 {
1137 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1138 	int ret, nominal0, nominal1, value0, value1;
1139 
1140 	/* use points 25% and 75% for calibration */
1141 	nominal0 = (1 << priv->param->resolution) / 4;
1142 	nominal1 = (1 << priv->param->resolution) * 3 / 4;
1143 
1144 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
1145 	usleep_range(10, 20);
1146 	ret = meson_sar_adc_get_sample(indio_dev,
1147 				       find_channel_by_num(indio_dev,
1148 							   NUM_MUX_1_VDD_DIV4),
1149 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
1150 	if (ret < 0)
1151 		goto out;
1152 
1153 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
1154 	usleep_range(10, 20);
1155 	ret = meson_sar_adc_get_sample(indio_dev,
1156 				       find_channel_by_num(indio_dev,
1157 							   NUM_MUX_3_VDD_MUL3_DIV4),
1158 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
1159 	if (ret < 0)
1160 		goto out;
1161 
1162 	if (value1 <= value0) {
1163 		ret = -EINVAL;
1164 		goto out;
1165 	}
1166 
1167 	priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
1168 				   value1 - value0);
1169 	priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
1170 					     MILLION);
1171 	ret = 0;
1172 out:
1173 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
1174 
1175 	return ret;
1176 }
1177 
1178 static int read_label(struct iio_dev *indio_dev,
1179 		      struct iio_chan_spec const *chan,
1180 		      char *label)
1181 {
1182 	if (chan->type == IIO_TEMP)
1183 		return sprintf(label, "temp-sensor\n");
1184 	if (chan->type == IIO_VOLTAGE && chan->channel >= NUM_MUX_0_VSS)
1185 		return sprintf(label, "%s\n",
1186 			       chan7_mux_names[chan->channel - NUM_MUX_0_VSS]);
1187 	if (chan->type == IIO_VOLTAGE)
1188 		return sprintf(label, "channel-%d\n", chan->channel);
1189 	return 0;
1190 }
1191 
1192 static const struct iio_info meson_sar_adc_iio_info = {
1193 	.read_raw = meson_sar_adc_iio_info_read_raw,
1194 	.read_label = read_label,
1195 };
1196 
1197 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
1198 	.has_bl30_integration = false,
1199 	.clock_rate = 1150000,
1200 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1201 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1202 	.resolution = 10,
1203 	.temperature_trimming_bits = 4,
1204 	.temperature_multiplier = 18 * 10000,
1205 	.temperature_divider = 1024 * 10 * 85,
1206 };
1207 
1208 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
1209 	.has_bl30_integration = false,
1210 	.clock_rate = 1150000,
1211 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1212 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1213 	.resolution = 10,
1214 	.temperature_trimming_bits = 5,
1215 	.temperature_multiplier = 10,
1216 	.temperature_divider = 32,
1217 };
1218 
1219 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
1220 	.has_bl30_integration = true,
1221 	.clock_rate = 1200000,
1222 	.bandgap_reg = MESON_SAR_ADC_REG11,
1223 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1224 	.resolution = 10,
1225 	.has_reg11 = true,
1226 	.vref_volatge = 1,
1227 	.cmv_select = 1,
1228 };
1229 
1230 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
1231 	.has_bl30_integration = true,
1232 	.clock_rate = 1200000,
1233 	.bandgap_reg = MESON_SAR_ADC_REG11,
1234 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1235 	.resolution = 12,
1236 	.disable_ring_counter = 1,
1237 	.has_reg11 = true,
1238 	.vref_volatge = 1,
1239 	.cmv_select = 1,
1240 };
1241 
1242 static const struct meson_sar_adc_param meson_sar_adc_g12a_param = {
1243 	.has_bl30_integration = false,
1244 	.clock_rate = 1200000,
1245 	.bandgap_reg = MESON_SAR_ADC_REG11,
1246 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1247 	.resolution = 12,
1248 	.disable_ring_counter = 1,
1249 	.has_reg11 = true,
1250 	.adc_eoc = 1,
1251 	.has_vref_select = true,
1252 	.vref_select = VREF_VDDA,
1253 };
1254 
1255 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
1256 	.param = &meson_sar_adc_meson8_param,
1257 	.name = "meson-meson8-saradc",
1258 };
1259 
1260 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
1261 	.param = &meson_sar_adc_meson8b_param,
1262 	.name = "meson-meson8b-saradc",
1263 };
1264 
1265 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
1266 	.param = &meson_sar_adc_meson8b_param,
1267 	.name = "meson-meson8m2-saradc",
1268 };
1269 
1270 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
1271 	.param = &meson_sar_adc_gxbb_param,
1272 	.name = "meson-gxbb-saradc",
1273 };
1274 
1275 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
1276 	.param = &meson_sar_adc_gxl_param,
1277 	.name = "meson-gxl-saradc",
1278 };
1279 
1280 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
1281 	.param = &meson_sar_adc_gxl_param,
1282 	.name = "meson-gxm-saradc",
1283 };
1284 
1285 static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
1286 	.param = &meson_sar_adc_gxl_param,
1287 	.name = "meson-axg-saradc",
1288 };
1289 
1290 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
1291 	.param = &meson_sar_adc_g12a_param,
1292 	.name = "meson-g12a-saradc",
1293 };
1294 
1295 static const struct of_device_id meson_sar_adc_of_match[] = {
1296 	{
1297 		.compatible = "amlogic,meson8-saradc",
1298 		.data = &meson_sar_adc_meson8_data,
1299 	}, {
1300 		.compatible = "amlogic,meson8b-saradc",
1301 		.data = &meson_sar_adc_meson8b_data,
1302 	}, {
1303 		.compatible = "amlogic,meson8m2-saradc",
1304 		.data = &meson_sar_adc_meson8m2_data,
1305 	}, {
1306 		.compatible = "amlogic,meson-gxbb-saradc",
1307 		.data = &meson_sar_adc_gxbb_data,
1308 	}, {
1309 		.compatible = "amlogic,meson-gxl-saradc",
1310 		.data = &meson_sar_adc_gxl_data,
1311 	}, {
1312 		.compatible = "amlogic,meson-gxm-saradc",
1313 		.data = &meson_sar_adc_gxm_data,
1314 	}, {
1315 		.compatible = "amlogic,meson-axg-saradc",
1316 		.data = &meson_sar_adc_axg_data,
1317 	}, {
1318 		.compatible = "amlogic,meson-g12a-saradc",
1319 		.data = &meson_sar_adc_g12a_data,
1320 	},
1321 	{ /* sentinel */ }
1322 };
1323 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
1324 
1325 static int meson_sar_adc_probe(struct platform_device *pdev)
1326 {
1327 	const struct meson_sar_adc_data *match_data;
1328 	struct meson_sar_adc_priv *priv;
1329 	struct device *dev = &pdev->dev;
1330 	struct iio_dev *indio_dev;
1331 	void __iomem *base;
1332 	int irq, ret;
1333 
1334 	indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1335 	if (!indio_dev)
1336 		return dev_err_probe(dev, -ENOMEM, "failed allocating iio device\n");
1337 
1338 	priv = iio_priv(indio_dev);
1339 	init_completion(&priv->done);
1340 
1341 	match_data = of_device_get_match_data(dev);
1342 	if (!match_data)
1343 		return dev_err_probe(dev, -ENODEV, "failed to get match data\n");
1344 
1345 	priv->param = match_data->param;
1346 
1347 	indio_dev->name = match_data->name;
1348 	indio_dev->modes = INDIO_DIRECT_MODE;
1349 	indio_dev->info = &meson_sar_adc_iio_info;
1350 
1351 	base = devm_platform_ioremap_resource(pdev, 0);
1352 	if (IS_ERR(base))
1353 		return PTR_ERR(base);
1354 
1355 	priv->regmap = devm_regmap_init_mmio(dev, base, priv->param->regmap_config);
1356 	if (IS_ERR(priv->regmap))
1357 		return PTR_ERR(priv->regmap);
1358 
1359 	irq = irq_of_parse_and_map(dev->of_node, 0);
1360 	if (!irq)
1361 		return -EINVAL;
1362 
1363 	ret = devm_request_irq(dev, irq, meson_sar_adc_irq, IRQF_SHARED, dev_name(dev), indio_dev);
1364 	if (ret)
1365 		return ret;
1366 
1367 	priv->clkin = devm_clk_get(dev, "clkin");
1368 	if (IS_ERR(priv->clkin))
1369 		return dev_err_probe(dev, PTR_ERR(priv->clkin), "failed to get clkin\n");
1370 
1371 	priv->core_clk = devm_clk_get_enabled(dev, "core");
1372 	if (IS_ERR(priv->core_clk))
1373 		return dev_err_probe(dev, PTR_ERR(priv->core_clk), "failed to get core clk\n");
1374 
1375 	priv->adc_clk = devm_clk_get_optional(dev, "adc_clk");
1376 	if (IS_ERR(priv->adc_clk))
1377 		return dev_err_probe(dev, PTR_ERR(priv->adc_clk), "failed to get adc clk\n");
1378 
1379 	priv->adc_sel_clk = devm_clk_get_optional(dev, "adc_sel");
1380 	if (IS_ERR(priv->adc_sel_clk))
1381 		return dev_err_probe(dev, PTR_ERR(priv->adc_sel_clk), "failed to get adc_sel clk\n");
1382 
1383 	/* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
1384 	if (!priv->adc_clk) {
1385 		ret = meson_sar_adc_clk_init(indio_dev, base);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	priv->vref = devm_regulator_get(dev, "vref");
1391 	if (IS_ERR(priv->vref))
1392 		return dev_err_probe(dev, PTR_ERR(priv->vref), "failed to get vref regulator\n");
1393 
1394 	priv->calibscale = MILLION;
1395 
1396 	if (priv->param->temperature_trimming_bits) {
1397 		ret = meson_sar_adc_temp_sensor_init(indio_dev);
1398 		if (ret)
1399 			return ret;
1400 	}
1401 
1402 	if (priv->temperature_sensor_calibrated) {
1403 		indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
1404 		indio_dev->num_channels =
1405 			ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
1406 	} else {
1407 		indio_dev->channels = meson_sar_adc_iio_channels;
1408 		indio_dev->num_channels =
1409 			ARRAY_SIZE(meson_sar_adc_iio_channels);
1410 	}
1411 
1412 	ret = meson_sar_adc_init(indio_dev);
1413 	if (ret)
1414 		goto err;
1415 
1416 	mutex_init(&priv->lock);
1417 
1418 	ret = meson_sar_adc_hw_enable(indio_dev);
1419 	if (ret)
1420 		goto err;
1421 
1422 	ret = meson_sar_adc_calib(indio_dev);
1423 	if (ret)
1424 		dev_warn(dev, "calibration failed\n");
1425 
1426 	platform_set_drvdata(pdev, indio_dev);
1427 
1428 	ret = iio_device_register(indio_dev);
1429 	if (ret)
1430 		goto err_hw;
1431 
1432 	return 0;
1433 
1434 err_hw:
1435 	meson_sar_adc_hw_disable(indio_dev);
1436 err:
1437 	return ret;
1438 }
1439 
1440 static int meson_sar_adc_remove(struct platform_device *pdev)
1441 {
1442 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1443 
1444 	iio_device_unregister(indio_dev);
1445 
1446 	meson_sar_adc_hw_disable(indio_dev);
1447 
1448 	return 0;
1449 }
1450 
1451 static int meson_sar_adc_suspend(struct device *dev)
1452 {
1453 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1454 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1455 
1456 	meson_sar_adc_hw_disable(indio_dev);
1457 
1458 	clk_disable_unprepare(priv->core_clk);
1459 
1460 	return 0;
1461 }
1462 
1463 static int meson_sar_adc_resume(struct device *dev)
1464 {
1465 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1466 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1467 	int ret;
1468 
1469 	ret = clk_prepare_enable(priv->core_clk);
1470 	if (ret) {
1471 		dev_err(dev, "failed to enable core clk\n");
1472 		return ret;
1473 	}
1474 
1475 	return meson_sar_adc_hw_enable(indio_dev);
1476 }
1477 
1478 static DEFINE_SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
1479 				meson_sar_adc_suspend, meson_sar_adc_resume);
1480 
1481 static struct platform_driver meson_sar_adc_driver = {
1482 	.probe		= meson_sar_adc_probe,
1483 	.remove		= meson_sar_adc_remove,
1484 	.driver		= {
1485 		.name	= "meson-saradc",
1486 		.of_match_table = meson_sar_adc_of_match,
1487 		.pm = pm_sleep_ptr(&meson_sar_adc_pm_ops),
1488 	},
1489 };
1490 
1491 module_platform_driver(meson_sar_adc_driver);
1492 
1493 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
1494 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
1495 MODULE_LICENSE("GPL v2");
1496