xref: /linux/drivers/iio/adc/mcp3564.c (revision 27c8f12e972d3647e9d759d7cafd4c34fa513432)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * IIO driver for MCP356X/MCP356XR and MCP346X/MCP346XR series ADC chip family
4  *
5  * Copyright (C) 2022-2023 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Marius Cristea <marius.cristea@microchip.com>
8  *
9  * Datasheet for MCP3561, MCP3562, MCP3564 can be found here:
10  * https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP3561-2-4-Family-Data-Sheet-DS20006181C.pdf
11  * Datasheet for MCP3561R, MCP3562R, MCP3564R can be found here:
12  * https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP3561_2_4R-Data-Sheet-DS200006391C.pdf
13  * Datasheet for MCP3461, MCP3462, MCP3464 can be found here:
14  * https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP3461-2-4-Two-Four-Eight-Channel-153.6-ksps-Low-Noise-16-Bit-Delta-Sigma-ADC-Data-Sheet-20006180D.pdf
15  * Datasheet for MCP3461R, MCP3462R, MCP3464R can be found here:
16  * https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/MCP3461-2-4R-Family-Data-Sheet-DS20006404C.pdf
17  */
18 
19 #include <linux/bitfield.h>
20 #include <linux/iopoll.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
23 #include <linux/units.h>
24 #include <linux/util_macros.h>
25 
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 
29 #define MCP3564_ADCDATA_REG		0x00
30 
31 #define MCP3564_CONFIG0_REG		0x01
32 #define MCP3564_CONFIG0_ADC_MODE_MASK		GENMASK(1, 0)
33 /* Current Source/Sink Selection Bits for Sensor Bias */
34 #define MCP3564_CONFIG0_CS_SEL_MASK		GENMASK(3, 2)
35 /* Internal clock is selected and AMCLK is present on the analog master clock output pin */
36 #define MCP3564_CONFIG0_USE_INT_CLK_OUTPUT_EN	0x03
37 /* Internal clock is selected and no clock output is present on the CLK pin */
38 #define MCP3564_CONFIG0_USE_INT_CLK		0x02
39 /* External digital clock */
40 #define MCP3564_CONFIG0_USE_EXT_CLK		0x01
41 /* External digital clock (default) */
42 #define MCP3564_CONFIG0_USE_EXT_CLK_DEFAULT	0x00
43 #define MCP3564_CONFIG0_CLK_SEL_MASK		GENMASK(5, 4)
44 #define MCP3456_CONFIG0_BIT6_DEFAULT		BIT(6)
45 #define MCP3456_CONFIG0_VREF_MASK		BIT(7)
46 
47 #define MCP3564_CONFIG1_REG		0x02
48 #define MCP3564_CONFIG1_OVERSPL_RATIO_MASK	GENMASK(5, 2)
49 
50 #define MCP3564_CONFIG2_REG		0x03
51 #define MCP3564_CONFIG2_AZ_REF_MASK		BIT(1)
52 #define MCP3564_CONFIG2_AZ_MUX_MASK		BIT(2)
53 
54 #define MCP3564_CONFIG2_HARDWARE_GAIN_MASK	GENMASK(5, 3)
55 #define MCP3564_DEFAULT_HARDWARE_GAIN		0x01
56 #define MCP3564_CONFIG2_BOOST_CURRENT_MASK	GENMASK(7, 6)
57 
58 #define MCP3564_CONFIG3_REG		0x04
59 #define MCP3464_CONFIG3_EN_GAINCAL_MASK		BIT(0)
60 #define MCP3464_CONFIG3_EN_OFFCAL_MASK		BIT(1)
61 #define MCP3464_CONFIG3_EN_CRCCOM_MASK		BIT(2)
62 #define MCP3464_CONFIG3_CRC_FORMAT_MASK		BIT(3)
63 /*
64  * ADC Output Data Format 32-bit (25-bit right justified data + Channel ID):
65  *                CHID[3:0] + SGN extension (4 bits) + 24-bit ADC data.
66  *        It allows overrange with the SGN extension.
67  */
68 #define MCP3464_CONFIG3_DATA_FMT_32B_WITH_CH_ID		3
69 /*
70  * ADC Output Data Format 32-bit (25-bit right justified data):
71  *                SGN extension (8-bit) + 24-bit ADC data.
72  *        It allows overrange with the SGN extension.
73  */
74 #define MCP3464_CONFIG3_DATA_FMT_32B_SGN_EXT		2
75 /*
76  * ADC Output Data Format 32-bit (24-bit left justified data):
77  *                24-bit ADC data + 0x00 (8-bit).
78  *        It does not allow overrange (ADC code locked to 0xFFFFFF or 0x800000).
79  */
80 #define MCP3464_CONFIG3_DATA_FMT_32B_LEFT_JUSTIFIED	1
81 /*
82  * ADC Output Data Format 24-bit (default ADC coding):
83  *                24-bit ADC data.
84  *        It does not allow overrange (ADC code locked to 0xFFFFFF or 0x800000).
85  */
86 #define MCP3464_CONFIG3_DATA_FMT_24B			0
87 #define MCP3464_CONFIG3_DATA_FORMAT_MASK	GENMASK(5, 4)
88 
89 /* Continuous Conversion mode or continuous conversion cycle in SCAN mode. */
90 #define MCP3464_CONFIG3_CONV_MODE_CONTINUOUS		3
91 /*
92  * One-shot conversion or one-shot cycle in SCAN mode. It sets ADC_MODE[1:0] to ‘10’
93  * (standby) at the end of the conversion or at the end of the conversion cycle in SCAN mode.
94  */
95 #define MCP3464_CONFIG3_CONV_MODE_ONE_SHOT_STANDBY	2
96 /*
97  * One-shot conversion or one-shot cycle in SCAN mode. It sets ADC_MODE[1:0] to ‘0x’ (ADC
98  * Shutdown) at the end of the conversion or at the end of the conversion cycle in SCAN
99  * mode (default).
100  */
101 #define MCP3464_CONFIG3_CONV_MODE_ONE_SHOT_SHUTDOWN	0
102 #define MCP3464_CONFIG3_CONV_MODE_MASK		GENMASK(7, 6)
103 
104 #define MCP3564_IRQ_REG			0x05
105 #define MCP3464_EN_STP_MASK			BIT(0)
106 #define MCP3464_EN_FASTCMD_MASK			BIT(1)
107 #define MCP3464_IRQ_MODE_0_MASK			BIT(2)
108 #define MCP3464_IRQ_MODE_1_MASK			BIT(3)
109 #define MCP3564_POR_STATUS_MASK			BIT(4)
110 #define MCP3564_CRCCFG_STATUS_MASK		BIT(5)
111 #define MCP3564_DATA_READY_MASK			BIT(6)
112 
113 #define MCP3564_MUX_REG			0x06
114 #define MCP3564_MUX_VIN_P_MASK			GENMASK(7, 4)
115 #define MCP3564_MUX_VIN_N_MASK			GENMASK(3, 0)
116 #define MCP3564_MUX_SET(x, y)			(FIELD_PREP(MCP3564_MUX_VIN_P_MASK, (x)) |	\
117 						FIELD_PREP(MCP3564_MUX_VIN_N_MASK, (y)))
118 
119 #define MCP3564_SCAN_REG		0x07
120 #define MCP3564_SCAN_CH_SEL_MASK		GENMASK(15, 0)
121 #define MCP3564_SCAN_CH_SEL_SET(x)		FIELD_PREP(MCP3564_SCAN_CH_SEL_MASK, (x))
122 #define MCP3564_SCAN_DELAY_TIME_MASK		GENMASK(23, 21)
123 #define MCP3564_SCAN_DELAY_TIME_SET(x)		FIELD_PREP(MCP3564_SCAN_DELAY_TIME_MASK, (x))
124 #define MCP3564_SCAN_DEFAULT_VALUE		0
125 
126 #define MCP3564_TIMER_REG		0x08
127 #define MCP3564_TIMER_DEFAULT_VALUE		0
128 
129 #define MCP3564_OFFSETCAL_REG		0x09
130 #define MCP3564_DEFAULT_OFFSETCAL		0
131 
132 #define MCP3564_GAINCAL_REG		0x0A
133 #define MCP3564_DEFAULT_GAINCAL			0x00800000
134 
135 #define MCP3564_RESERVED_B_REG		0x0B
136 
137 #define MCP3564_RESERVED_C_REG		0x0C
138 #define MCP3564_C_REG_DEFAULT			0x50
139 #define MCP3564R_C_REG_DEFAULT			0x30
140 
141 #define MCP3564_LOCK_REG		0x0D
142 #define MCP3564_LOCK_WRITE_ACCESS_PASSWORD	0xA5
143 #define MCP3564_RESERVED_E_REG		0x0E
144 #define MCP3564_CRCCFG_REG		0x0F
145 
146 #define MCP3564_CMD_HW_ADDR_MASK	GENMASK(7, 6)
147 #define MCP3564_CMD_ADDR_MASK		GENMASK(5, 2)
148 
149 #define MCP3564_HW_ADDR_MASK		GENMASK(1, 0)
150 
151 #define MCP3564_FASTCMD_START	0x0A
152 #define MCP3564_FASTCMD_RESET	0x0E
153 
154 #define MCP3461_HW_ID		0x0008
155 #define MCP3462_HW_ID		0x0009
156 #define MCP3464_HW_ID		0x000B
157 
158 #define MCP3561_HW_ID		0x000C
159 #define MCP3562_HW_ID		0x000D
160 #define MCP3564_HW_ID		0x000F
161 #define MCP3564_HW_ID_MASK	GENMASK(3, 0)
162 
163 #define MCP3564R_INT_VREF_MV	2400
164 
165 #define MCP3564_DATA_READY_TIMEOUT_MS	2000
166 
167 #define MCP3564_MAX_PGA				8
168 #define MCP3564_MAX_BURNOUT_IDX			4
169 #define MCP3564_MAX_CHANNELS			66
170 
171 enum mcp3564_ids {
172 	mcp3461,
173 	mcp3462,
174 	mcp3464,
175 	mcp3561,
176 	mcp3562,
177 	mcp3564,
178 	mcp3461r,
179 	mcp3462r,
180 	mcp3464r,
181 	mcp3561r,
182 	mcp3562r,
183 	mcp3564r,
184 };
185 
186 enum mcp3564_delay_time {
187 	MCP3564_NO_DELAY,
188 	MCP3564_DELAY_8_DMCLK,
189 	MCP3564_DELAY_16_DMCLK,
190 	MCP3564_DELAY_32_DMCLK,
191 	MCP3564_DELAY_64_DMCLK,
192 	MCP3564_DELAY_128_DMCLK,
193 	MCP3564_DELAY_256_DMCLK,
194 	MCP3564_DELAY_512_DMCLK
195 };
196 
197 enum mcp3564_adc_conversion_mode {
198 	MCP3564_ADC_MODE_DEFAULT,
199 	MCP3564_ADC_MODE_SHUTDOWN,
200 	MCP3564_ADC_MODE_STANDBY,
201 	MCP3564_ADC_MODE_CONVERSION
202 };
203 
204 enum mcp3564_adc_bias_current {
205 	MCP3564_BOOST_CURRENT_x0_50,
206 	MCP3564_BOOST_CURRENT_x0_66,
207 	MCP3564_BOOST_CURRENT_x1_00,
208 	MCP3564_BOOST_CURRENT_x2_00
209 };
210 
211 enum mcp3564_burnout {
212 	MCP3564_CONFIG0_CS_SEL_0_0_uA,
213 	MCP3564_CONFIG0_CS_SEL_0_9_uA,
214 	MCP3564_CONFIG0_CS_SEL_3_7_uA,
215 	MCP3564_CONFIG0_CS_SEL_15_uA
216 };
217 
218 enum mcp3564_channel_names {
219 	MCP3564_CH0,
220 	MCP3564_CH1,
221 	MCP3564_CH2,
222 	MCP3564_CH3,
223 	MCP3564_CH4,
224 	MCP3564_CH5,
225 	MCP3564_CH6,
226 	MCP3564_CH7,
227 	MCP3564_AGND,
228 	MCP3564_AVDD,
229 	MCP3564_RESERVED, /* do not use */
230 	MCP3564_REFIN_POZ,
231 	MCP3564_REFIN_NEG,
232 	MCP3564_TEMP_DIODE_P,
233 	MCP3564_TEMP_DIODE_M,
234 	MCP3564_INTERNAL_VCM,
235 };
236 
237 enum mcp3564_oversampling {
238 	MCP3564_OVERSAMPLING_RATIO_32,
239 	MCP3564_OVERSAMPLING_RATIO_64,
240 	MCP3564_OVERSAMPLING_RATIO_128,
241 	MCP3564_OVERSAMPLING_RATIO_256,
242 	MCP3564_OVERSAMPLING_RATIO_512,
243 	MCP3564_OVERSAMPLING_RATIO_1024,
244 	MCP3564_OVERSAMPLING_RATIO_2048,
245 	MCP3564_OVERSAMPLING_RATIO_4096,
246 	MCP3564_OVERSAMPLING_RATIO_8192,
247 	MCP3564_OVERSAMPLING_RATIO_16384,
248 	MCP3564_OVERSAMPLING_RATIO_20480,
249 	MCP3564_OVERSAMPLING_RATIO_24576,
250 	MCP3564_OVERSAMPLING_RATIO_40960,
251 	MCP3564_OVERSAMPLING_RATIO_49152,
252 	MCP3564_OVERSAMPLING_RATIO_81920,
253 	MCP3564_OVERSAMPLING_RATIO_98304
254 };
255 
256 static const unsigned int mcp3564_oversampling_avail[] = {
257 	[MCP3564_OVERSAMPLING_RATIO_32] = 32,
258 	[MCP3564_OVERSAMPLING_RATIO_64] = 64,
259 	[MCP3564_OVERSAMPLING_RATIO_128] = 128,
260 	[MCP3564_OVERSAMPLING_RATIO_256] = 256,
261 	[MCP3564_OVERSAMPLING_RATIO_512] = 512,
262 	[MCP3564_OVERSAMPLING_RATIO_1024] = 1024,
263 	[MCP3564_OVERSAMPLING_RATIO_2048] = 2048,
264 	[MCP3564_OVERSAMPLING_RATIO_4096] = 4096,
265 	[MCP3564_OVERSAMPLING_RATIO_8192] = 8192,
266 	[MCP3564_OVERSAMPLING_RATIO_16384] = 16384,
267 	[MCP3564_OVERSAMPLING_RATIO_20480] = 20480,
268 	[MCP3564_OVERSAMPLING_RATIO_24576] = 24576,
269 	[MCP3564_OVERSAMPLING_RATIO_40960] = 40960,
270 	[MCP3564_OVERSAMPLING_RATIO_49152] = 49152,
271 	[MCP3564_OVERSAMPLING_RATIO_81920] = 81920,
272 	[MCP3564_OVERSAMPLING_RATIO_98304] = 98304
273 };
274 
275 /*
276  * Current Source/Sink Selection Bits for Sensor Bias (source on VIN+/sink on VIN-)
277  */
278 static const int mcp3564_burnout_avail[][2] = {
279 	[MCP3564_CONFIG0_CS_SEL_0_0_uA] = { 0, 0 },
280 	[MCP3564_CONFIG0_CS_SEL_0_9_uA] = { 0, 900 },
281 	[MCP3564_CONFIG0_CS_SEL_3_7_uA] = { 0, 3700 },
282 	[MCP3564_CONFIG0_CS_SEL_15_uA] = { 0, 15000 }
283 };
284 
285 /*
286  * BOOST[1:0]: ADC Bias Current Selection
287  */
288 static const char * const mcp3564_boost_current_avail[] = {
289 	[MCP3564_BOOST_CURRENT_x0_50] = "0.5",
290 	[MCP3564_BOOST_CURRENT_x0_66] = "0.66",
291 	[MCP3564_BOOST_CURRENT_x1_00] = "1",
292 	[MCP3564_BOOST_CURRENT_x2_00] = "2",
293 };
294 
295 /*
296  * Calibration bias values
297  */
298 static const int mcp3564_calib_bias[] = {
299 	-8388608,	/* min: -2^23		*/
300 	 1,		/* step: 1		*/
301 	 8388607	/* max:  2^23 - 1	*/
302 };
303 
304 /*
305  * Calibration scale values
306  * The Gain Error Calibration register (GAINCAL) is an
307  * unsigned 24-bit register that holds the digital gain error
308  * calibration value, GAINCAL which could be calculated by
309  * GAINCAL (V/V) = (GAINCAL[23:0])/8388608
310  * The gain error calibration value range in equivalent voltage is [0; 2-2^(-23)]
311  */
312 static const unsigned int mcp3564_calib_scale[] = {
313 	0,		/* min:  0		*/
314 	1,		/* step: 1/8388608	*/
315 	16777215	/* max:  2 - 2^(-23)	*/
316 };
317 
318 /* Programmable hardware gain x1/3, x1, x2, x4, x8, x16, x32, x64 */
319 static const int mcp3564_hwgain_frac[] = {
320 	3, 10,
321 	1, 1,
322 	2, 1,
323 	4, 1,
324 	8, 1,
325 	16, 1,
326 	32, 1,
327 	64, 1
328 };
329 
330 static const char *mcp3564_channel_labels[2] = {
331 	"burnout_current", "temperature",
332 };
333 
334 /**
335  * struct mcp3564_chip_info - chip specific data
336  * @name:		device name
337  * @num_channels:	number of channels
338  * @resolution:		ADC resolution
339  * @have_vref:		does the hardware have an internal voltage reference?
340  */
341 struct mcp3564_chip_info {
342 	const char	*name;
343 	unsigned int	num_channels;
344 	unsigned int	resolution;
345 	bool		have_vref;
346 };
347 
348 /**
349  * struct mcp3564_state - working data for a ADC device
350  * @chip_info:		chip specific data
351  * @spi:		SPI device structure
352  * @vref:		the regulator device used as a voltage reference in case
353  *			external voltage reference is used
354  * @vref_mv:		voltage reference value in miliVolts
355  * @lock:		synchronize access to driver's state members
356  * @dev_addr:		hardware device address
357  * @oversampling:	the index inside oversampling list of the ADC
358  * @hwgain:		the index inside hardware gain list of the ADC
359  * @scale_tbls:		table with precalculated scale
360  * @calib_bias:		calibration bias value
361  * @calib_scale:	calibration scale value
362  * @current_boost_mode:	the index inside current boost list of the ADC
363  * @burnout_mode:	the index inside current bias list of the ADC
364  * @auto_zeroing_mux:	set if ADC auto-zeroing algorithm is enabled
365  * @auto_zeroing_ref:	set if ADC auto-Zeroing Reference Buffer Setting is enabled
366  * @have_vref:		does the ADC have an internal voltage reference?
367  * @labels:		table with channels labels
368  */
369 struct mcp3564_state {
370 	const struct mcp3564_chip_info	*chip_info;
371 	struct spi_device		*spi;
372 	struct regulator		*vref;
373 	unsigned short			vref_mv;
374 	struct mutex			lock; /* Synchronize access to driver's state members */
375 	u8				dev_addr;
376 	enum mcp3564_oversampling	oversampling;
377 	unsigned int			hwgain;
378 	unsigned int			scale_tbls[MCP3564_MAX_PGA][2];
379 	int				calib_bias;
380 	int				calib_scale;
381 	unsigned int			current_boost_mode;
382 	enum mcp3564_burnout		burnout_mode;
383 	bool				auto_zeroing_mux;
384 	bool				auto_zeroing_ref;
385 	bool				have_vref;
386 	const char			*labels[MCP3564_MAX_CHANNELS];
387 };
388 
389 static inline u8 mcp3564_cmd_write(u8 chip_addr, u8 reg)
390 {
391 	return FIELD_PREP(MCP3564_CMD_HW_ADDR_MASK, chip_addr) |
392 	       FIELD_PREP(MCP3564_CMD_ADDR_MASK, reg) |
393 	       BIT(1);
394 }
395 
396 static inline u8 mcp3564_cmd_read(u8 chip_addr, u8 reg)
397 {
398 	return FIELD_PREP(MCP3564_CMD_HW_ADDR_MASK, chip_addr) |
399 	       FIELD_PREP(MCP3564_CMD_ADDR_MASK, reg) |
400 	       BIT(0);
401 }
402 
403 static int mcp3564_read_8bits(struct mcp3564_state *adc, u8 reg, u8 *val)
404 {
405 	int ret;
406 	u8 tx_buf;
407 	u8 rx_buf;
408 
409 	tx_buf = mcp3564_cmd_read(adc->dev_addr, reg);
410 
411 	ret = spi_write_then_read(adc->spi, &tx_buf, sizeof(tx_buf),
412 				  &rx_buf, sizeof(rx_buf));
413 	*val = rx_buf;
414 
415 	return ret;
416 }
417 
418 static int mcp3564_read_16bits(struct mcp3564_state *adc, u8 reg, u16 *val)
419 {
420 	int ret;
421 	u8 tx_buf;
422 	__be16 rx_buf;
423 
424 	tx_buf = mcp3564_cmd_read(adc->dev_addr, reg);
425 
426 	ret = spi_write_then_read(adc->spi, &tx_buf, sizeof(tx_buf),
427 				  &rx_buf, sizeof(rx_buf));
428 	*val = be16_to_cpu(rx_buf);
429 
430 	return ret;
431 }
432 
433 static int mcp3564_read_32bits(struct mcp3564_state *adc, u8 reg, u32 *val)
434 {
435 	int ret;
436 	u8 tx_buf;
437 	__be32 rx_buf;
438 
439 	tx_buf = mcp3564_cmd_read(adc->dev_addr, reg);
440 
441 	ret = spi_write_then_read(adc->spi, &tx_buf, sizeof(tx_buf),
442 				  &rx_buf, sizeof(rx_buf));
443 	*val = be32_to_cpu(rx_buf);
444 
445 	return ret;
446 }
447 
448 static int mcp3564_write_8bits(struct mcp3564_state *adc, u8 reg, u8 val)
449 {
450 	u8 tx_buf[2];
451 
452 	tx_buf[0] = mcp3564_cmd_write(adc->dev_addr, reg);
453 	tx_buf[1] = val;
454 
455 	return spi_write_then_read(adc->spi, tx_buf, sizeof(tx_buf), NULL, 0);
456 }
457 
458 static int mcp3564_write_24bits(struct mcp3564_state *adc, u8 reg, u32 val)
459 {
460 	__be32 val_be;
461 
462 	val |= (mcp3564_cmd_write(adc->dev_addr, reg) << 24);
463 	val_be = cpu_to_be32(val);
464 
465 	return spi_write_then_read(adc->spi, &val_be, sizeof(val_be), NULL, 0);
466 }
467 
468 static int mcp3564_fast_cmd(struct mcp3564_state *adc, u8 fast_cmd)
469 {
470 	u8 val;
471 
472 	val = FIELD_PREP(MCP3564_CMD_HW_ADDR_MASK, adc->dev_addr) |
473 			 FIELD_PREP(MCP3564_CMD_ADDR_MASK, fast_cmd);
474 
475 	return spi_write_then_read(adc->spi, &val, 1, NULL, 0);
476 }
477 
478 static int mcp3564_update_8bits(struct mcp3564_state *adc, u8 reg, u32 mask, u8 val)
479 {
480 	u8 tmp;
481 	int ret;
482 
483 	val &= mask;
484 
485 	ret = mcp3564_read_8bits(adc, reg, &tmp);
486 	if (ret < 0)
487 		return ret;
488 
489 	tmp &= ~mask;
490 	tmp |= val;
491 
492 	return mcp3564_write_8bits(adc, reg, tmp);
493 }
494 
495 static int mcp3564_set_current_boost_mode(struct iio_dev *indio_dev,
496 					  const struct iio_chan_spec *chan,
497 					  unsigned int mode)
498 {
499 	struct mcp3564_state *adc = iio_priv(indio_dev);
500 	int ret;
501 
502 	dev_dbg(&indio_dev->dev, "%s: %d\n", __func__, mode);
503 
504 	mutex_lock(&adc->lock);
505 	ret = mcp3564_update_8bits(adc, MCP3564_CONFIG2_REG, MCP3564_CONFIG2_BOOST_CURRENT_MASK,
506 				   FIELD_PREP(MCP3564_CONFIG2_BOOST_CURRENT_MASK, mode));
507 
508 	if (ret)
509 		dev_err(&indio_dev->dev, "Failed to configure CONFIG2 register\n");
510 	else
511 		adc->current_boost_mode = mode;
512 
513 	mutex_unlock(&adc->lock);
514 
515 	return ret;
516 }
517 
518 static int mcp3564_get_current_boost_mode(struct iio_dev *indio_dev,
519 					  const struct iio_chan_spec *chan)
520 {
521 	struct mcp3564_state *adc = iio_priv(indio_dev);
522 
523 	return adc->current_boost_mode;
524 }
525 
526 static const struct iio_enum mcp3564_current_boost_mode_enum = {
527 	.items = mcp3564_boost_current_avail,
528 	.num_items = ARRAY_SIZE(mcp3564_boost_current_avail),
529 	.set = mcp3564_set_current_boost_mode,
530 	.get = mcp3564_get_current_boost_mode,
531 };
532 
533 static const struct iio_chan_spec_ext_info mcp3564_ext_info[] = {
534 	IIO_ENUM("boost_current_gain", IIO_SHARED_BY_ALL, &mcp3564_current_boost_mode_enum),
535 	{
536 		.name = "boost_current_gain_available",
537 		.shared = IIO_SHARED_BY_ALL,
538 		.read = iio_enum_available_read,
539 		.private = (uintptr_t)&mcp3564_current_boost_mode_enum,
540 	},
541 	{ }
542 };
543 
544 static ssize_t mcp3564_auto_zeroing_mux_show(struct device *dev,
545 					     struct device_attribute *attr,
546 					     char *buf)
547 {
548 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
549 	struct mcp3564_state *adc = iio_priv(indio_dev);
550 
551 	return sysfs_emit(buf, "%d\n", adc->auto_zeroing_mux);
552 }
553 
554 static ssize_t mcp3564_auto_zeroing_mux_store(struct device *dev,
555 					      struct device_attribute *attr,
556 					      const char *buf, size_t len)
557 {
558 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
559 	struct mcp3564_state *adc = iio_priv(indio_dev);
560 	bool auto_zero;
561 	int ret;
562 
563 	ret = kstrtobool(buf, &auto_zero);
564 	if (ret)
565 		return ret;
566 
567 	mutex_lock(&adc->lock);
568 	ret = mcp3564_update_8bits(adc, MCP3564_CONFIG2_REG, MCP3564_CONFIG2_AZ_MUX_MASK,
569 				   FIELD_PREP(MCP3564_CONFIG2_AZ_MUX_MASK, auto_zero));
570 
571 	if (ret)
572 		dev_err(&indio_dev->dev, "Failed to update CONFIG2 register\n");
573 	else
574 		adc->auto_zeroing_mux = auto_zero;
575 
576 	mutex_unlock(&adc->lock);
577 
578 	return ret ? ret : len;
579 }
580 
581 static ssize_t mcp3564_auto_zeroing_ref_show(struct device *dev,
582 					     struct device_attribute *attr,
583 					     char *buf)
584 {
585 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
586 	struct mcp3564_state *adc = iio_priv(indio_dev);
587 
588 	return sysfs_emit(buf, "%d\n", adc->auto_zeroing_ref);
589 }
590 
591 static ssize_t mcp3564_auto_zeroing_ref_store(struct device *dev,
592 					      struct device_attribute *attr,
593 					      const char *buf, size_t len)
594 {
595 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
596 	struct mcp3564_state *adc = iio_priv(indio_dev);
597 	bool auto_zero;
598 	int ret;
599 
600 	ret = kstrtobool(buf, &auto_zero);
601 	if (ret)
602 		return ret;
603 
604 	mutex_lock(&adc->lock);
605 	ret = mcp3564_update_8bits(adc, MCP3564_CONFIG2_REG, MCP3564_CONFIG2_AZ_REF_MASK,
606 				   FIELD_PREP(MCP3564_CONFIG2_AZ_REF_MASK, auto_zero));
607 
608 	if (ret)
609 		dev_err(&indio_dev->dev, "Failed to update CONFIG2 register\n");
610 	else
611 		adc->auto_zeroing_ref = auto_zero;
612 
613 	mutex_unlock(&adc->lock);
614 
615 	return ret ? ret : len;
616 }
617 
618 static const struct iio_chan_spec mcp3564_channel_template = {
619 	.type = IIO_VOLTAGE,
620 	.indexed = 1,
621 	.differential = 1,
622 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
623 	.info_mask_shared_by_all  = BIT(IIO_CHAN_INFO_SCALE)		|
624 				BIT(IIO_CHAN_INFO_CALIBSCALE)		|
625 				BIT(IIO_CHAN_INFO_CALIBBIAS)		|
626 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
627 	.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SCALE)	|
628 				BIT(IIO_CHAN_INFO_CALIBSCALE) |
629 				BIT(IIO_CHAN_INFO_CALIBBIAS)		|
630 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
631 	.ext_info = mcp3564_ext_info,
632 };
633 
634 static const struct iio_chan_spec mcp3564_temp_channel_template = {
635 	.type = IIO_TEMP,
636 	.channel = 0,
637 	.address = ((MCP3564_TEMP_DIODE_P << 4) | MCP3564_TEMP_DIODE_M),
638 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
639 	.info_mask_shared_by_all  = BIT(IIO_CHAN_INFO_SCALE)		|
640 			BIT(IIO_CHAN_INFO_CALIBSCALE)			|
641 			BIT(IIO_CHAN_INFO_CALIBBIAS)			|
642 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
643 	.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SCALE)	|
644 			BIT(IIO_CHAN_INFO_CALIBSCALE) |
645 			BIT(IIO_CHAN_INFO_CALIBBIAS)			|
646 			BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
647 };
648 
649 static const struct iio_chan_spec mcp3564_burnout_channel_template = {
650 	.type = IIO_CURRENT,
651 	.output = true,
652 	.channel = 0,
653 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
654 	.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
655 };
656 
657 /*
658  * Number of channels could be calculated:
659  * num_channels = single_ended_input + differential_input + temperature + burnout
660  * Eg. for MCP3561 (only 2 channels available: CH0 and CH1)
661  * single_ended_input = (CH0 - GND), (CH1 -  GND) = 2
662  * differential_input = (CH0 - CH1), (CH0 -  CH0) = 2
663  * num_channels = 2 + 2 + 2
664  * Generic formula is:
665  * num_channels = P^R(Number_of_single_ended_channels, 2) + 2 (temperature + burnout channels)
666  * P^R(Number_of_single_ended_channels, 2) is Permutations with Replacement of
667  *     Number_of_single_ended_channels taken by 2
668  */
669 static const struct mcp3564_chip_info mcp3564_chip_infos_tbl[] = {
670 	[mcp3461] = {
671 		.name = "mcp3461",
672 		.num_channels = 6,
673 		.resolution = 16,
674 		.have_vref = false,
675 	},
676 	[mcp3462] = {
677 		.name = "mcp3462",
678 		.num_channels = 18,
679 		.resolution = 16,
680 		.have_vref = false,
681 	},
682 	[mcp3464] = {
683 		.name = "mcp3464",
684 		.num_channels = 66,
685 		.resolution = 16,
686 		.have_vref = false,
687 	},
688 	[mcp3561] = {
689 		.name = "mcp3561",
690 		.num_channels = 6,
691 		.resolution = 24,
692 		.have_vref = false,
693 	},
694 	[mcp3562] = {
695 		.name = "mcp3562",
696 		.num_channels = 18,
697 		.resolution = 24,
698 		.have_vref = false,
699 	},
700 	[mcp3564] = {
701 		.name = "mcp3564",
702 		.num_channels = 66,
703 		.resolution = 24,
704 		.have_vref = false,
705 	},
706 	[mcp3461r] = {
707 		.name = "mcp3461r",
708 		.num_channels = 6,
709 		.resolution = 16,
710 		.have_vref = false,
711 	},
712 	[mcp3462r] = {
713 		.name = "mcp3462r",
714 		.num_channels = 18,
715 		.resolution = 16,
716 		.have_vref = true,
717 	},
718 	[mcp3464r] = {
719 		.name = "mcp3464r",
720 		.num_channels = 66,
721 		.resolution = 16,
722 		.have_vref = true,
723 	},
724 	[mcp3561r] = {
725 		.name = "mcp3561r",
726 		.num_channels = 6,
727 		.resolution = 24,
728 		.have_vref = true,
729 	},
730 	[mcp3562r] = {
731 		.name = "mcp3562r",
732 		.num_channels = 18,
733 		.resolution = 24,
734 		.have_vref = true,
735 	},
736 	[mcp3564r] = {
737 		.name = "mcp3564r",
738 		.num_channels = 66,
739 		.resolution = 24,
740 		.have_vref = true,
741 	},
742 };
743 
744 static int mcp3564_read_single_value(struct iio_dev *indio_dev,
745 				     struct iio_chan_spec const *channel,
746 				     int *val)
747 {
748 	struct mcp3564_state *adc = iio_priv(indio_dev);
749 	int ret;
750 	u8 tmp;
751 	int ret_read = 0;
752 
753 	ret = mcp3564_write_8bits(adc, MCP3564_MUX_REG, channel->address);
754 	if (ret)
755 		return ret;
756 
757 	/* Start ADC Conversion using fast command (overwrites ADC_MODE[1:0] = 11) */
758 	ret = mcp3564_fast_cmd(adc, MCP3564_FASTCMD_START);
759 	if (ret)
760 		return ret;
761 
762 	/*
763 	 * Check if the conversion is ready. If not, wait a little bit, and
764 	 * in case of timeout exit with an error.
765 	 */
766 	ret = read_poll_timeout(mcp3564_read_8bits, ret_read,
767 				ret_read || !(tmp & MCP3564_DATA_READY_MASK),
768 				20000, MCP3564_DATA_READY_TIMEOUT_MS * 1000, true,
769 				adc, MCP3564_IRQ_REG, &tmp);
770 
771 	/* failed to read status register */
772 	if (ret_read)
773 		return ret_read;
774 
775 	if (ret)
776 		return ret;
777 
778 	if (tmp & MCP3564_DATA_READY_MASK)
779 		/* failing to finish conversion */
780 		return -EBUSY;
781 
782 	return mcp3564_read_32bits(adc, MCP3564_ADCDATA_REG, val);
783 }
784 
785 static int mcp3564_read_avail(struct iio_dev *indio_dev,
786 			      struct iio_chan_spec const *channel,
787 			      const int **vals, int *type,
788 			      int *length, long mask)
789 {
790 	struct mcp3564_state *adc = iio_priv(indio_dev);
791 
792 	switch (mask) {
793 	case IIO_CHAN_INFO_RAW:
794 		if (!channel->output)
795 			return -EINVAL;
796 
797 		*vals = mcp3564_burnout_avail[0];
798 		*length = ARRAY_SIZE(mcp3564_burnout_avail) * 2;
799 		*type = IIO_VAL_INT_PLUS_MICRO;
800 		return IIO_AVAIL_LIST;
801 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
802 		*vals = mcp3564_oversampling_avail;
803 		*length = ARRAY_SIZE(mcp3564_oversampling_avail);
804 		*type = IIO_VAL_INT;
805 		return IIO_AVAIL_LIST;
806 	case IIO_CHAN_INFO_SCALE:
807 		*vals = (int *)adc->scale_tbls;
808 		*length = ARRAY_SIZE(adc->scale_tbls) * 2;
809 		*type = IIO_VAL_INT_PLUS_NANO;
810 		return IIO_AVAIL_LIST;
811 	case IIO_CHAN_INFO_CALIBBIAS:
812 		*vals = mcp3564_calib_bias;
813 		*type = IIO_VAL_INT;
814 		return IIO_AVAIL_RANGE;
815 	case IIO_CHAN_INFO_CALIBSCALE:
816 		*vals = mcp3564_calib_scale;
817 		*type = IIO_VAL_INT;
818 		return IIO_AVAIL_RANGE;
819 	default:
820 		return -EINVAL;
821 	}
822 }
823 
824 static int mcp3564_read_raw(struct iio_dev *indio_dev,
825 			    struct iio_chan_spec const *channel,
826 			    int *val, int *val2, long mask)
827 {
828 	struct mcp3564_state *adc = iio_priv(indio_dev);
829 	int ret;
830 
831 	switch (mask) {
832 	case IIO_CHAN_INFO_RAW:
833 		if (channel->output) {
834 			mutex_lock(&adc->lock);
835 			*val = mcp3564_burnout_avail[adc->burnout_mode][0];
836 			*val2 = mcp3564_burnout_avail[adc->burnout_mode][1];
837 			mutex_unlock(&adc->lock);
838 			return IIO_VAL_INT_PLUS_MICRO;
839 		}
840 
841 		ret = mcp3564_read_single_value(indio_dev, channel, val);
842 		if (ret)
843 			return -EINVAL;
844 		return IIO_VAL_INT;
845 	case IIO_CHAN_INFO_SCALE:
846 		mutex_lock(&adc->lock);
847 		*val = adc->scale_tbls[adc->hwgain][0];
848 		*val2 = adc->scale_tbls[adc->hwgain][1];
849 		mutex_unlock(&adc->lock);
850 		return IIO_VAL_INT_PLUS_NANO;
851 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
852 		*val = mcp3564_oversampling_avail[adc->oversampling];
853 		return IIO_VAL_INT;
854 	case IIO_CHAN_INFO_CALIBBIAS:
855 		*val = adc->calib_bias;
856 		return IIO_VAL_INT;
857 	case IIO_CHAN_INFO_CALIBSCALE:
858 		*val = adc->calib_scale;
859 		return IIO_VAL_INT;
860 	default:
861 		return -EINVAL;
862 	}
863 }
864 
865 static int mcp3564_write_raw_get_fmt(struct iio_dev *indio_dev,
866 				     struct iio_chan_spec const *chan,
867 				     long info)
868 {
869 	switch (info) {
870 	case IIO_CHAN_INFO_RAW:
871 		return IIO_VAL_INT_PLUS_MICRO;
872 	case IIO_CHAN_INFO_CALIBBIAS:
873 	case IIO_CHAN_INFO_CALIBSCALE:
874 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
875 		return IIO_VAL_INT;
876 	case IIO_CHAN_INFO_SCALE:
877 		return IIO_VAL_INT_PLUS_NANO;
878 	default:
879 		return -EINVAL;
880 	}
881 }
882 
883 static int mcp3564_write_raw(struct iio_dev *indio_dev,
884 			     struct iio_chan_spec const *channel, int val,
885 			     int val2, long mask)
886 {
887 	struct mcp3564_state *adc = iio_priv(indio_dev);
888 	int tmp;
889 	unsigned int hwgain;
890 	enum mcp3564_burnout burnout;
891 	int ret = 0;
892 
893 	switch (mask) {
894 	case IIO_CHAN_INFO_RAW:
895 		if (!channel->output)
896 			return -EINVAL;
897 
898 		for (burnout = 0; burnout < MCP3564_MAX_BURNOUT_IDX; burnout++)
899 			if (val == mcp3564_burnout_avail[burnout][0] &&
900 			    val2 == mcp3564_burnout_avail[burnout][1])
901 				break;
902 
903 		if (burnout == MCP3564_MAX_BURNOUT_IDX)
904 			return -EINVAL;
905 
906 		if (burnout == adc->burnout_mode)
907 			return ret;
908 
909 		mutex_lock(&adc->lock);
910 		ret = mcp3564_update_8bits(adc, MCP3564_CONFIG0_REG,
911 					   MCP3564_CONFIG0_CS_SEL_MASK,
912 					   FIELD_PREP(MCP3564_CONFIG0_CS_SEL_MASK, burnout));
913 
914 		if (ret)
915 			dev_err(&indio_dev->dev, "Failed to configure burnout current\n");
916 		else
917 			adc->burnout_mode = burnout;
918 		mutex_unlock(&adc->lock);
919 		return ret;
920 	case IIO_CHAN_INFO_CALIBBIAS:
921 		if (val < mcp3564_calib_bias[0] || val > mcp3564_calib_bias[2])
922 			return -EINVAL;
923 
924 		mutex_lock(&adc->lock);
925 		ret = mcp3564_write_24bits(adc, MCP3564_OFFSETCAL_REG, val);
926 		if (!ret)
927 			adc->calib_bias = val;
928 		mutex_unlock(&adc->lock);
929 		return ret;
930 	case IIO_CHAN_INFO_CALIBSCALE:
931 		if (val < mcp3564_calib_scale[0] || val > mcp3564_calib_scale[2])
932 			return -EINVAL;
933 
934 		if (adc->calib_scale == val)
935 			return ret;
936 
937 		mutex_lock(&adc->lock);
938 		ret = mcp3564_write_24bits(adc, MCP3564_GAINCAL_REG, val);
939 		if (!ret)
940 			adc->calib_scale = val;
941 		mutex_unlock(&adc->lock);
942 		return ret;
943 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
944 		if (val < 0)
945 			return -EINVAL;
946 
947 		tmp = find_closest(val, mcp3564_oversampling_avail,
948 				   ARRAY_SIZE(mcp3564_oversampling_avail));
949 
950 		if (adc->oversampling == tmp)
951 			return ret;
952 
953 		mutex_lock(&adc->lock);
954 		ret = mcp3564_update_8bits(adc, MCP3564_CONFIG1_REG,
955 					   MCP3564_CONFIG1_OVERSPL_RATIO_MASK,
956 					   FIELD_PREP(MCP3564_CONFIG1_OVERSPL_RATIO_MASK,
957 						      adc->oversampling));
958 		if (!ret)
959 			adc->oversampling = tmp;
960 		mutex_unlock(&adc->lock);
961 		return ret;
962 	case IIO_CHAN_INFO_SCALE:
963 		for (hwgain = 0; hwgain < MCP3564_MAX_PGA; hwgain++)
964 			if (val == adc->scale_tbls[hwgain][0] &&
965 			    val2 == adc->scale_tbls[hwgain][1])
966 				break;
967 
968 		if (hwgain == MCP3564_MAX_PGA)
969 			return -EINVAL;
970 
971 		if (hwgain == adc->hwgain)
972 			return ret;
973 
974 		mutex_lock(&adc->lock);
975 		ret = mcp3564_update_8bits(adc, MCP3564_CONFIG2_REG,
976 					   MCP3564_CONFIG2_HARDWARE_GAIN_MASK,
977 					   FIELD_PREP(MCP3564_CONFIG2_HARDWARE_GAIN_MASK, hwgain));
978 		if (!ret)
979 			adc->hwgain = hwgain;
980 
981 		mutex_unlock(&adc->lock);
982 		return ret;
983 	default:
984 		return -EINVAL;
985 	}
986 }
987 
988 static int mcp3564_read_label(struct iio_dev *indio_dev,
989 			      struct iio_chan_spec const *chan, char *label)
990 {
991 	struct mcp3564_state *adc = iio_priv(indio_dev);
992 
993 	return sprintf(label, "%s\n", adc->labels[chan->scan_index]);
994 }
995 
996 static int mcp3564_parse_fw_children(struct iio_dev *indio_dev)
997 {
998 	struct mcp3564_state *adc = iio_priv(indio_dev);
999 	struct device *dev = &adc->spi->dev;
1000 	struct iio_chan_spec *channels;
1001 	struct iio_chan_spec chanspec = mcp3564_channel_template;
1002 	struct iio_chan_spec temp_chanspec = mcp3564_temp_channel_template;
1003 	struct iio_chan_spec burnout_chanspec = mcp3564_burnout_channel_template;
1004 	int chan_idx = 0;
1005 	unsigned int num_ch;
1006 	u32 inputs[2];
1007 	const char *node_name;
1008 	const char *label;
1009 	int ret;
1010 
1011 	num_ch = device_get_child_node_count(dev);
1012 	if (num_ch == 0)
1013 		return dev_err_probe(&indio_dev->dev, -ENODEV,
1014 				     "FW has no channels defined\n");
1015 
1016 	/* Reserve space for burnout and temperature channel */
1017 	num_ch += 2;
1018 
1019 	if (num_ch > adc->chip_info->num_channels)
1020 		return dev_err_probe(dev, -EINVAL, "Too many channels %d > %d\n",
1021 				     num_ch, adc->chip_info->num_channels);
1022 
1023 	channels = devm_kcalloc(dev, num_ch, sizeof(*channels), GFP_KERNEL);
1024 	if (!channels)
1025 		return dev_err_probe(dev, -ENOMEM, "Can't allocate memory\n");
1026 
1027 	device_for_each_child_node_scoped(dev, child) {
1028 		node_name = fwnode_get_name(child);
1029 
1030 		if (fwnode_property_present(child, "diff-channels")) {
1031 			ret = fwnode_property_read_u32_array(child,
1032 							     "diff-channels",
1033 							     inputs,
1034 							     ARRAY_SIZE(inputs));
1035 			if (ret)
1036 				return ret;
1037 
1038 			chanspec.differential = 1;
1039 		} else {
1040 			ret = fwnode_property_read_u32(child, "reg", &inputs[0]);
1041 			if (ret)
1042 				return ret;
1043 
1044 			chanspec.differential = 0;
1045 			inputs[1] = MCP3564_AGND;
1046 		}
1047 
1048 		if (inputs[0] > MCP3564_INTERNAL_VCM ||
1049 		    inputs[1] > MCP3564_INTERNAL_VCM)
1050 			return dev_err_probe(&indio_dev->dev, -EINVAL,
1051 					     "Channel index > %d, for %s\n",
1052 					     MCP3564_INTERNAL_VCM + 1,
1053 					     node_name);
1054 
1055 		chanspec.address = (inputs[0] << 4) | inputs[1];
1056 		chanspec.channel = inputs[0];
1057 		chanspec.channel2 = inputs[1];
1058 		chanspec.scan_index = chan_idx;
1059 
1060 		if (fwnode_property_present(child, "label")) {
1061 			fwnode_property_read_string(child, "label", &label);
1062 			adc->labels[chan_idx] = label;
1063 		}
1064 
1065 		channels[chan_idx] = chanspec;
1066 		chan_idx++;
1067 	}
1068 
1069 	/* Add burnout current channel */
1070 	burnout_chanspec.scan_index = chan_idx;
1071 	channels[chan_idx] = burnout_chanspec;
1072 	adc->labels[chan_idx] = mcp3564_channel_labels[0];
1073 	chanspec.scan_index = chan_idx;
1074 	chan_idx++;
1075 
1076 	/* Add temperature channel */
1077 	temp_chanspec.scan_index = chan_idx;
1078 	channels[chan_idx] = temp_chanspec;
1079 	adc->labels[chan_idx] = mcp3564_channel_labels[1];
1080 	chan_idx++;
1081 
1082 	indio_dev->num_channels = chan_idx;
1083 	indio_dev->channels = channels;
1084 
1085 	return 0;
1086 }
1087 
1088 static void mcp3564_disable_reg(void *reg)
1089 {
1090 	regulator_disable(reg);
1091 }
1092 
1093 static void mcp3564_fill_scale_tbls(struct mcp3564_state *adc)
1094 {
1095 	unsigned int pow = adc->chip_info->resolution - 1;
1096 	int ref;
1097 	unsigned int i;
1098 	int tmp0;
1099 	u64 tmp1;
1100 
1101 	for (i = 0; i < MCP3564_MAX_PGA; i++) {
1102 		ref = adc->vref_mv;
1103 		tmp1 = ((u64)ref * NANO) >> pow;
1104 		div_u64_rem(tmp1, NANO, &tmp0);
1105 
1106 		tmp1 = tmp1 * mcp3564_hwgain_frac[(2 * i) + 1];
1107 		tmp0 = (int)div_u64(tmp1, mcp3564_hwgain_frac[2 * i]);
1108 
1109 		adc->scale_tbls[i][1] = tmp0;
1110 	}
1111 }
1112 
1113 static int mcp3564_config(struct iio_dev *indio_dev)
1114 {
1115 	struct mcp3564_state *adc = iio_priv(indio_dev);
1116 	struct device *dev = &adc->spi->dev;
1117 	u8 tmp_reg;
1118 	u16 tmp_u16;
1119 	enum mcp3564_ids ids;
1120 	int ret = 0;
1121 	unsigned int tmp = 0x01;
1122 	bool err = false;
1123 
1124 	/*
1125 	 * The address is set on a per-device basis by fuses in the factory,
1126 	 * configured on request. If not requested, the fuses are set for 0x1.
1127 	 * The device address is part of the device markings to avoid
1128 	 * potential confusion. This address is coded on two bits, so four possible
1129 	 * addresses are available when multiple devices are present on the same
1130 	 * SPI bus with only one Chip Select line for all devices.
1131 	 */
1132 	device_property_read_u32(dev, "microchip,hw-device-address", &tmp);
1133 
1134 	if (tmp > 3) {
1135 		dev_err_probe(dev, tmp,
1136 			      "invalid device address. Must be in range 0-3.\n");
1137 		return -EINVAL;
1138 	}
1139 
1140 	adc->dev_addr = FIELD_GET(MCP3564_HW_ADDR_MASK, tmp);
1141 
1142 	dev_dbg(dev, "use HW device address %i\n", adc->dev_addr);
1143 
1144 	ret = mcp3564_read_8bits(adc, MCP3564_RESERVED_C_REG, &tmp_reg);
1145 	if (ret < 0)
1146 		return ret;
1147 
1148 	switch (tmp_reg) {
1149 	case MCP3564_C_REG_DEFAULT:
1150 		adc->have_vref = false;
1151 		break;
1152 	case MCP3564R_C_REG_DEFAULT:
1153 		adc->have_vref = true;
1154 		break;
1155 	default:
1156 		dev_info(dev, "Unknown chip found: %d\n", tmp_reg);
1157 		err = true;
1158 	}
1159 
1160 	if (!err) {
1161 		ret = mcp3564_read_16bits(adc, MCP3564_RESERVED_E_REG, &tmp_u16);
1162 		if (ret < 0)
1163 			return ret;
1164 
1165 		switch (tmp_u16 & MCP3564_HW_ID_MASK) {
1166 		case MCP3461_HW_ID:
1167 			if (adc->have_vref)
1168 				ids = mcp3461r;
1169 			else
1170 				ids = mcp3461;
1171 			break;
1172 		case MCP3462_HW_ID:
1173 			if (adc->have_vref)
1174 				ids = mcp3462r;
1175 			else
1176 				ids = mcp3462;
1177 			break;
1178 		case MCP3464_HW_ID:
1179 			if (adc->have_vref)
1180 				ids = mcp3464r;
1181 			else
1182 				ids = mcp3464;
1183 			break;
1184 		case MCP3561_HW_ID:
1185 			if (adc->have_vref)
1186 				ids = mcp3561r;
1187 			else
1188 				ids = mcp3561;
1189 			break;
1190 		case MCP3562_HW_ID:
1191 			if (adc->have_vref)
1192 				ids = mcp3562r;
1193 			else
1194 				ids = mcp3562;
1195 			break;
1196 		case MCP3564_HW_ID:
1197 			if (adc->have_vref)
1198 				ids = mcp3564r;
1199 			else
1200 				ids = mcp3564;
1201 			break;
1202 		default:
1203 			dev_info(dev, "Unknown chip found: %d\n", tmp_u16);
1204 			err = true;
1205 		}
1206 	}
1207 
1208 	if (err) {
1209 		/*
1210 		 * If failed to identify the hardware based on internal registers,
1211 		 * try using fallback compatible in device tree to deal with some newer part number.
1212 		 */
1213 		adc->chip_info = spi_get_device_match_data(adc->spi);
1214 		adc->have_vref = adc->chip_info->have_vref;
1215 	} else {
1216 		adc->chip_info = &mcp3564_chip_infos_tbl[ids];
1217 	}
1218 
1219 	dev_dbg(dev, "Found %s chip\n", adc->chip_info->name);
1220 
1221 	adc->vref = devm_regulator_get_optional(dev, "vref");
1222 	if (IS_ERR(adc->vref)) {
1223 		if (PTR_ERR(adc->vref) != -ENODEV)
1224 			return dev_err_probe(dev, PTR_ERR(adc->vref),
1225 					     "failed to get regulator\n");
1226 
1227 		/* Check if chip has internal vref */
1228 		if (!adc->have_vref)
1229 			return dev_err_probe(dev, PTR_ERR(adc->vref),
1230 					     "Unknown Vref\n");
1231 		adc->vref = NULL;
1232 		dev_dbg(dev, "%s: Using internal Vref\n", __func__);
1233 	} else {
1234 		ret = regulator_enable(adc->vref);
1235 		if (ret)
1236 			return ret;
1237 
1238 		ret = devm_add_action_or_reset(dev, mcp3564_disable_reg,
1239 					       adc->vref);
1240 		if (ret)
1241 			return ret;
1242 
1243 		dev_dbg(dev, "%s: Using External Vref\n", __func__);
1244 
1245 		ret = regulator_get_voltage(adc->vref);
1246 		if (ret < 0)
1247 			return dev_err_probe(dev, ret,
1248 					     "Failed to read vref regulator\n");
1249 
1250 		adc->vref_mv = ret / MILLI;
1251 	}
1252 
1253 	ret = mcp3564_parse_fw_children(indio_dev);
1254 	if (ret)
1255 		return ret;
1256 
1257 	/*
1258 	 * Command sequence that ensures a recovery with the desired settings
1259 	 * in any cases of loss-of-power scenario (Full Chip Reset):
1260 	 *  - Write LOCK register to 0xA5
1261 	 *  - Write IRQ register to 0x03
1262 	 *  - Send "Device Full Reset" fast command
1263 	 *  - Wait 1ms for "Full Reset" to complete
1264 	 */
1265 	ret = mcp3564_write_8bits(adc, MCP3564_LOCK_REG, MCP3564_LOCK_WRITE_ACCESS_PASSWORD);
1266 	if (ret)
1267 		return ret;
1268 
1269 	ret = mcp3564_write_8bits(adc, MCP3564_IRQ_REG, 0x03);
1270 	if (ret)
1271 		return ret;
1272 
1273 	ret = mcp3564_fast_cmd(adc, MCP3564_FASTCMD_RESET);
1274 	if (ret)
1275 		return ret;
1276 
1277 	/*
1278 	 * After Full reset wait some time to be able to fully reset the part and place
1279 	 * it back in a default configuration.
1280 	 * From datasheet: POR (Power On Reset Time) is ~1us
1281 	 * 1ms should be enough.
1282 	 */
1283 	mdelay(1);
1284 
1285 	/* set a gain of 1x for GAINCAL */
1286 	ret = mcp3564_write_24bits(adc, MCP3564_GAINCAL_REG, MCP3564_DEFAULT_GAINCAL);
1287 	if (ret)
1288 		return ret;
1289 
1290 	adc->calib_scale = MCP3564_DEFAULT_GAINCAL;
1291 
1292 	ret = mcp3564_write_24bits(adc, MCP3564_OFFSETCAL_REG, MCP3564_DEFAULT_OFFSETCAL);
1293 	if (ret)
1294 		return ret;
1295 
1296 	ret = mcp3564_write_24bits(adc, MCP3564_TIMER_REG, MCP3564_TIMER_DEFAULT_VALUE);
1297 	if (ret)
1298 		return ret;
1299 
1300 	ret = mcp3564_write_24bits(adc, MCP3564_SCAN_REG,
1301 				   MCP3564_SCAN_DELAY_TIME_SET(MCP3564_NO_DELAY) |
1302 				   MCP3564_SCAN_CH_SEL_SET(MCP3564_SCAN_DEFAULT_VALUE));
1303 	if (ret)
1304 		return ret;
1305 
1306 	ret = mcp3564_write_8bits(adc, MCP3564_MUX_REG, MCP3564_MUX_SET(MCP3564_CH0, MCP3564_CH1));
1307 	if (ret)
1308 		return ret;
1309 
1310 	ret = mcp3564_write_8bits(adc, MCP3564_IRQ_REG,
1311 				  FIELD_PREP(MCP3464_EN_FASTCMD_MASK, 1) |
1312 				  FIELD_PREP(MCP3464_EN_STP_MASK, 1));
1313 	if (ret)
1314 		return ret;
1315 
1316 	tmp_reg = FIELD_PREP(MCP3464_CONFIG3_CONV_MODE_MASK,
1317 			     MCP3464_CONFIG3_CONV_MODE_ONE_SHOT_STANDBY);
1318 	tmp_reg |= FIELD_PREP(MCP3464_CONFIG3_DATA_FORMAT_MASK,
1319 			      MCP3464_CONFIG3_DATA_FMT_32B_SGN_EXT);
1320 	tmp_reg |= MCP3464_CONFIG3_EN_OFFCAL_MASK;
1321 	tmp_reg |= MCP3464_CONFIG3_EN_GAINCAL_MASK;
1322 
1323 	ret = mcp3564_write_8bits(adc, MCP3564_CONFIG3_REG, tmp_reg);
1324 	if (ret)
1325 		return ret;
1326 
1327 	tmp_reg = FIELD_PREP(MCP3564_CONFIG2_BOOST_CURRENT_MASK, MCP3564_BOOST_CURRENT_x1_00);
1328 	tmp_reg |= FIELD_PREP(MCP3564_CONFIG2_HARDWARE_GAIN_MASK, 0x01);
1329 	tmp_reg |= FIELD_PREP(MCP3564_CONFIG2_AZ_MUX_MASK, 1);
1330 
1331 	ret = mcp3564_write_8bits(adc, MCP3564_CONFIG2_REG, tmp_reg);
1332 	if (ret)
1333 		return ret;
1334 
1335 	adc->hwgain = 0x01;
1336 	adc->auto_zeroing_mux = true;
1337 	adc->auto_zeroing_ref = false;
1338 	adc->current_boost_mode = MCP3564_BOOST_CURRENT_x1_00;
1339 
1340 	tmp_reg = FIELD_PREP(MCP3564_CONFIG1_OVERSPL_RATIO_MASK, MCP3564_OVERSAMPLING_RATIO_98304);
1341 
1342 	ret = mcp3564_write_8bits(adc, MCP3564_CONFIG1_REG, tmp_reg);
1343 	if (ret)
1344 		return ret;
1345 
1346 	adc->oversampling = MCP3564_OVERSAMPLING_RATIO_98304;
1347 
1348 	tmp_reg = FIELD_PREP(MCP3564_CONFIG0_ADC_MODE_MASK, MCP3564_ADC_MODE_STANDBY);
1349 	tmp_reg |= FIELD_PREP(MCP3564_CONFIG0_CS_SEL_MASK, MCP3564_CONFIG0_CS_SEL_0_0_uA);
1350 	tmp_reg |= FIELD_PREP(MCP3564_CONFIG0_CLK_SEL_MASK, MCP3564_CONFIG0_USE_INT_CLK);
1351 	tmp_reg |= MCP3456_CONFIG0_BIT6_DEFAULT;
1352 
1353 	if (!adc->vref) {
1354 		tmp_reg |= FIELD_PREP(MCP3456_CONFIG0_VREF_MASK, 1);
1355 		adc->vref_mv = MCP3564R_INT_VREF_MV;
1356 	}
1357 
1358 	ret = mcp3564_write_8bits(adc, MCP3564_CONFIG0_REG, tmp_reg);
1359 
1360 	adc->burnout_mode = MCP3564_CONFIG0_CS_SEL_0_0_uA;
1361 
1362 	return ret;
1363 }
1364 
1365 static IIO_DEVICE_ATTR(auto_zeroing_ref_enable, 0644,
1366 		       mcp3564_auto_zeroing_ref_show,
1367 		       mcp3564_auto_zeroing_ref_store, 0);
1368 
1369 static IIO_DEVICE_ATTR(auto_zeroing_mux_enable, 0644,
1370 		       mcp3564_auto_zeroing_mux_show,
1371 		       mcp3564_auto_zeroing_mux_store, 0);
1372 
1373 static struct attribute *mcp3564_attributes[] = {
1374 	&iio_dev_attr_auto_zeroing_mux_enable.dev_attr.attr,
1375 	NULL
1376 };
1377 
1378 static struct attribute *mcp3564r_attributes[] = {
1379 	&iio_dev_attr_auto_zeroing_mux_enable.dev_attr.attr,
1380 	&iio_dev_attr_auto_zeroing_ref_enable.dev_attr.attr,
1381 	NULL
1382 };
1383 
1384 static struct attribute_group mcp3564_attribute_group = {
1385 	.attrs = mcp3564_attributes,
1386 };
1387 
1388 static struct attribute_group mcp3564r_attribute_group = {
1389 	.attrs = mcp3564r_attributes,
1390 };
1391 
1392 static const struct iio_info mcp3564_info = {
1393 	.read_raw = mcp3564_read_raw,
1394 	.read_avail = mcp3564_read_avail,
1395 	.write_raw = mcp3564_write_raw,
1396 	.write_raw_get_fmt = mcp3564_write_raw_get_fmt,
1397 	.read_label = mcp3564_read_label,
1398 	.attrs = &mcp3564_attribute_group,
1399 };
1400 
1401 static const struct iio_info mcp3564r_info = {
1402 	.read_raw = mcp3564_read_raw,
1403 	.read_avail = mcp3564_read_avail,
1404 	.write_raw = mcp3564_write_raw,
1405 	.write_raw_get_fmt = mcp3564_write_raw_get_fmt,
1406 	.read_label = mcp3564_read_label,
1407 	.attrs = &mcp3564r_attribute_group,
1408 };
1409 
1410 static int mcp3564_probe(struct spi_device *spi)
1411 {
1412 	int ret;
1413 	struct iio_dev *indio_dev;
1414 	struct mcp3564_state *adc;
1415 
1416 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*adc));
1417 	if (!indio_dev)
1418 		return -ENOMEM;
1419 
1420 	adc = iio_priv(indio_dev);
1421 	adc->spi = spi;
1422 
1423 	dev_dbg(&spi->dev, "%s: probe(spi = 0x%p)\n", __func__, spi);
1424 
1425 	/*
1426 	 * Do any chip specific initialization, e.g:
1427 	 * read/write some registers
1428 	 * enable/disable certain channels
1429 	 * change the sampling rate to the requested value
1430 	 */
1431 	ret = mcp3564_config(indio_dev);
1432 	if (ret)
1433 		return dev_err_probe(&spi->dev, ret,
1434 				     "Can't configure MCP356X device\n");
1435 
1436 	dev_dbg(&spi->dev, "%s: Vref (mV): %d\n", __func__, adc->vref_mv);
1437 
1438 	mcp3564_fill_scale_tbls(adc);
1439 
1440 	indio_dev->name = adc->chip_info->name;
1441 	indio_dev->modes = INDIO_DIRECT_MODE;
1442 
1443 	if (!adc->vref)
1444 		indio_dev->info = &mcp3564r_info;
1445 	else
1446 		indio_dev->info = &mcp3564_info;
1447 
1448 	mutex_init(&adc->lock);
1449 
1450 	ret = devm_iio_device_register(&spi->dev, indio_dev);
1451 	if (ret)
1452 		return dev_err_probe(&spi->dev, ret,
1453 				     "Can't register IIO device\n");
1454 
1455 	return 0;
1456 }
1457 
1458 static const struct of_device_id mcp3564_dt_ids[] = {
1459 	{ .compatible = "microchip,mcp3461", .data = &mcp3564_chip_infos_tbl[mcp3461] },
1460 	{ .compatible = "microchip,mcp3462", .data = &mcp3564_chip_infos_tbl[mcp3462] },
1461 	{ .compatible = "microchip,mcp3464", .data = &mcp3564_chip_infos_tbl[mcp3464] },
1462 	{ .compatible = "microchip,mcp3561", .data = &mcp3564_chip_infos_tbl[mcp3561] },
1463 	{ .compatible = "microchip,mcp3562", .data = &mcp3564_chip_infos_tbl[mcp3562] },
1464 	{ .compatible = "microchip,mcp3564", .data = &mcp3564_chip_infos_tbl[mcp3564] },
1465 	{ .compatible = "microchip,mcp3461r", .data = &mcp3564_chip_infos_tbl[mcp3461r] },
1466 	{ .compatible = "microchip,mcp3462r", .data = &mcp3564_chip_infos_tbl[mcp3462r] },
1467 	{ .compatible = "microchip,mcp3464r", .data = &mcp3564_chip_infos_tbl[mcp3464r] },
1468 	{ .compatible = "microchip,mcp3561r", .data = &mcp3564_chip_infos_tbl[mcp3561r] },
1469 	{ .compatible = "microchip,mcp3562r", .data = &mcp3564_chip_infos_tbl[mcp3562r] },
1470 	{ .compatible = "microchip,mcp3564r", .data = &mcp3564_chip_infos_tbl[mcp3564r] },
1471 	{ }
1472 };
1473 MODULE_DEVICE_TABLE(of, mcp3564_dt_ids);
1474 
1475 static const struct spi_device_id mcp3564_id[] = {
1476 	{ "mcp3461", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3461] },
1477 	{ "mcp3462", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3462] },
1478 	{ "mcp3464", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3464] },
1479 	{ "mcp3561", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3561] },
1480 	{ "mcp3562", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3562] },
1481 	{ "mcp3564", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3564] },
1482 	{ "mcp3461r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3461r] },
1483 	{ "mcp3462r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3462r] },
1484 	{ "mcp3464r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3464r] },
1485 	{ "mcp3561r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3561r] },
1486 	{ "mcp3562r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3562r] },
1487 	{ "mcp3564r", (kernel_ulong_t)&mcp3564_chip_infos_tbl[mcp3564r] },
1488 	{ }
1489 };
1490 MODULE_DEVICE_TABLE(spi, mcp3564_id);
1491 
1492 static struct spi_driver mcp3564_driver = {
1493 	.driver = {
1494 		.name = "mcp3564",
1495 		.of_match_table = mcp3564_dt_ids,
1496 	},
1497 	.probe = mcp3564_probe,
1498 	.id_table = mcp3564_id,
1499 };
1500 
1501 module_spi_driver(mcp3564_driver);
1502 
1503 MODULE_AUTHOR("Marius Cristea <marius.cristea@microchip.com>");
1504 MODULE_DESCRIPTION("Microchip MCP346x/MCP346xR and MCP356x/MCP356xR ADCs");
1505 MODULE_LICENSE("GPL v2");
1506