1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * exynos_adc.c - Support for ADC in EXYNOS SoCs 4 * 5 * 8 ~ 10 channel, 10/12-bit ADC 6 * 7 * Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com> 8 */ 9 10 #include <linux/compiler.h> 11 #include <linux/module.h> 12 #include <linux/platform_device.h> 13 #include <linux/interrupt.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/io.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/of.h> 22 #include <linux/of_irq.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/of_platform.h> 25 #include <linux/err.h> 26 #include <linux/input.h> 27 28 #include <linux/iio/iio.h> 29 #include <linux/iio/machine.h> 30 #include <linux/iio/driver.h> 31 #include <linux/mfd/syscon.h> 32 #include <linux/regmap.h> 33 34 #include <linux/platform_data/touchscreen-s3c2410.h> 35 36 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */ 37 #define ADC_V1_CON(x) ((x) + 0x00) 38 #define ADC_V1_TSC(x) ((x) + 0x04) 39 #define ADC_V1_DLY(x) ((x) + 0x08) 40 #define ADC_V1_DATX(x) ((x) + 0x0C) 41 #define ADC_V1_DATY(x) ((x) + 0x10) 42 #define ADC_V1_UPDN(x) ((x) + 0x14) 43 #define ADC_V1_INTCLR(x) ((x) + 0x18) 44 #define ADC_V1_MUX(x) ((x) + 0x1c) 45 #define ADC_V1_CLRINTPNDNUP(x) ((x) + 0x20) 46 47 /* S3C2410 ADC registers definitions */ 48 #define ADC_S3C2410_MUX(x) ((x) + 0x18) 49 50 /* Future ADC_V2 registers definitions */ 51 #define ADC_V2_CON1(x) ((x) + 0x00) 52 #define ADC_V2_CON2(x) ((x) + 0x04) 53 #define ADC_V2_STAT(x) ((x) + 0x08) 54 #define ADC_V2_INT_EN(x) ((x) + 0x10) 55 #define ADC_V2_INT_ST(x) ((x) + 0x14) 56 #define ADC_V2_VER(x) ((x) + 0x20) 57 58 /* Bit definitions for ADC_V1 */ 59 #define ADC_V1_CON_RES (1u << 16) 60 #define ADC_V1_CON_PRSCEN (1u << 14) 61 #define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6) 62 #define ADC_V1_CON_STANDBY (1u << 2) 63 64 /* Bit definitions for S3C2410 ADC */ 65 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3) 66 #define ADC_S3C2410_DATX_MASK 0x3FF 67 #define ADC_S3C2416_CON_RES_SEL (1u << 3) 68 69 /* touch screen always uses channel 0 */ 70 #define ADC_S3C2410_MUX_TS 0 71 72 /* ADCTSC Register Bits */ 73 #define ADC_S3C2443_TSC_UD_SEN (1u << 8) 74 #define ADC_S3C2410_TSC_YM_SEN (1u << 7) 75 #define ADC_S3C2410_TSC_YP_SEN (1u << 6) 76 #define ADC_S3C2410_TSC_XM_SEN (1u << 5) 77 #define ADC_S3C2410_TSC_XP_SEN (1u << 4) 78 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3) 79 #define ADC_S3C2410_TSC_AUTO_PST (1u << 2) 80 #define ADC_S3C2410_TSC_XY_PST(x) (((x) & 0x3) << 0) 81 82 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \ 83 ADC_S3C2410_TSC_YP_SEN | \ 84 ADC_S3C2410_TSC_XP_SEN | \ 85 ADC_S3C2410_TSC_XY_PST(3)) 86 87 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \ 88 ADC_S3C2410_TSC_YP_SEN | \ 89 ADC_S3C2410_TSC_XP_SEN | \ 90 ADC_S3C2410_TSC_AUTO_PST | \ 91 ADC_S3C2410_TSC_XY_PST(0)) 92 93 /* Bit definitions for ADC_V2 */ 94 #define ADC_V2_CON1_SOFT_RESET (1u << 2) 95 96 #define ADC_V2_CON2_OSEL (1u << 10) 97 #define ADC_V2_CON2_ESEL (1u << 9) 98 #define ADC_V2_CON2_HIGHF (1u << 8) 99 #define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4) 100 #define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0) 101 #define ADC_V2_CON2_ACH_MASK 0xF 102 103 #define MAX_ADC_V2_CHANNELS 10 104 #define MAX_ADC_V1_CHANNELS 8 105 #define MAX_EXYNOS3250_ADC_CHANNELS 2 106 #define MAX_EXYNOS4212_ADC_CHANNELS 4 107 #define MAX_S5PV210_ADC_CHANNELS 10 108 109 /* Bit definitions common for ADC_V1 and ADC_V2 */ 110 #define ADC_CON_EN_START (1u << 0) 111 #define ADC_CON_EN_START_MASK (0x3 << 0) 112 #define ADC_DATX_PRESSED (1u << 15) 113 #define ADC_DATX_MASK 0xFFF 114 #define ADC_DATY_MASK 0xFFF 115 116 #define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100)) 117 118 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718 119 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720 120 121 struct exynos_adc { 122 struct exynos_adc_data *data; 123 struct device *dev; 124 struct input_dev *input; 125 void __iomem *regs; 126 struct regmap *pmu_map; 127 struct clk *clk; 128 struct clk *sclk; 129 unsigned int irq; 130 unsigned int tsirq; 131 unsigned int delay; 132 struct regulator *vdd; 133 134 struct completion completion; 135 136 u32 value; 137 unsigned int version; 138 139 bool ts_enabled; 140 141 bool read_ts; 142 u32 ts_x; 143 u32 ts_y; 144 145 /* 146 * Lock to protect from potential concurrent access to the 147 * completion callback during a manual conversion. For this driver 148 * a wait-callback is used to wait for the conversion result, 149 * so in the meantime no other read request (or conversion start) 150 * must be performed, otherwise it would interfere with the 151 * current conversion result. 152 */ 153 struct mutex lock; 154 }; 155 156 struct exynos_adc_data { 157 int num_channels; 158 bool needs_sclk; 159 bool needs_adc_phy; 160 int phy_offset; 161 u32 mask; 162 163 void (*init_hw)(struct exynos_adc *info); 164 void (*exit_hw)(struct exynos_adc *info); 165 void (*clear_irq)(struct exynos_adc *info); 166 void (*start_conv)(struct exynos_adc *info, unsigned long addr); 167 }; 168 169 static void exynos_adc_unprepare_clk(struct exynos_adc *info) 170 { 171 if (info->data->needs_sclk) 172 clk_unprepare(info->sclk); 173 clk_unprepare(info->clk); 174 } 175 176 static int exynos_adc_prepare_clk(struct exynos_adc *info) 177 { 178 int ret; 179 180 ret = clk_prepare(info->clk); 181 if (ret) { 182 dev_err(info->dev, "failed preparing adc clock: %d\n", ret); 183 return ret; 184 } 185 186 if (info->data->needs_sclk) { 187 ret = clk_prepare(info->sclk); 188 if (ret) { 189 clk_unprepare(info->clk); 190 dev_err(info->dev, 191 "failed preparing sclk_adc clock: %d\n", ret); 192 return ret; 193 } 194 } 195 196 return 0; 197 } 198 199 static void exynos_adc_disable_clk(struct exynos_adc *info) 200 { 201 if (info->data->needs_sclk) 202 clk_disable(info->sclk); 203 clk_disable(info->clk); 204 } 205 206 static int exynos_adc_enable_clk(struct exynos_adc *info) 207 { 208 int ret; 209 210 ret = clk_enable(info->clk); 211 if (ret) { 212 dev_err(info->dev, "failed enabling adc clock: %d\n", ret); 213 return ret; 214 } 215 216 if (info->data->needs_sclk) { 217 ret = clk_enable(info->sclk); 218 if (ret) { 219 clk_disable(info->clk); 220 dev_err(info->dev, 221 "failed enabling sclk_adc clock: %d\n", ret); 222 return ret; 223 } 224 } 225 226 return 0; 227 } 228 229 static void exynos_adc_v1_init_hw(struct exynos_adc *info) 230 { 231 u32 con1; 232 233 if (info->data->needs_adc_phy) 234 regmap_write(info->pmu_map, info->data->phy_offset, 1); 235 236 /* set default prescaler values and Enable prescaler */ 237 con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN; 238 239 /* Enable 12-bit ADC resolution */ 240 con1 |= ADC_V1_CON_RES; 241 writel(con1, ADC_V1_CON(info->regs)); 242 243 /* set touchscreen delay */ 244 writel(info->delay, ADC_V1_DLY(info->regs)); 245 } 246 247 static void exynos_adc_v1_exit_hw(struct exynos_adc *info) 248 { 249 u32 con; 250 251 if (info->data->needs_adc_phy) 252 regmap_write(info->pmu_map, info->data->phy_offset, 0); 253 254 con = readl(ADC_V1_CON(info->regs)); 255 con |= ADC_V1_CON_STANDBY; 256 writel(con, ADC_V1_CON(info->regs)); 257 } 258 259 static void exynos_adc_v1_clear_irq(struct exynos_adc *info) 260 { 261 writel(1, ADC_V1_INTCLR(info->regs)); 262 } 263 264 static void exynos_adc_v1_start_conv(struct exynos_adc *info, 265 unsigned long addr) 266 { 267 u32 con1; 268 269 writel(addr, ADC_V1_MUX(info->regs)); 270 271 con1 = readl(ADC_V1_CON(info->regs)); 272 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 273 } 274 275 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */ 276 static const struct exynos_adc_data exynos4212_adc_data = { 277 .num_channels = MAX_EXYNOS4212_ADC_CHANNELS, 278 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 279 .needs_adc_phy = true, 280 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 281 282 .init_hw = exynos_adc_v1_init_hw, 283 .exit_hw = exynos_adc_v1_exit_hw, 284 .clear_irq = exynos_adc_v1_clear_irq, 285 .start_conv = exynos_adc_v1_start_conv, 286 }; 287 288 static const struct exynos_adc_data exynos_adc_v1_data = { 289 .num_channels = MAX_ADC_V1_CHANNELS, 290 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 291 .needs_adc_phy = true, 292 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 293 294 .init_hw = exynos_adc_v1_init_hw, 295 .exit_hw = exynos_adc_v1_exit_hw, 296 .clear_irq = exynos_adc_v1_clear_irq, 297 .start_conv = exynos_adc_v1_start_conv, 298 }; 299 300 static const struct exynos_adc_data exynos_adc_s5pv210_data = { 301 .num_channels = MAX_S5PV210_ADC_CHANNELS, 302 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 303 304 .init_hw = exynos_adc_v1_init_hw, 305 .exit_hw = exynos_adc_v1_exit_hw, 306 .clear_irq = exynos_adc_v1_clear_irq, 307 .start_conv = exynos_adc_v1_start_conv, 308 }; 309 310 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info, 311 unsigned long addr) 312 { 313 u32 con1; 314 315 /* Enable 12 bit ADC resolution */ 316 con1 = readl(ADC_V1_CON(info->regs)); 317 con1 |= ADC_S3C2416_CON_RES_SEL; 318 writel(con1, ADC_V1_CON(info->regs)); 319 320 /* Select channel for S3C2416 */ 321 writel(addr, ADC_S3C2410_MUX(info->regs)); 322 323 con1 = readl(ADC_V1_CON(info->regs)); 324 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 325 } 326 327 static struct exynos_adc_data const exynos_adc_s3c2416_data = { 328 .num_channels = MAX_ADC_V1_CHANNELS, 329 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 330 331 .init_hw = exynos_adc_v1_init_hw, 332 .exit_hw = exynos_adc_v1_exit_hw, 333 .start_conv = exynos_adc_s3c2416_start_conv, 334 }; 335 336 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info, 337 unsigned long addr) 338 { 339 u32 con1; 340 341 /* Select channel for S3C2433 */ 342 writel(addr, ADC_S3C2410_MUX(info->regs)); 343 344 con1 = readl(ADC_V1_CON(info->regs)); 345 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 346 } 347 348 static struct exynos_adc_data const exynos_adc_s3c2443_data = { 349 .num_channels = MAX_ADC_V1_CHANNELS, 350 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */ 351 352 .init_hw = exynos_adc_v1_init_hw, 353 .exit_hw = exynos_adc_v1_exit_hw, 354 .start_conv = exynos_adc_s3c2443_start_conv, 355 }; 356 357 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info, 358 unsigned long addr) 359 { 360 u32 con1; 361 362 con1 = readl(ADC_V1_CON(info->regs)); 363 con1 &= ~ADC_S3C2410_CON_SELMUX(0x7); 364 con1 |= ADC_S3C2410_CON_SELMUX(addr); 365 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 366 } 367 368 static struct exynos_adc_data const exynos_adc_s3c24xx_data = { 369 .num_channels = MAX_ADC_V1_CHANNELS, 370 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */ 371 372 .init_hw = exynos_adc_v1_init_hw, 373 .exit_hw = exynos_adc_v1_exit_hw, 374 .start_conv = exynos_adc_s3c64xx_start_conv, 375 }; 376 377 static struct exynos_adc_data const exynos_adc_s3c64xx_data = { 378 .num_channels = MAX_ADC_V1_CHANNELS, 379 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 380 381 .init_hw = exynos_adc_v1_init_hw, 382 .exit_hw = exynos_adc_v1_exit_hw, 383 .clear_irq = exynos_adc_v1_clear_irq, 384 .start_conv = exynos_adc_s3c64xx_start_conv, 385 }; 386 387 static void exynos_adc_v2_init_hw(struct exynos_adc *info) 388 { 389 u32 con1, con2; 390 391 if (info->data->needs_adc_phy) 392 regmap_write(info->pmu_map, info->data->phy_offset, 1); 393 394 con1 = ADC_V2_CON1_SOFT_RESET; 395 writel(con1, ADC_V2_CON1(info->regs)); 396 397 con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL | 398 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0); 399 writel(con2, ADC_V2_CON2(info->regs)); 400 401 /* Enable interrupts */ 402 writel(1, ADC_V2_INT_EN(info->regs)); 403 } 404 405 static void exynos_adc_v2_exit_hw(struct exynos_adc *info) 406 { 407 u32 con; 408 409 if (info->data->needs_adc_phy) 410 regmap_write(info->pmu_map, info->data->phy_offset, 0); 411 412 con = readl(ADC_V2_CON1(info->regs)); 413 con &= ~ADC_CON_EN_START; 414 writel(con, ADC_V2_CON1(info->regs)); 415 } 416 417 static void exynos_adc_v2_clear_irq(struct exynos_adc *info) 418 { 419 writel(1, ADC_V2_INT_ST(info->regs)); 420 } 421 422 static void exynos_adc_v2_start_conv(struct exynos_adc *info, 423 unsigned long addr) 424 { 425 u32 con1, con2; 426 427 con2 = readl(ADC_V2_CON2(info->regs)); 428 con2 &= ~ADC_V2_CON2_ACH_MASK; 429 con2 |= ADC_V2_CON2_ACH_SEL(addr); 430 writel(con2, ADC_V2_CON2(info->regs)); 431 432 con1 = readl(ADC_V2_CON1(info->regs)); 433 writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs)); 434 } 435 436 static const struct exynos_adc_data exynos_adc_v2_data = { 437 .num_channels = MAX_ADC_V2_CHANNELS, 438 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 439 .needs_adc_phy = true, 440 .phy_offset = EXYNOS_ADCV2_PHY_OFFSET, 441 442 .init_hw = exynos_adc_v2_init_hw, 443 .exit_hw = exynos_adc_v2_exit_hw, 444 .clear_irq = exynos_adc_v2_clear_irq, 445 .start_conv = exynos_adc_v2_start_conv, 446 }; 447 448 static const struct exynos_adc_data exynos3250_adc_data = { 449 .num_channels = MAX_EXYNOS3250_ADC_CHANNELS, 450 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 451 .needs_sclk = true, 452 .needs_adc_phy = true, 453 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 454 455 .init_hw = exynos_adc_v2_init_hw, 456 .exit_hw = exynos_adc_v2_exit_hw, 457 .clear_irq = exynos_adc_v2_clear_irq, 458 .start_conv = exynos_adc_v2_start_conv, 459 }; 460 461 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info) 462 { 463 u32 con1, con2; 464 465 con1 = ADC_V2_CON1_SOFT_RESET; 466 writel(con1, ADC_V2_CON1(info->regs)); 467 468 con2 = readl(ADC_V2_CON2(info->regs)); 469 con2 &= ~ADC_V2_CON2_C_TIME(7); 470 con2 |= ADC_V2_CON2_C_TIME(0); 471 writel(con2, ADC_V2_CON2(info->regs)); 472 473 /* Enable interrupts */ 474 writel(1, ADC_V2_INT_EN(info->regs)); 475 } 476 477 static const struct exynos_adc_data exynos7_adc_data = { 478 .num_channels = MAX_ADC_V1_CHANNELS, 479 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 480 481 .init_hw = exynos_adc_exynos7_init_hw, 482 .exit_hw = exynos_adc_v2_exit_hw, 483 .clear_irq = exynos_adc_v2_clear_irq, 484 .start_conv = exynos_adc_v2_start_conv, 485 }; 486 487 static const struct of_device_id exynos_adc_match[] = { 488 { 489 .compatible = "samsung,s3c2410-adc", 490 .data = &exynos_adc_s3c24xx_data, 491 }, { 492 .compatible = "samsung,s3c2416-adc", 493 .data = &exynos_adc_s3c2416_data, 494 }, { 495 .compatible = "samsung,s3c2440-adc", 496 .data = &exynos_adc_s3c24xx_data, 497 }, { 498 .compatible = "samsung,s3c2443-adc", 499 .data = &exynos_adc_s3c2443_data, 500 }, { 501 .compatible = "samsung,s3c6410-adc", 502 .data = &exynos_adc_s3c64xx_data, 503 }, { 504 .compatible = "samsung,s5pv210-adc", 505 .data = &exynos_adc_s5pv210_data, 506 }, { 507 .compatible = "samsung,exynos4212-adc", 508 .data = &exynos4212_adc_data, 509 }, { 510 .compatible = "samsung,exynos-adc-v1", 511 .data = &exynos_adc_v1_data, 512 }, { 513 .compatible = "samsung,exynos-adc-v2", 514 .data = &exynos_adc_v2_data, 515 }, { 516 .compatible = "samsung,exynos3250-adc", 517 .data = &exynos3250_adc_data, 518 }, { 519 .compatible = "samsung,exynos7-adc", 520 .data = &exynos7_adc_data, 521 }, 522 {}, 523 }; 524 MODULE_DEVICE_TABLE(of, exynos_adc_match); 525 526 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev) 527 { 528 const struct of_device_id *match; 529 530 match = of_match_node(exynos_adc_match, pdev->dev.of_node); 531 return (struct exynos_adc_data *)match->data; 532 } 533 534 static int exynos_read_raw(struct iio_dev *indio_dev, 535 struct iio_chan_spec const *chan, 536 int *val, 537 int *val2, 538 long mask) 539 { 540 struct exynos_adc *info = iio_priv(indio_dev); 541 unsigned long time_left; 542 int ret; 543 544 if (mask == IIO_CHAN_INFO_SCALE) { 545 ret = regulator_get_voltage(info->vdd); 546 if (ret < 0) 547 return ret; 548 549 /* Regulator voltage is in uV, but need mV */ 550 *val = ret / 1000; 551 *val2 = info->data->mask; 552 553 return IIO_VAL_FRACTIONAL; 554 } else if (mask != IIO_CHAN_INFO_RAW) { 555 return -EINVAL; 556 } 557 558 mutex_lock(&info->lock); 559 reinit_completion(&info->completion); 560 561 /* Select the channel to be used and Trigger conversion */ 562 if (info->data->start_conv) 563 info->data->start_conv(info, chan->address); 564 565 time_left = wait_for_completion_timeout(&info->completion, 566 EXYNOS_ADC_TIMEOUT); 567 if (time_left == 0) { 568 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n"); 569 if (info->data->init_hw) 570 info->data->init_hw(info); 571 ret = -ETIMEDOUT; 572 } else { 573 *val = info->value; 574 *val2 = 0; 575 ret = IIO_VAL_INT; 576 } 577 578 mutex_unlock(&info->lock); 579 580 return ret; 581 } 582 583 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y) 584 { 585 struct exynos_adc *info = iio_priv(indio_dev); 586 unsigned long time_left; 587 int ret; 588 589 mutex_lock(&info->lock); 590 info->read_ts = true; 591 592 reinit_completion(&info->completion); 593 594 writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST, 595 ADC_V1_TSC(info->regs)); 596 597 /* Select the ts channel to be used and Trigger conversion */ 598 info->data->start_conv(info, ADC_S3C2410_MUX_TS); 599 600 time_left = wait_for_completion_timeout(&info->completion, 601 EXYNOS_ADC_TIMEOUT); 602 if (time_left == 0) { 603 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n"); 604 if (info->data->init_hw) 605 info->data->init_hw(info); 606 ret = -ETIMEDOUT; 607 } else { 608 *x = info->ts_x; 609 *y = info->ts_y; 610 ret = 0; 611 } 612 613 info->read_ts = false; 614 mutex_unlock(&info->lock); 615 616 return ret; 617 } 618 619 static irqreturn_t exynos_adc_isr(int irq, void *dev_id) 620 { 621 struct exynos_adc *info = dev_id; 622 u32 mask = info->data->mask; 623 624 /* Read value */ 625 if (info->read_ts) { 626 info->ts_x = readl(ADC_V1_DATX(info->regs)); 627 info->ts_y = readl(ADC_V1_DATY(info->regs)); 628 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs)); 629 } else { 630 info->value = readl(ADC_V1_DATX(info->regs)) & mask; 631 } 632 633 /* clear irq */ 634 if (info->data->clear_irq) 635 info->data->clear_irq(info); 636 637 complete(&info->completion); 638 639 return IRQ_HANDLED; 640 } 641 642 /* 643 * Here we (ab)use a threaded interrupt handler to stay running 644 * for as long as the touchscreen remains pressed, we report 645 * a new event with the latest data and then sleep until the 646 * next timer tick. This mirrors the behavior of the old 647 * driver, with much less code. 648 */ 649 static irqreturn_t exynos_ts_isr(int irq, void *dev_id) 650 { 651 struct exynos_adc *info = dev_id; 652 struct iio_dev *dev = dev_get_drvdata(info->dev); 653 u32 x, y; 654 bool pressed; 655 int ret; 656 657 while (READ_ONCE(info->ts_enabled)) { 658 ret = exynos_read_s3c64xx_ts(dev, &x, &y); 659 if (ret == -ETIMEDOUT) 660 break; 661 662 pressed = x & y & ADC_DATX_PRESSED; 663 if (!pressed) { 664 input_report_key(info->input, BTN_TOUCH, 0); 665 input_sync(info->input); 666 break; 667 } 668 669 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK); 670 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK); 671 input_report_key(info->input, BTN_TOUCH, 1); 672 input_sync(info->input); 673 674 usleep_range(1000, 1100); 675 } 676 677 writel(0, ADC_V1_CLRINTPNDNUP(info->regs)); 678 679 return IRQ_HANDLED; 680 } 681 682 static int exynos_adc_reg_access(struct iio_dev *indio_dev, 683 unsigned reg, unsigned writeval, 684 unsigned *readval) 685 { 686 struct exynos_adc *info = iio_priv(indio_dev); 687 688 if (readval == NULL) 689 return -EINVAL; 690 691 *readval = readl(info->regs + reg); 692 693 return 0; 694 } 695 696 static const struct iio_info exynos_adc_iio_info = { 697 .read_raw = &exynos_read_raw, 698 .debugfs_reg_access = &exynos_adc_reg_access, 699 }; 700 701 #define ADC_CHANNEL(_index, _id) { \ 702 .type = IIO_VOLTAGE, \ 703 .indexed = 1, \ 704 .channel = _index, \ 705 .address = _index, \ 706 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 707 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE), \ 708 .datasheet_name = _id, \ 709 } 710 711 static const struct iio_chan_spec exynos_adc_iio_channels[] = { 712 ADC_CHANNEL(0, "adc0"), 713 ADC_CHANNEL(1, "adc1"), 714 ADC_CHANNEL(2, "adc2"), 715 ADC_CHANNEL(3, "adc3"), 716 ADC_CHANNEL(4, "adc4"), 717 ADC_CHANNEL(5, "adc5"), 718 ADC_CHANNEL(6, "adc6"), 719 ADC_CHANNEL(7, "adc7"), 720 ADC_CHANNEL(8, "adc8"), 721 ADC_CHANNEL(9, "adc9"), 722 }; 723 724 static int exynos_adc_remove_devices(struct device *dev, void *c) 725 { 726 struct platform_device *pdev = to_platform_device(dev); 727 728 platform_device_unregister(pdev); 729 730 return 0; 731 } 732 733 static int exynos_adc_ts_open(struct input_dev *dev) 734 { 735 struct exynos_adc *info = input_get_drvdata(dev); 736 737 WRITE_ONCE(info->ts_enabled, true); 738 enable_irq(info->tsirq); 739 740 return 0; 741 } 742 743 static void exynos_adc_ts_close(struct input_dev *dev) 744 { 745 struct exynos_adc *info = input_get_drvdata(dev); 746 747 WRITE_ONCE(info->ts_enabled, false); 748 disable_irq(info->tsirq); 749 } 750 751 static int exynos_adc_ts_init(struct exynos_adc *info) 752 { 753 int ret; 754 755 if (info->tsirq <= 0) 756 return -ENODEV; 757 758 info->input = input_allocate_device(); 759 if (!info->input) 760 return -ENOMEM; 761 762 info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); 763 info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); 764 765 input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0); 766 input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0); 767 768 info->input->name = "S3C24xx TouchScreen"; 769 info->input->id.bustype = BUS_HOST; 770 info->input->open = exynos_adc_ts_open; 771 info->input->close = exynos_adc_ts_close; 772 773 input_set_drvdata(info->input, info); 774 775 ret = input_register_device(info->input); 776 if (ret) { 777 input_free_device(info->input); 778 return ret; 779 } 780 781 ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr, 782 IRQF_ONESHOT | IRQF_NO_AUTOEN, 783 "touchscreen", info); 784 if (ret) 785 input_unregister_device(info->input); 786 787 return ret; 788 } 789 790 static int exynos_adc_probe(struct platform_device *pdev) 791 { 792 struct exynos_adc *info = NULL; 793 struct device_node *np = pdev->dev.of_node; 794 struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev); 795 struct iio_dev *indio_dev = NULL; 796 bool has_ts = false; 797 int ret; 798 int irq; 799 800 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc)); 801 if (!indio_dev) { 802 dev_err(&pdev->dev, "failed allocating iio device\n"); 803 return -ENOMEM; 804 } 805 806 info = iio_priv(indio_dev); 807 808 info->data = exynos_adc_get_data(pdev); 809 if (!info->data) { 810 dev_err(&pdev->dev, "failed getting exynos_adc_data\n"); 811 return -EINVAL; 812 } 813 814 info->regs = devm_platform_ioremap_resource(pdev, 0); 815 if (IS_ERR(info->regs)) 816 return PTR_ERR(info->regs); 817 818 819 if (info->data->needs_adc_phy) { 820 info->pmu_map = syscon_regmap_lookup_by_phandle( 821 pdev->dev.of_node, 822 "samsung,syscon-phandle"); 823 if (IS_ERR(info->pmu_map)) { 824 dev_err(&pdev->dev, "syscon regmap lookup failed.\n"); 825 return PTR_ERR(info->pmu_map); 826 } 827 } 828 829 /* leave out any TS related code if unreachable */ 830 if (IS_REACHABLE(CONFIG_INPUT)) { 831 has_ts = of_property_read_bool(pdev->dev.of_node, 832 "has-touchscreen") || pdata; 833 } 834 835 irq = platform_get_irq(pdev, 0); 836 if (irq < 0) 837 return irq; 838 info->irq = irq; 839 840 if (has_ts) { 841 irq = platform_get_irq(pdev, 1); 842 if (irq == -EPROBE_DEFER) 843 return irq; 844 845 info->tsirq = irq; 846 } else { 847 info->tsirq = -1; 848 } 849 850 info->dev = &pdev->dev; 851 852 init_completion(&info->completion); 853 854 info->clk = devm_clk_get(&pdev->dev, "adc"); 855 if (IS_ERR(info->clk)) { 856 dev_err(&pdev->dev, "failed getting clock, err = %ld\n", 857 PTR_ERR(info->clk)); 858 return PTR_ERR(info->clk); 859 } 860 861 if (info->data->needs_sclk) { 862 info->sclk = devm_clk_get(&pdev->dev, "sclk"); 863 if (IS_ERR(info->sclk)) { 864 dev_err(&pdev->dev, 865 "failed getting sclk clock, err = %ld\n", 866 PTR_ERR(info->sclk)); 867 return PTR_ERR(info->sclk); 868 } 869 } 870 871 info->vdd = devm_regulator_get(&pdev->dev, "vdd"); 872 if (IS_ERR(info->vdd)) 873 return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd), 874 "failed getting regulator"); 875 876 ret = regulator_enable(info->vdd); 877 if (ret) 878 return ret; 879 880 ret = exynos_adc_prepare_clk(info); 881 if (ret) 882 goto err_disable_reg; 883 884 ret = exynos_adc_enable_clk(info); 885 if (ret) 886 goto err_unprepare_clk; 887 888 platform_set_drvdata(pdev, indio_dev); 889 890 indio_dev->name = dev_name(&pdev->dev); 891 indio_dev->info = &exynos_adc_iio_info; 892 indio_dev->modes = INDIO_DIRECT_MODE; 893 indio_dev->channels = exynos_adc_iio_channels; 894 indio_dev->num_channels = info->data->num_channels; 895 896 mutex_init(&info->lock); 897 898 ret = request_irq(info->irq, exynos_adc_isr, 899 0, dev_name(&pdev->dev), info); 900 if (ret < 0) { 901 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", 902 info->irq); 903 goto err_disable_clk; 904 } 905 906 ret = iio_device_register(indio_dev); 907 if (ret) 908 goto err_irq; 909 910 if (info->data->init_hw) 911 info->data->init_hw(info); 912 913 if (pdata) 914 info->delay = pdata->delay; 915 else 916 info->delay = 10000; 917 918 if (has_ts) 919 ret = exynos_adc_ts_init(info); 920 if (ret) 921 goto err_iio; 922 923 ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev); 924 if (ret < 0) { 925 dev_err(&pdev->dev, "failed adding child nodes\n"); 926 goto err_of_populate; 927 } 928 929 return 0; 930 931 err_of_populate: 932 device_for_each_child(&indio_dev->dev, NULL, 933 exynos_adc_remove_devices); 934 if (has_ts) { 935 input_unregister_device(info->input); 936 free_irq(info->tsirq, info); 937 } 938 err_iio: 939 iio_device_unregister(indio_dev); 940 err_irq: 941 free_irq(info->irq, info); 942 err_disable_clk: 943 if (info->data->exit_hw) 944 info->data->exit_hw(info); 945 exynos_adc_disable_clk(info); 946 err_unprepare_clk: 947 exynos_adc_unprepare_clk(info); 948 err_disable_reg: 949 regulator_disable(info->vdd); 950 return ret; 951 } 952 953 static void exynos_adc_remove(struct platform_device *pdev) 954 { 955 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 956 struct exynos_adc *info = iio_priv(indio_dev); 957 958 if (IS_REACHABLE(CONFIG_INPUT) && info->input) { 959 free_irq(info->tsirq, info); 960 input_unregister_device(info->input); 961 } 962 device_for_each_child(&indio_dev->dev, NULL, 963 exynos_adc_remove_devices); 964 iio_device_unregister(indio_dev); 965 free_irq(info->irq, info); 966 if (info->data->exit_hw) 967 info->data->exit_hw(info); 968 exynos_adc_disable_clk(info); 969 exynos_adc_unprepare_clk(info); 970 regulator_disable(info->vdd); 971 } 972 973 static int exynos_adc_suspend(struct device *dev) 974 { 975 struct iio_dev *indio_dev = dev_get_drvdata(dev); 976 struct exynos_adc *info = iio_priv(indio_dev); 977 978 if (info->data->exit_hw) 979 info->data->exit_hw(info); 980 exynos_adc_disable_clk(info); 981 regulator_disable(info->vdd); 982 983 return 0; 984 } 985 986 static int exynos_adc_resume(struct device *dev) 987 { 988 struct iio_dev *indio_dev = dev_get_drvdata(dev); 989 struct exynos_adc *info = iio_priv(indio_dev); 990 int ret; 991 992 ret = regulator_enable(info->vdd); 993 if (ret) 994 return ret; 995 996 ret = exynos_adc_enable_clk(info); 997 if (ret) 998 return ret; 999 1000 if (info->data->init_hw) 1001 info->data->init_hw(info); 1002 1003 return 0; 1004 } 1005 1006 static DEFINE_SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops, exynos_adc_suspend, 1007 exynos_adc_resume); 1008 1009 static struct platform_driver exynos_adc_driver = { 1010 .probe = exynos_adc_probe, 1011 .remove_new = exynos_adc_remove, 1012 .driver = { 1013 .name = "exynos-adc", 1014 .of_match_table = exynos_adc_match, 1015 .pm = pm_sleep_ptr(&exynos_adc_pm_ops), 1016 }, 1017 }; 1018 1019 module_platform_driver(exynos_adc_driver); 1020 1021 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>"); 1022 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver"); 1023 MODULE_LICENSE("GPL v2"); 1024