xref: /linux/drivers/iio/adc/exynos_adc.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4  *
5  *  8 ~ 10 channel, 10/12-bit ADC
6  *
7  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_platform.h>
24 #include <linux/err.h>
25 #include <linux/input.h>
26 
27 #include <linux/iio/iio.h>
28 #include <linux/iio/machine.h>
29 #include <linux/iio/driver.h>
30 #include <linux/mfd/syscon.h>
31 #include <linux/regmap.h>
32 
33 #include <linux/platform_data/touchscreen-s3c2410.h>
34 
35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36 #define ADC_V1_CON(x)		((x) + 0x00)
37 #define ADC_V1_TSC(x)		((x) + 0x04)
38 #define ADC_V1_DLY(x)		((x) + 0x08)
39 #define ADC_V1_DATX(x)		((x) + 0x0C)
40 #define ADC_V1_DATY(x)		((x) + 0x10)
41 #define ADC_V1_UPDN(x)		((x) + 0x14)
42 #define ADC_V1_INTCLR(x)	((x) + 0x18)
43 #define ADC_V1_MUX(x)		((x) + 0x1c)
44 #define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
45 
46 /* S3C2410 ADC registers definitions */
47 #define ADC_S3C2410_MUX(x)	((x) + 0x18)
48 
49 /* Future ADC_V2 registers definitions */
50 #define ADC_V2_CON1(x)		((x) + 0x00)
51 #define ADC_V2_CON2(x)		((x) + 0x04)
52 #define ADC_V2_STAT(x)		((x) + 0x08)
53 #define ADC_V2_INT_EN(x)	((x) + 0x10)
54 #define ADC_V2_INT_ST(x)	((x) + 0x14)
55 #define ADC_V2_VER(x)		((x) + 0x20)
56 
57 /* Bit definitions for ADC_V1 */
58 #define ADC_V1_CON_RES		(1u << 16)
59 #define ADC_V1_CON_PRSCEN	(1u << 14)
60 #define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
61 #define ADC_V1_CON_STANDBY	(1u << 2)
62 
63 /* Bit definitions for S3C2410 ADC */
64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65 #define ADC_S3C2410_DATX_MASK	0x3FF
66 #define ADC_S3C2416_CON_RES_SEL	(1u << 3)
67 
68 /* touch screen always uses channel 0 */
69 #define ADC_S3C2410_MUX_TS	0
70 
71 /* ADCTSC Register Bits */
72 #define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
73 #define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
74 #define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
75 #define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
76 #define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
78 #define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
79 #define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
80 
81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82 			 ADC_S3C2410_TSC_YP_SEN | \
83 			 ADC_S3C2410_TSC_XP_SEN | \
84 			 ADC_S3C2410_TSC_XY_PST(3))
85 
86 #define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
87 			 ADC_S3C2410_TSC_YP_SEN | \
88 			 ADC_S3C2410_TSC_XP_SEN | \
89 			 ADC_S3C2410_TSC_AUTO_PST | \
90 			 ADC_S3C2410_TSC_XY_PST(0))
91 
92 /* Bit definitions for ADC_V2 */
93 #define ADC_V2_CON1_SOFT_RESET	(1u << 2)
94 
95 #define ADC_V2_CON2_OSEL	(1u << 10)
96 #define ADC_V2_CON2_ESEL	(1u << 9)
97 #define ADC_V2_CON2_HIGHF	(1u << 8)
98 #define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
99 #define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
100 #define ADC_V2_CON2_ACH_MASK	0xF
101 
102 #define MAX_ADC_V2_CHANNELS		10
103 #define MAX_ADC_V1_CHANNELS		8
104 #define MAX_EXYNOS3250_ADC_CHANNELS	2
105 #define MAX_EXYNOS4212_ADC_CHANNELS	4
106 #define MAX_S5PV210_ADC_CHANNELS	10
107 
108 /* Bit definitions common for ADC_V1 and ADC_V2 */
109 #define ADC_CON_EN_START	(1u << 0)
110 #define ADC_CON_EN_START_MASK	(0x3 << 0)
111 #define ADC_DATX_PRESSED	(1u << 15)
112 #define ADC_DATX_MASK		0xFFF
113 #define ADC_DATY_MASK		0xFFF
114 
115 #define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
116 
117 #define EXYNOS_ADCV1_PHY_OFFSET	0x0718
118 #define EXYNOS_ADCV2_PHY_OFFSET	0x0720
119 
120 struct exynos_adc {
121 	struct exynos_adc_data	*data;
122 	struct device		*dev;
123 	struct input_dev	*input;
124 	void __iomem		*regs;
125 	struct regmap		*pmu_map;
126 	struct clk		*clk;
127 	struct clk		*sclk;
128 	unsigned int		irq;
129 	unsigned int		tsirq;
130 	unsigned int		delay;
131 	struct regulator	*vdd;
132 
133 	struct completion	completion;
134 
135 	u32			value;
136 	unsigned int            version;
137 
138 	bool			read_ts;
139 	u32			ts_x;
140 	u32			ts_y;
141 };
142 
143 struct exynos_adc_data {
144 	int num_channels;
145 	bool needs_sclk;
146 	bool needs_adc_phy;
147 	int phy_offset;
148 	u32 mask;
149 
150 	void (*init_hw)(struct exynos_adc *info);
151 	void (*exit_hw)(struct exynos_adc *info);
152 	void (*clear_irq)(struct exynos_adc *info);
153 	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
154 };
155 
156 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
157 {
158 	if (info->data->needs_sclk)
159 		clk_unprepare(info->sclk);
160 	clk_unprepare(info->clk);
161 }
162 
163 static int exynos_adc_prepare_clk(struct exynos_adc *info)
164 {
165 	int ret;
166 
167 	ret = clk_prepare(info->clk);
168 	if (ret) {
169 		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
170 		return ret;
171 	}
172 
173 	if (info->data->needs_sclk) {
174 		ret = clk_prepare(info->sclk);
175 		if (ret) {
176 			clk_unprepare(info->clk);
177 			dev_err(info->dev,
178 				"failed preparing sclk_adc clock: %d\n", ret);
179 			return ret;
180 		}
181 	}
182 
183 	return 0;
184 }
185 
186 static void exynos_adc_disable_clk(struct exynos_adc *info)
187 {
188 	if (info->data->needs_sclk)
189 		clk_disable(info->sclk);
190 	clk_disable(info->clk);
191 }
192 
193 static int exynos_adc_enable_clk(struct exynos_adc *info)
194 {
195 	int ret;
196 
197 	ret = clk_enable(info->clk);
198 	if (ret) {
199 		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
200 		return ret;
201 	}
202 
203 	if (info->data->needs_sclk) {
204 		ret = clk_enable(info->sclk);
205 		if (ret) {
206 			clk_disable(info->clk);
207 			dev_err(info->dev,
208 				"failed enabling sclk_adc clock: %d\n", ret);
209 			return ret;
210 		}
211 	}
212 
213 	return 0;
214 }
215 
216 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
217 {
218 	u32 con1;
219 
220 	if (info->data->needs_adc_phy)
221 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
222 
223 	/* set default prescaler values and Enable prescaler */
224 	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
225 
226 	/* Enable 12-bit ADC resolution */
227 	con1 |= ADC_V1_CON_RES;
228 	writel(con1, ADC_V1_CON(info->regs));
229 
230 	/* set touchscreen delay */
231 	writel(info->delay, ADC_V1_DLY(info->regs));
232 }
233 
234 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
235 {
236 	u32 con;
237 
238 	if (info->data->needs_adc_phy)
239 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
240 
241 	con = readl(ADC_V1_CON(info->regs));
242 	con |= ADC_V1_CON_STANDBY;
243 	writel(con, ADC_V1_CON(info->regs));
244 }
245 
246 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
247 {
248 	writel(1, ADC_V1_INTCLR(info->regs));
249 }
250 
251 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
252 				     unsigned long addr)
253 {
254 	u32 con1;
255 
256 	writel(addr, ADC_V1_MUX(info->regs));
257 
258 	con1 = readl(ADC_V1_CON(info->regs));
259 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
260 }
261 
262 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
263 static const struct exynos_adc_data exynos4212_adc_data = {
264 	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
265 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
266 	.needs_adc_phy	= true,
267 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
268 
269 	.init_hw	= exynos_adc_v1_init_hw,
270 	.exit_hw	= exynos_adc_v1_exit_hw,
271 	.clear_irq	= exynos_adc_v1_clear_irq,
272 	.start_conv	= exynos_adc_v1_start_conv,
273 };
274 
275 static const struct exynos_adc_data exynos_adc_v1_data = {
276 	.num_channels	= MAX_ADC_V1_CHANNELS,
277 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
278 	.needs_adc_phy	= true,
279 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
280 
281 	.init_hw	= exynos_adc_v1_init_hw,
282 	.exit_hw	= exynos_adc_v1_exit_hw,
283 	.clear_irq	= exynos_adc_v1_clear_irq,
284 	.start_conv	= exynos_adc_v1_start_conv,
285 };
286 
287 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
288 	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
289 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
290 
291 	.init_hw	= exynos_adc_v1_init_hw,
292 	.exit_hw	= exynos_adc_v1_exit_hw,
293 	.clear_irq	= exynos_adc_v1_clear_irq,
294 	.start_conv	= exynos_adc_v1_start_conv,
295 };
296 
297 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
298 					  unsigned long addr)
299 {
300 	u32 con1;
301 
302 	/* Enable 12 bit ADC resolution */
303 	con1 = readl(ADC_V1_CON(info->regs));
304 	con1 |= ADC_S3C2416_CON_RES_SEL;
305 	writel(con1, ADC_V1_CON(info->regs));
306 
307 	/* Select channel for S3C2416 */
308 	writel(addr, ADC_S3C2410_MUX(info->regs));
309 
310 	con1 = readl(ADC_V1_CON(info->regs));
311 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
312 }
313 
314 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
315 	.num_channels	= MAX_ADC_V1_CHANNELS,
316 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
317 
318 	.init_hw	= exynos_adc_v1_init_hw,
319 	.exit_hw	= exynos_adc_v1_exit_hw,
320 	.start_conv	= exynos_adc_s3c2416_start_conv,
321 };
322 
323 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
324 					  unsigned long addr)
325 {
326 	u32 con1;
327 
328 	/* Select channel for S3C2433 */
329 	writel(addr, ADC_S3C2410_MUX(info->regs));
330 
331 	con1 = readl(ADC_V1_CON(info->regs));
332 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
333 }
334 
335 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
336 	.num_channels	= MAX_ADC_V1_CHANNELS,
337 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
338 
339 	.init_hw	= exynos_adc_v1_init_hw,
340 	.exit_hw	= exynos_adc_v1_exit_hw,
341 	.start_conv	= exynos_adc_s3c2443_start_conv,
342 };
343 
344 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
345 					  unsigned long addr)
346 {
347 	u32 con1;
348 
349 	con1 = readl(ADC_V1_CON(info->regs));
350 	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
351 	con1 |= ADC_S3C2410_CON_SELMUX(addr);
352 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
353 }
354 
355 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
356 	.num_channels	= MAX_ADC_V1_CHANNELS,
357 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
358 
359 	.init_hw	= exynos_adc_v1_init_hw,
360 	.exit_hw	= exynos_adc_v1_exit_hw,
361 	.start_conv	= exynos_adc_s3c64xx_start_conv,
362 };
363 
364 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
365 	.num_channels	= MAX_ADC_V1_CHANNELS,
366 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
367 
368 	.init_hw	= exynos_adc_v1_init_hw,
369 	.exit_hw	= exynos_adc_v1_exit_hw,
370 	.clear_irq	= exynos_adc_v1_clear_irq,
371 	.start_conv	= exynos_adc_s3c64xx_start_conv,
372 };
373 
374 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
375 {
376 	u32 con1, con2;
377 
378 	if (info->data->needs_adc_phy)
379 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
380 
381 	con1 = ADC_V2_CON1_SOFT_RESET;
382 	writel(con1, ADC_V2_CON1(info->regs));
383 
384 	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
385 		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
386 	writel(con2, ADC_V2_CON2(info->regs));
387 
388 	/* Enable interrupts */
389 	writel(1, ADC_V2_INT_EN(info->regs));
390 }
391 
392 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
393 {
394 	u32 con;
395 
396 	if (info->data->needs_adc_phy)
397 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
398 
399 	con = readl(ADC_V2_CON1(info->regs));
400 	con &= ~ADC_CON_EN_START;
401 	writel(con, ADC_V2_CON1(info->regs));
402 }
403 
404 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
405 {
406 	writel(1, ADC_V2_INT_ST(info->regs));
407 }
408 
409 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
410 				     unsigned long addr)
411 {
412 	u32 con1, con2;
413 
414 	con2 = readl(ADC_V2_CON2(info->regs));
415 	con2 &= ~ADC_V2_CON2_ACH_MASK;
416 	con2 |= ADC_V2_CON2_ACH_SEL(addr);
417 	writel(con2, ADC_V2_CON2(info->regs));
418 
419 	con1 = readl(ADC_V2_CON1(info->regs));
420 	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
421 }
422 
423 static const struct exynos_adc_data exynos_adc_v2_data = {
424 	.num_channels	= MAX_ADC_V2_CHANNELS,
425 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
426 	.needs_adc_phy	= true,
427 	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
428 
429 	.init_hw	= exynos_adc_v2_init_hw,
430 	.exit_hw	= exynos_adc_v2_exit_hw,
431 	.clear_irq	= exynos_adc_v2_clear_irq,
432 	.start_conv	= exynos_adc_v2_start_conv,
433 };
434 
435 static const struct exynos_adc_data exynos3250_adc_data = {
436 	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
437 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
438 	.needs_sclk	= true,
439 	.needs_adc_phy	= true,
440 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
441 
442 	.init_hw	= exynos_adc_v2_init_hw,
443 	.exit_hw	= exynos_adc_v2_exit_hw,
444 	.clear_irq	= exynos_adc_v2_clear_irq,
445 	.start_conv	= exynos_adc_v2_start_conv,
446 };
447 
448 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
449 {
450 	u32 con1, con2;
451 
452 	if (info->data->needs_adc_phy)
453 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
454 
455 	con1 = ADC_V2_CON1_SOFT_RESET;
456 	writel(con1, ADC_V2_CON1(info->regs));
457 
458 	con2 = readl(ADC_V2_CON2(info->regs));
459 	con2 &= ~ADC_V2_CON2_C_TIME(7);
460 	con2 |= ADC_V2_CON2_C_TIME(0);
461 	writel(con2, ADC_V2_CON2(info->regs));
462 
463 	/* Enable interrupts */
464 	writel(1, ADC_V2_INT_EN(info->regs));
465 }
466 
467 static const struct exynos_adc_data exynos7_adc_data = {
468 	.num_channels	= MAX_ADC_V1_CHANNELS,
469 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
470 
471 	.init_hw	= exynos_adc_exynos7_init_hw,
472 	.exit_hw	= exynos_adc_v2_exit_hw,
473 	.clear_irq	= exynos_adc_v2_clear_irq,
474 	.start_conv	= exynos_adc_v2_start_conv,
475 };
476 
477 static const struct of_device_id exynos_adc_match[] = {
478 	{
479 		.compatible = "samsung,s3c2410-adc",
480 		.data = &exynos_adc_s3c24xx_data,
481 	}, {
482 		.compatible = "samsung,s3c2416-adc",
483 		.data = &exynos_adc_s3c2416_data,
484 	}, {
485 		.compatible = "samsung,s3c2440-adc",
486 		.data = &exynos_adc_s3c24xx_data,
487 	}, {
488 		.compatible = "samsung,s3c2443-adc",
489 		.data = &exynos_adc_s3c2443_data,
490 	}, {
491 		.compatible = "samsung,s3c6410-adc",
492 		.data = &exynos_adc_s3c64xx_data,
493 	}, {
494 		.compatible = "samsung,s5pv210-adc",
495 		.data = &exynos_adc_s5pv210_data,
496 	}, {
497 		.compatible = "samsung,exynos4212-adc",
498 		.data = &exynos4212_adc_data,
499 	}, {
500 		.compatible = "samsung,exynos-adc-v1",
501 		.data = &exynos_adc_v1_data,
502 	}, {
503 		.compatible = "samsung,exynos-adc-v2",
504 		.data = &exynos_adc_v2_data,
505 	}, {
506 		.compatible = "samsung,exynos3250-adc",
507 		.data = &exynos3250_adc_data,
508 	}, {
509 		.compatible = "samsung,exynos7-adc",
510 		.data = &exynos7_adc_data,
511 	},
512 	{},
513 };
514 MODULE_DEVICE_TABLE(of, exynos_adc_match);
515 
516 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
517 {
518 	const struct of_device_id *match;
519 
520 	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
521 	return (struct exynos_adc_data *)match->data;
522 }
523 
524 static int exynos_read_raw(struct iio_dev *indio_dev,
525 				struct iio_chan_spec const *chan,
526 				int *val,
527 				int *val2,
528 				long mask)
529 {
530 	struct exynos_adc *info = iio_priv(indio_dev);
531 	unsigned long timeout;
532 	int ret;
533 
534 	if (mask != IIO_CHAN_INFO_RAW)
535 		return -EINVAL;
536 
537 	mutex_lock(&indio_dev->mlock);
538 	reinit_completion(&info->completion);
539 
540 	/* Select the channel to be used and Trigger conversion */
541 	if (info->data->start_conv)
542 		info->data->start_conv(info, chan->address);
543 
544 	timeout = wait_for_completion_timeout(&info->completion,
545 					      EXYNOS_ADC_TIMEOUT);
546 	if (timeout == 0) {
547 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
548 		if (info->data->init_hw)
549 			info->data->init_hw(info);
550 		ret = -ETIMEDOUT;
551 	} else {
552 		*val = info->value;
553 		*val2 = 0;
554 		ret = IIO_VAL_INT;
555 	}
556 
557 	mutex_unlock(&indio_dev->mlock);
558 
559 	return ret;
560 }
561 
562 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
563 {
564 	struct exynos_adc *info = iio_priv(indio_dev);
565 	unsigned long timeout;
566 	int ret;
567 
568 	mutex_lock(&indio_dev->mlock);
569 	info->read_ts = true;
570 
571 	reinit_completion(&info->completion);
572 
573 	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
574 	       ADC_V1_TSC(info->regs));
575 
576 	/* Select the ts channel to be used and Trigger conversion */
577 	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
578 
579 	timeout = wait_for_completion_timeout(&info->completion,
580 					      EXYNOS_ADC_TIMEOUT);
581 	if (timeout == 0) {
582 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
583 		if (info->data->init_hw)
584 			info->data->init_hw(info);
585 		ret = -ETIMEDOUT;
586 	} else {
587 		*x = info->ts_x;
588 		*y = info->ts_y;
589 		ret = 0;
590 	}
591 
592 	info->read_ts = false;
593 	mutex_unlock(&indio_dev->mlock);
594 
595 	return ret;
596 }
597 
598 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
599 {
600 	struct exynos_adc *info = dev_id;
601 	u32 mask = info->data->mask;
602 
603 	/* Read value */
604 	if (info->read_ts) {
605 		info->ts_x = readl(ADC_V1_DATX(info->regs));
606 		info->ts_y = readl(ADC_V1_DATY(info->regs));
607 		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
608 	} else {
609 		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
610 	}
611 
612 	/* clear irq */
613 	if (info->data->clear_irq)
614 		info->data->clear_irq(info);
615 
616 	complete(&info->completion);
617 
618 	return IRQ_HANDLED;
619 }
620 
621 /*
622  * Here we (ab)use a threaded interrupt handler to stay running
623  * for as long as the touchscreen remains pressed, we report
624  * a new event with the latest data and then sleep until the
625  * next timer tick. This mirrors the behavior of the old
626  * driver, with much less code.
627  */
628 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
629 {
630 	struct exynos_adc *info = dev_id;
631 	struct iio_dev *dev = dev_get_drvdata(info->dev);
632 	u32 x, y;
633 	bool pressed;
634 	int ret;
635 
636 	while (info->input->users) {
637 		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
638 		if (ret == -ETIMEDOUT)
639 			break;
640 
641 		pressed = x & y & ADC_DATX_PRESSED;
642 		if (!pressed) {
643 			input_report_key(info->input, BTN_TOUCH, 0);
644 			input_sync(info->input);
645 			break;
646 		}
647 
648 		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
649 		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
650 		input_report_key(info->input, BTN_TOUCH, 1);
651 		input_sync(info->input);
652 
653 		usleep_range(1000, 1100);
654 	}
655 
656 	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
657 
658 	return IRQ_HANDLED;
659 }
660 
661 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
662 			      unsigned reg, unsigned writeval,
663 			      unsigned *readval)
664 {
665 	struct exynos_adc *info = iio_priv(indio_dev);
666 
667 	if (readval == NULL)
668 		return -EINVAL;
669 
670 	*readval = readl(info->regs + reg);
671 
672 	return 0;
673 }
674 
675 static const struct iio_info exynos_adc_iio_info = {
676 	.read_raw = &exynos_read_raw,
677 	.debugfs_reg_access = &exynos_adc_reg_access,
678 };
679 
680 #define ADC_CHANNEL(_index, _id) {			\
681 	.type = IIO_VOLTAGE,				\
682 	.indexed = 1,					\
683 	.channel = _index,				\
684 	.address = _index,				\
685 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
686 	.datasheet_name = _id,				\
687 }
688 
689 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
690 	ADC_CHANNEL(0, "adc0"),
691 	ADC_CHANNEL(1, "adc1"),
692 	ADC_CHANNEL(2, "adc2"),
693 	ADC_CHANNEL(3, "adc3"),
694 	ADC_CHANNEL(4, "adc4"),
695 	ADC_CHANNEL(5, "adc5"),
696 	ADC_CHANNEL(6, "adc6"),
697 	ADC_CHANNEL(7, "adc7"),
698 	ADC_CHANNEL(8, "adc8"),
699 	ADC_CHANNEL(9, "adc9"),
700 };
701 
702 static int exynos_adc_remove_devices(struct device *dev, void *c)
703 {
704 	struct platform_device *pdev = to_platform_device(dev);
705 
706 	platform_device_unregister(pdev);
707 
708 	return 0;
709 }
710 
711 static int exynos_adc_ts_open(struct input_dev *dev)
712 {
713 	struct exynos_adc *info = input_get_drvdata(dev);
714 
715 	enable_irq(info->tsirq);
716 
717 	return 0;
718 }
719 
720 static void exynos_adc_ts_close(struct input_dev *dev)
721 {
722 	struct exynos_adc *info = input_get_drvdata(dev);
723 
724 	disable_irq(info->tsirq);
725 }
726 
727 static int exynos_adc_ts_init(struct exynos_adc *info)
728 {
729 	int ret;
730 
731 	if (info->tsirq <= 0)
732 		return -ENODEV;
733 
734 	info->input = input_allocate_device();
735 	if (!info->input)
736 		return -ENOMEM;
737 
738 	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
739 	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
740 
741 	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
742 	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
743 
744 	info->input->name = "S3C24xx TouchScreen";
745 	info->input->id.bustype = BUS_HOST;
746 	info->input->open = exynos_adc_ts_open;
747 	info->input->close = exynos_adc_ts_close;
748 
749 	input_set_drvdata(info->input, info);
750 
751 	ret = input_register_device(info->input);
752 	if (ret) {
753 		input_free_device(info->input);
754 		return ret;
755 	}
756 
757 	disable_irq(info->tsirq);
758 	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
759 				   IRQF_ONESHOT, "touchscreen", info);
760 	if (ret)
761 		input_unregister_device(info->input);
762 
763 	return ret;
764 }
765 
766 static int exynos_adc_probe(struct platform_device *pdev)
767 {
768 	struct exynos_adc *info = NULL;
769 	struct device_node *np = pdev->dev.of_node;
770 	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
771 	struct iio_dev *indio_dev = NULL;
772 	bool has_ts = false;
773 	int ret = -ENODEV;
774 	int irq;
775 
776 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
777 	if (!indio_dev) {
778 		dev_err(&pdev->dev, "failed allocating iio device\n");
779 		return -ENOMEM;
780 	}
781 
782 	info = iio_priv(indio_dev);
783 
784 	info->data = exynos_adc_get_data(pdev);
785 	if (!info->data) {
786 		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
787 		return -EINVAL;
788 	}
789 
790 	info->regs = devm_platform_ioremap_resource(pdev, 0);
791 	if (IS_ERR(info->regs))
792 		return PTR_ERR(info->regs);
793 
794 
795 	if (info->data->needs_adc_phy) {
796 		info->pmu_map = syscon_regmap_lookup_by_phandle(
797 					pdev->dev.of_node,
798 					"samsung,syscon-phandle");
799 		if (IS_ERR(info->pmu_map)) {
800 			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
801 			return PTR_ERR(info->pmu_map);
802 		}
803 	}
804 
805 	irq = platform_get_irq(pdev, 0);
806 	if (irq < 0)
807 		return irq;
808 	info->irq = irq;
809 
810 	irq = platform_get_irq(pdev, 1);
811 	if (irq == -EPROBE_DEFER)
812 		return irq;
813 
814 	info->tsirq = irq;
815 
816 	info->dev = &pdev->dev;
817 
818 	init_completion(&info->completion);
819 
820 	info->clk = devm_clk_get(&pdev->dev, "adc");
821 	if (IS_ERR(info->clk)) {
822 		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
823 							PTR_ERR(info->clk));
824 		return PTR_ERR(info->clk);
825 	}
826 
827 	if (info->data->needs_sclk) {
828 		info->sclk = devm_clk_get(&pdev->dev, "sclk");
829 		if (IS_ERR(info->sclk)) {
830 			dev_err(&pdev->dev,
831 				"failed getting sclk clock, err = %ld\n",
832 				PTR_ERR(info->sclk));
833 			return PTR_ERR(info->sclk);
834 		}
835 	}
836 
837 	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
838 	if (IS_ERR(info->vdd)) {
839 		dev_err(&pdev->dev, "failed getting regulator, err = %ld\n",
840 							PTR_ERR(info->vdd));
841 		return PTR_ERR(info->vdd);
842 	}
843 
844 	ret = regulator_enable(info->vdd);
845 	if (ret)
846 		return ret;
847 
848 	ret = exynos_adc_prepare_clk(info);
849 	if (ret)
850 		goto err_disable_reg;
851 
852 	ret = exynos_adc_enable_clk(info);
853 	if (ret)
854 		goto err_unprepare_clk;
855 
856 	platform_set_drvdata(pdev, indio_dev);
857 
858 	indio_dev->name = dev_name(&pdev->dev);
859 	indio_dev->dev.parent = &pdev->dev;
860 	indio_dev->dev.of_node = pdev->dev.of_node;
861 	indio_dev->info = &exynos_adc_iio_info;
862 	indio_dev->modes = INDIO_DIRECT_MODE;
863 	indio_dev->channels = exynos_adc_iio_channels;
864 	indio_dev->num_channels = info->data->num_channels;
865 
866 	ret = request_irq(info->irq, exynos_adc_isr,
867 					0, dev_name(&pdev->dev), info);
868 	if (ret < 0) {
869 		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
870 							info->irq);
871 		goto err_disable_clk;
872 	}
873 
874 	ret = iio_device_register(indio_dev);
875 	if (ret)
876 		goto err_irq;
877 
878 	if (info->data->init_hw)
879 		info->data->init_hw(info);
880 
881 	/* leave out any TS related code if unreachable */
882 	if (IS_REACHABLE(CONFIG_INPUT)) {
883 		has_ts = of_property_read_bool(pdev->dev.of_node,
884 					       "has-touchscreen") || pdata;
885 	}
886 
887 	if (pdata)
888 		info->delay = pdata->delay;
889 	else
890 		info->delay = 10000;
891 
892 	if (has_ts)
893 		ret = exynos_adc_ts_init(info);
894 	if (ret)
895 		goto err_iio;
896 
897 	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
898 	if (ret < 0) {
899 		dev_err(&pdev->dev, "failed adding child nodes\n");
900 		goto err_of_populate;
901 	}
902 
903 	return 0;
904 
905 err_of_populate:
906 	device_for_each_child(&indio_dev->dev, NULL,
907 				exynos_adc_remove_devices);
908 	if (has_ts) {
909 		input_unregister_device(info->input);
910 		free_irq(info->tsirq, info);
911 	}
912 err_iio:
913 	iio_device_unregister(indio_dev);
914 err_irq:
915 	free_irq(info->irq, info);
916 err_disable_clk:
917 	if (info->data->exit_hw)
918 		info->data->exit_hw(info);
919 	exynos_adc_disable_clk(info);
920 err_unprepare_clk:
921 	exynos_adc_unprepare_clk(info);
922 err_disable_reg:
923 	regulator_disable(info->vdd);
924 	return ret;
925 }
926 
927 static int exynos_adc_remove(struct platform_device *pdev)
928 {
929 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
930 	struct exynos_adc *info = iio_priv(indio_dev);
931 
932 	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
933 		free_irq(info->tsirq, info);
934 		input_unregister_device(info->input);
935 	}
936 	device_for_each_child(&indio_dev->dev, NULL,
937 				exynos_adc_remove_devices);
938 	iio_device_unregister(indio_dev);
939 	free_irq(info->irq, info);
940 	if (info->data->exit_hw)
941 		info->data->exit_hw(info);
942 	exynos_adc_disable_clk(info);
943 	exynos_adc_unprepare_clk(info);
944 	regulator_disable(info->vdd);
945 
946 	return 0;
947 }
948 
949 #ifdef CONFIG_PM_SLEEP
950 static int exynos_adc_suspend(struct device *dev)
951 {
952 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
953 	struct exynos_adc *info = iio_priv(indio_dev);
954 
955 	if (info->data->exit_hw)
956 		info->data->exit_hw(info);
957 	exynos_adc_disable_clk(info);
958 	regulator_disable(info->vdd);
959 
960 	return 0;
961 }
962 
963 static int exynos_adc_resume(struct device *dev)
964 {
965 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
966 	struct exynos_adc *info = iio_priv(indio_dev);
967 	int ret;
968 
969 	ret = regulator_enable(info->vdd);
970 	if (ret)
971 		return ret;
972 
973 	ret = exynos_adc_enable_clk(info);
974 	if (ret)
975 		return ret;
976 
977 	if (info->data->init_hw)
978 		info->data->init_hw(info);
979 
980 	return 0;
981 }
982 #endif
983 
984 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
985 			exynos_adc_suspend,
986 			exynos_adc_resume);
987 
988 static struct platform_driver exynos_adc_driver = {
989 	.probe		= exynos_adc_probe,
990 	.remove		= exynos_adc_remove,
991 	.driver		= {
992 		.name	= "exynos-adc",
993 		.of_match_table = exynos_adc_match,
994 		.pm	= &exynos_adc_pm_ops,
995 	},
996 };
997 
998 module_platform_driver(exynos_adc_driver);
999 
1000 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1001 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1002 MODULE_LICENSE("GPL v2");
1003