xref: /linux/drivers/iio/adc/ep93xx_adc.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for ADC module on the Cirrus Logic EP93xx series of SoCs
4  *
5  * Copyright (C) 2015 Alexander Sverdlin
6  *
7  * The driver uses polling to get the conversion status. According to EP93xx
8  * datasheets, reading ADCResult register starts the conversion, but user is also
9  * responsible for ensuring that delay between adjacent conversion triggers is
10  * long enough so that maximum allowed conversion rate is not exceeded. This
11  * basically renders IRQ mode unusable.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/iio/iio.h>
19 #include <linux/io.h>
20 #include <linux/irqflags.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 
25 /*
26  * This code could benefit from real HR Timers, but jiffy granularity would
27  * lower ADC conversion rate down to CONFIG_HZ, so we fallback to busy wait
28  * in such case.
29  *
30  * HR Timers-based version loads CPU only up to 10% during back to back ADC
31  * conversion, while busy wait-based version consumes whole CPU power.
32  */
33 #ifdef CONFIG_HIGH_RES_TIMERS
34 #define ep93xx_adc_delay(usmin, usmax) usleep_range(usmin, usmax)
35 #else
36 #define ep93xx_adc_delay(usmin, usmax) udelay(usmin)
37 #endif
38 
39 #define EP93XX_ADC_RESULT	0x08
40 #define   EP93XX_ADC_SDR	BIT(31)
41 #define EP93XX_ADC_SWITCH	0x18
42 #define EP93XX_ADC_SW_LOCK	0x20
43 
44 struct ep93xx_adc_priv {
45 	struct clk *clk;
46 	void __iomem *base;
47 	int lastch;
48 	struct mutex lock;
49 };
50 
51 #define EP93XX_ADC_CH(index, dname, swcfg) {			\
52 	.type = IIO_VOLTAGE,					\
53 	.indexed = 1,						\
54 	.channel = index,					\
55 	.address = swcfg,					\
56 	.datasheet_name = dname,				\
57 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
58 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE) |	\
59 				   BIT(IIO_CHAN_INFO_OFFSET),	\
60 }
61 
62 /*
63  * Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets.
64  * EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is
65  * not defined. So the last three are numbered randomly, let's say.
66  */
67 static const struct iio_chan_spec ep93xx_adc_channels[8] = {
68 	EP93XX_ADC_CH(0, "YM",	0x608),
69 	EP93XX_ADC_CH(1, "SXP",	0x680),
70 	EP93XX_ADC_CH(2, "SXM",	0x640),
71 	EP93XX_ADC_CH(3, "SYP",	0x620),
72 	EP93XX_ADC_CH(4, "SYM",	0x610),
73 	EP93XX_ADC_CH(5, "XP",	0x601),
74 	EP93XX_ADC_CH(6, "XM",	0x602),
75 	EP93XX_ADC_CH(7, "YP",	0x604),
76 };
77 
78 static int ep93xx_read_raw(struct iio_dev *iiodev,
79 			   struct iio_chan_spec const *channel, int *value,
80 			   int *shift, long mask)
81 {
82 	struct ep93xx_adc_priv *priv = iio_priv(iiodev);
83 	unsigned long timeout;
84 	int ret;
85 
86 	switch (mask) {
87 	case IIO_CHAN_INFO_RAW:
88 		mutex_lock(&priv->lock);
89 		if (priv->lastch != channel->channel) {
90 			priv->lastch = channel->channel;
91 			/*
92 			 * Switch register is software-locked, unlocking must be
93 			 * immediately followed by write
94 			 */
95 			local_irq_disable();
96 			writel_relaxed(0xAA, priv->base + EP93XX_ADC_SW_LOCK);
97 			writel_relaxed(channel->address,
98 				       priv->base + EP93XX_ADC_SWITCH);
99 			local_irq_enable();
100 			/*
101 			 * Settling delay depends on module clock and could be
102 			 * 2ms or 500us
103 			 */
104 			ep93xx_adc_delay(2000, 2000);
105 		}
106 		/* Start the conversion, eventually discarding old result */
107 		readl_relaxed(priv->base + EP93XX_ADC_RESULT);
108 		/* Ensure maximum conversion rate is not exceeded */
109 		ep93xx_adc_delay(DIV_ROUND_UP(1000000, 925),
110 				 DIV_ROUND_UP(1000000, 925));
111 		/* At this point conversion must be completed, but anyway... */
112 		ret = IIO_VAL_INT;
113 		timeout = jiffies + msecs_to_jiffies(1) + 1;
114 		while (1) {
115 			u32 t;
116 
117 			t = readl_relaxed(priv->base + EP93XX_ADC_RESULT);
118 			if (t & EP93XX_ADC_SDR) {
119 				*value = sign_extend32(t, 15);
120 				break;
121 			}
122 
123 			if (time_after(jiffies, timeout)) {
124 				dev_err(&iiodev->dev, "Conversion timeout\n");
125 				ret = -ETIMEDOUT;
126 				break;
127 			}
128 
129 			cpu_relax();
130 		}
131 		mutex_unlock(&priv->lock);
132 		return ret;
133 
134 	case IIO_CHAN_INFO_OFFSET:
135 		/* According to datasheet, range is -25000..25000 */
136 		*value = 25000;
137 		return IIO_VAL_INT;
138 
139 	case IIO_CHAN_INFO_SCALE:
140 		/* Typical supply voltage is 3.3v */
141 		*value = (1ULL << 32) * 3300 / 50000;
142 		*shift = 32;
143 		return IIO_VAL_FRACTIONAL_LOG2;
144 	}
145 
146 	return -EINVAL;
147 }
148 
149 static const struct iio_info ep93xx_adc_info = {
150 	.read_raw = ep93xx_read_raw,
151 };
152 
153 static int ep93xx_adc_probe(struct platform_device *pdev)
154 {
155 	int ret;
156 	struct iio_dev *iiodev;
157 	struct ep93xx_adc_priv *priv;
158 	struct clk *pclk;
159 	struct resource *res;
160 
161 	iiodev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
162 	if (!iiodev)
163 		return -ENOMEM;
164 	priv = iio_priv(iiodev);
165 
166 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
167 	priv->base = devm_ioremap_resource(&pdev->dev, res);
168 	if (IS_ERR(priv->base)) {
169 		dev_err(&pdev->dev, "Cannot map memory resource\n");
170 		return PTR_ERR(priv->base);
171 	}
172 
173 	iiodev->dev.parent = &pdev->dev;
174 	iiodev->name = dev_name(&pdev->dev);
175 	iiodev->modes = INDIO_DIRECT_MODE;
176 	iiodev->info = &ep93xx_adc_info;
177 	iiodev->num_channels = ARRAY_SIZE(ep93xx_adc_channels);
178 	iiodev->channels = ep93xx_adc_channels;
179 
180 	priv->lastch = -1;
181 	mutex_init(&priv->lock);
182 
183 	platform_set_drvdata(pdev, iiodev);
184 
185 	priv->clk = devm_clk_get(&pdev->dev, NULL);
186 	if (IS_ERR(priv->clk)) {
187 		dev_err(&pdev->dev, "Cannot obtain clock\n");
188 		return PTR_ERR(priv->clk);
189 	}
190 
191 	pclk = clk_get_parent(priv->clk);
192 	if (!pclk) {
193 		dev_warn(&pdev->dev, "Cannot obtain parent clock\n");
194 	} else {
195 		/*
196 		 * This is actually a place for improvement:
197 		 * EP93xx ADC supports two clock divisors -- 4 and 16,
198 		 * resulting in conversion rates 3750 and 925 samples per second
199 		 * with 500us or 2ms settling time respectively.
200 		 * One might find this interesting enough to be configurable.
201 		 */
202 		ret = clk_set_rate(priv->clk, clk_get_rate(pclk) / 16);
203 		if (ret)
204 			dev_warn(&pdev->dev, "Cannot set clock rate\n");
205 		/*
206 		 * We can tolerate rate setting failure because the module should
207 		 * work in any case.
208 		 */
209 	}
210 
211 	ret = clk_enable(priv->clk);
212 	if (ret) {
213 		dev_err(&pdev->dev, "Cannot enable clock\n");
214 		return ret;
215 	}
216 
217 	ret = iio_device_register(iiodev);
218 	if (ret)
219 		clk_disable(priv->clk);
220 
221 	return ret;
222 }
223 
224 static int ep93xx_adc_remove(struct platform_device *pdev)
225 {
226 	struct iio_dev *iiodev = platform_get_drvdata(pdev);
227 	struct ep93xx_adc_priv *priv = iio_priv(iiodev);
228 
229 	iio_device_unregister(iiodev);
230 	clk_disable(priv->clk);
231 
232 	return 0;
233 }
234 
235 static struct platform_driver ep93xx_adc_driver = {
236 	.driver = {
237 		.name = "ep93xx-adc",
238 	},
239 	.probe = ep93xx_adc_probe,
240 	.remove = ep93xx_adc_remove,
241 };
242 module_platform_driver(ep93xx_adc_driver);
243 
244 MODULE_AUTHOR("Alexander Sverdlin <alexander.sverdlin@gmail.com>");
245 MODULE_DESCRIPTION("Cirrus Logic EP93XX ADC driver");
246 MODULE_LICENSE("GPL");
247 MODULE_ALIAS("platform:ep93xx-adc");
248