1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com> 4 * 5 * Rewritten for Linux IIO framework with some code based on 6 * earlier driver found in the Motorola Linux kernel: 7 * 8 * Copyright (C) 2009-2010 Motorola, Inc. 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/platform_device.h> 20 #include <linux/property.h> 21 #include <linux/regmap.h> 22 23 #include <linux/iio/buffer.h> 24 #include <linux/iio/driver.h> 25 #include <linux/iio/iio.h> 26 #include <linux/iio/kfifo_buf.h> 27 #include <linux/mfd/motorola-cpcap.h> 28 29 /* Register CPCAP_REG_ADCC1 bits */ 30 #define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */ 31 #define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */ 32 #define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */ 33 #define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */ 34 #define CPCAP_BIT_ATOX BIT(11) 35 #define CPCAP_BIT_ATO3 BIT(10) 36 #define CPCAP_BIT_ATO2 BIT(9) 37 #define CPCAP_BIT_ATO1 BIT(8) 38 #define CPCAP_BIT_ATO0 BIT(7) 39 #define CPCAP_BIT_ADA2 BIT(6) 40 #define CPCAP_BIT_ADA1 BIT(5) 41 #define CPCAP_BIT_ADA0 BIT(4) 42 #define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */ 43 #define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */ 44 #define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */ 45 #define CPCAP_BIT_ADEN BIT(0) /* Currently unused */ 46 47 #define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \ 48 CPCAP_BIT_ADC_CLK_SEL0 | \ 49 CPCAP_BIT_RAND1) 50 51 /* Register CPCAP_REG_ADCC2 bits */ 52 #define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */ 53 #define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */ 54 #define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */ 55 #define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */ 56 #define CPCAP_BIT_ATOX_PS_FACTOR BIT(11) 57 #define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10) 58 #define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9) 59 #define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */ 60 #define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */ 61 #define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */ 62 #define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */ 63 #define CPCAP_BIT_LIADC BIT(4) /* Currently unused */ 64 #define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */ 65 #define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */ 66 #define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */ 67 #define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */ 68 69 #define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \ 70 CPCAP_BIT_ADTRIG_DIS | \ 71 CPCAP_BIT_LIADC | \ 72 CPCAP_BIT_TS_M2 | \ 73 CPCAP_BIT_TS_M1) 74 75 #define CPCAP_MAX_TEMP_LVL 27 76 #define CPCAP_FOUR_POINT_TWO_ADC 801 77 #define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530 78 #define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494 79 #define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530 80 #define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494 81 #define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3 82 83 #define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */ 84 85 /* 86 * struct cpcap_adc_ato - timing settings for cpcap adc 87 * 88 * Unfortunately no cpcap documentation available, please document when 89 * using these. 90 */ 91 struct cpcap_adc_ato { 92 unsigned short ato_in; 93 unsigned short atox_in; 94 unsigned short adc_ps_factor_in; 95 unsigned short atox_ps_factor_in; 96 unsigned short ato_out; 97 unsigned short atox_out; 98 unsigned short adc_ps_factor_out; 99 unsigned short atox_ps_factor_out; 100 }; 101 102 /** 103 * struct cpcap_adc - cpcap adc device driver data 104 * @reg: cpcap regmap 105 * @dev: struct device 106 * @vendor: cpcap vendor 107 * @irq: interrupt 108 * @lock: mutex 109 * @ato: request timings 110 * @wq_data_avail: work queue 111 * @done: work done 112 */ 113 struct cpcap_adc { 114 struct regmap *reg; 115 struct device *dev; 116 u16 vendor; 117 int irq; 118 struct mutex lock; /* ADC register access lock */ 119 const struct cpcap_adc_ato *ato; 120 wait_queue_head_t wq_data_avail; 121 bool done; 122 }; 123 124 /* 125 * enum cpcap_adc_channel - cpcap adc channels 126 */ 127 enum cpcap_adc_channel { 128 /* Bank0 channels */ 129 CPCAP_ADC_AD0, /* Battery temperature */ 130 CPCAP_ADC_BATTP, /* Battery voltage */ 131 CPCAP_ADC_VBUS, /* USB VBUS voltage */ 132 CPCAP_ADC_AD3, /* Die temperature when charging */ 133 CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */ 134 CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */ 135 CPCAP_ADC_BATTI, /* Calibrated system current */ 136 CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */ 137 138 /* Bank1 channels */ 139 CPCAP_ADC_AD8, /* Seems unused */ 140 CPCAP_ADC_AD9, /* Seems unused */ 141 CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */ 142 CPCAP_ADC_HV_BATTP, /* Another battery detection? */ 143 CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */ 144 CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */ 145 CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */ 146 CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */ 147 148 /* Remuxed channels using bank0 entries */ 149 CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */ 150 CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */ 151 152 CPCAP_ADC_CHANNEL_NUM, 153 }; 154 155 /* 156 * enum cpcap_adc_timing - cpcap adc timing options 157 * 158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings. 159 * Please document when using. 160 */ 161 enum cpcap_adc_timing { 162 CPCAP_ADC_TIMING_IMM, 163 CPCAP_ADC_TIMING_IN, 164 CPCAP_ADC_TIMING_OUT, 165 }; 166 167 /** 168 * struct cpcap_adc_phasing_tbl - cpcap phasing table 169 * @offset: offset in the phasing table 170 * @multiplier: multiplier in the phasing table 171 * @divider: divider in the phasing table 172 * @min: minimum value 173 * @max: maximum value 174 */ 175 struct cpcap_adc_phasing_tbl { 176 short offset; 177 unsigned short multiplier; 178 unsigned short divider; 179 short min; 180 short max; 181 }; 182 183 /** 184 * struct cpcap_adc_conversion_tbl - cpcap conversion table 185 * @conv_type: conversion type 186 * @align_offset: align offset 187 * @conv_offset: conversion offset 188 * @cal_offset: calibration offset 189 * @multiplier: conversion multiplier 190 * @divider: conversion divider 191 */ 192 struct cpcap_adc_conversion_tbl { 193 enum iio_chan_info_enum conv_type; 194 int align_offset; 195 int conv_offset; 196 int cal_offset; 197 int multiplier; 198 int divider; 199 }; 200 201 /** 202 * struct cpcap_adc_request - cpcap adc request 203 * @channel: request channel 204 * @phase_tbl: channel phasing table 205 * @conv_tbl: channel conversion table 206 * @bank_index: channel index within the bank 207 * @timing: timing settings 208 * @result: result 209 */ 210 struct cpcap_adc_request { 211 int channel; 212 const struct cpcap_adc_phasing_tbl *phase_tbl; 213 const struct cpcap_adc_conversion_tbl *conv_tbl; 214 int bank_index; 215 enum cpcap_adc_timing timing; 216 int result; 217 }; 218 219 /* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */ 220 static const struct cpcap_adc_phasing_tbl bank_phasing[] = { 221 /* Bank0 */ 222 [CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023}, 223 [CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023}, 224 [CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023}, 225 [CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023}, 226 [CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023}, 227 [CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511}, 228 [CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511}, 229 [CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023}, 230 231 /* Bank1 */ 232 [CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023}, 233 [CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023}, 234 [CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023}, 235 [CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023}, 236 [CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023}, 237 [CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023}, 238 [CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023}, 239 [CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023}, 240 }; 241 242 /* 243 * Conversion table for channels. Updated during init based on calibration. 244 * Here too channels 16 & 17 use BATTP and BATTI. 245 */ 246 static struct cpcap_adc_conversion_tbl bank_conversion[] = { 247 /* Bank0 */ 248 [CPCAP_ADC_AD0] = { 249 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 250 }, 251 [CPCAP_ADC_BATTP] = { 252 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 253 }, 254 [CPCAP_ADC_VBUS] = { 255 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023, 256 }, 257 [CPCAP_ADC_AD3] = { 258 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 259 }, 260 [CPCAP_ADC_BPLUS_AD4] = { 261 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 262 }, 263 [CPCAP_ADC_CHG_ISENSE] = { 264 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 265 }, 266 [CPCAP_ADC_BATTI] = { 267 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 268 }, 269 [CPCAP_ADC_USB_ID] = { 270 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 271 }, 272 273 /* Bank1 */ 274 [CPCAP_ADC_AD8] = { 275 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 276 }, 277 [CPCAP_ADC_AD9] = { 278 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 279 }, 280 [CPCAP_ADC_LICELL] = { 281 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023, 282 }, 283 [CPCAP_ADC_HV_BATTP] = { 284 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 285 }, 286 [CPCAP_ADC_TSX1_AD12] = { 287 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 288 }, 289 [CPCAP_ADC_TSX2_AD13] = { 290 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 291 }, 292 [CPCAP_ADC_TSY1_AD14] = { 293 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 294 }, 295 [CPCAP_ADC_TSY2_AD15] = { 296 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 297 }, 298 }; 299 300 /* 301 * Temperature lookup table of register values to milliCelcius. 302 * REVISIT: Check the duplicate 0x3ff entry in a freezer 303 */ 304 static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = { 305 { 0x03ff, -40000 }, 306 { 0x03ff, -35000 }, 307 { 0x03ef, -30000 }, 308 { 0x03b2, -25000 }, 309 { 0x036c, -20000 }, 310 { 0x0320, -15000 }, 311 { 0x02d0, -10000 }, 312 { 0x027f, -5000 }, 313 { 0x022f, 0 }, 314 { 0x01e4, 5000 }, 315 { 0x019f, 10000 }, 316 { 0x0161, 15000 }, 317 { 0x012b, 20000 }, 318 { 0x00fc, 25000 }, 319 { 0x00d4, 30000 }, 320 { 0x00b2, 35000 }, 321 { 0x0095, 40000 }, 322 { 0x007d, 45000 }, 323 { 0x0069, 50000 }, 324 { 0x0059, 55000 }, 325 { 0x004b, 60000 }, 326 { 0x003f, 65000 }, 327 { 0x0036, 70000 }, 328 { 0x002e, 75000 }, 329 { 0x0027, 80000 }, 330 { 0x0022, 85000 }, 331 { 0x001d, 90000 }, 332 }; 333 334 #define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \ 335 .type = (_type), \ 336 .address = (_address), \ 337 .indexed = 1, \ 338 .channel = (_index), \ 339 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 340 BIT(IIO_CHAN_INFO_PROCESSED), \ 341 .scan_index = (_index), \ 342 .scan_type = { \ 343 .sign = 'u', \ 344 .realbits = 10, \ 345 .storagebits = 16, \ 346 .endianness = IIO_CPU, \ 347 }, \ 348 .datasheet_name = (_datasheet_name), \ 349 } 350 351 /* 352 * The datasheet names are from Motorola mapphone Linux kernel except 353 * for the last two which might be uncalibrated charge voltage and 354 * current. 355 */ 356 static const struct iio_chan_spec cpcap_adc_channels[] = { 357 /* Bank0 */ 358 CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"), 359 CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"), 360 CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"), 361 CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"), 362 CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"), 363 CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"), 364 CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"), 365 CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"), 366 367 /* Bank1 */ 368 CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"), 369 CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"), 370 CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"), 371 CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"), 372 CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"), 373 CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"), 374 CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"), 375 CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"), 376 377 /* There are two registers with multiplexed functionality */ 378 CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"), 379 CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"), 380 }; 381 382 static irqreturn_t cpcap_adc_irq_thread(int irq, void *data) 383 { 384 struct iio_dev *indio_dev = data; 385 struct cpcap_adc *ddata = iio_priv(indio_dev); 386 int error; 387 388 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, 389 CPCAP_BIT_ADTRIG_DIS); 390 if (error) 391 return IRQ_NONE; 392 393 ddata->done = true; 394 wake_up_interruptible(&ddata->wq_data_avail); 395 396 return IRQ_HANDLED; 397 } 398 399 /* ADC calibration functions */ 400 static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata, 401 enum cpcap_adc_channel chan) 402 { 403 unsigned int value = 0; 404 unsigned long timeout = jiffies + msecs_to_jiffies(3000); 405 int error; 406 407 if ((chan != CPCAP_ADC_CHG_ISENSE) && 408 (chan != CPCAP_ADC_BATTI)) 409 return; 410 411 value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0; 412 value |= ((chan << 4) & 413 (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0)); 414 415 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 416 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 417 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 418 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 419 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 420 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 421 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 422 value); 423 if (error) 424 return; 425 426 error = regmap_clear_bits(ddata->reg, CPCAP_REG_ADCC2, 427 CPCAP_BIT_ATOX_PS_FACTOR | 428 CPCAP_BIT_ADC_PS_FACTOR1 | 429 CPCAP_BIT_ADC_PS_FACTOR0); 430 if (error) 431 return; 432 433 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, 434 CPCAP_BIT_ADTRIG_DIS); 435 if (error) 436 return; 437 438 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, CPCAP_BIT_ASC); 439 if (error) 440 return; 441 442 do { 443 schedule_timeout_uninterruptible(1); 444 error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value); 445 if (error) 446 return; 447 } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout)); 448 449 if (value & CPCAP_BIT_ASC) 450 dev_err(ddata->dev, 451 "Timeout waiting for calibration to complete\n"); 452 453 error = regmap_clear_bits(ddata->reg, CPCAP_REG_ADCC1, 454 CPCAP_BIT_CAL_MODE); 455 if (error) 456 return; 457 } 458 459 static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata, 460 int channel, 461 u16 calibration_register, 462 int lower_threshold, 463 int upper_threshold) 464 { 465 unsigned int calibration_data[2]; 466 unsigned short cal_data_diff; 467 int i, error; 468 469 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 470 calibration_data[0] = 0; 471 calibration_data[1] = 0; 472 473 cpcap_adc_setup_calibrate(ddata, channel); 474 error = regmap_read(ddata->reg, calibration_register, 475 &calibration_data[0]); 476 if (error) 477 return error; 478 cpcap_adc_setup_calibrate(ddata, channel); 479 error = regmap_read(ddata->reg, calibration_register, 480 &calibration_data[1]); 481 if (error) 482 return error; 483 484 if (calibration_data[0] > calibration_data[1]) 485 cal_data_diff = 486 calibration_data[0] - calibration_data[1]; 487 else 488 cal_data_diff = 489 calibration_data[1] - calibration_data[0]; 490 491 if (((calibration_data[1] >= lower_threshold) && 492 (calibration_data[1] <= upper_threshold) && 493 (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) || 494 (ddata->vendor == CPCAP_VENDOR_TI)) { 495 bank_conversion[channel].cal_offset = 496 ((short)calibration_data[1] * -1) + 512; 497 dev_dbg(ddata->dev, "ch%i calibration complete: %i\n", 498 channel, bank_conversion[channel].cal_offset); 499 break; 500 } 501 usleep_range(5000, 10000); 502 } 503 504 return 0; 505 } 506 507 static int cpcap_adc_calibrate(struct cpcap_adc *ddata) 508 { 509 int error; 510 511 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE, 512 CPCAP_REG_ADCAL1, 513 ST_ADC_CAL_CHRGI_LOW_THRESHOLD, 514 ST_ADC_CAL_CHRGI_HIGH_THRESHOLD); 515 if (error) 516 return error; 517 518 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI, 519 CPCAP_REG_ADCAL2, 520 ST_ADC_CAL_BATTI_LOW_THRESHOLD, 521 ST_ADC_CAL_BATTI_HIGH_THRESHOLD); 522 if (error) 523 return error; 524 525 return 0; 526 } 527 528 /* ADC setup, read and scale functions */ 529 static void cpcap_adc_setup_bank(struct cpcap_adc *ddata, 530 struct cpcap_adc_request *req) 531 { 532 const struct cpcap_adc_ato *ato = ddata->ato; 533 unsigned short value1 = 0; 534 unsigned short value2 = 0; 535 int error; 536 537 if (!ato) 538 return; 539 540 switch (req->channel) { 541 case CPCAP_ADC_AD0: 542 value2 |= CPCAP_BIT_THERMBIAS_EN; 543 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 544 CPCAP_BIT_THERMBIAS_EN, 545 value2); 546 if (error) 547 return; 548 usleep_range(800, 1000); 549 break; 550 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 551 value1 |= CPCAP_BIT_AD_SEL1; 552 break; 553 case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17: 554 value1 |= CPCAP_BIT_RAND1; 555 break; 556 default: 557 break; 558 } 559 560 switch (req->timing) { 561 case CPCAP_ADC_TIMING_IN: 562 value1 |= ato->ato_in; 563 value1 |= ato->atox_in; 564 value2 |= ato->adc_ps_factor_in; 565 value2 |= ato->atox_ps_factor_in; 566 break; 567 case CPCAP_ADC_TIMING_OUT: 568 value1 |= ato->ato_out; 569 value1 |= ato->atox_out; 570 value2 |= ato->adc_ps_factor_out; 571 value2 |= ato->atox_ps_factor_out; 572 break; 573 574 case CPCAP_ADC_TIMING_IMM: 575 default: 576 break; 577 } 578 579 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 580 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 581 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 582 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 583 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 584 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 585 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 586 value1); 587 if (error) 588 return; 589 590 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 591 CPCAP_BIT_ATOX_PS_FACTOR | 592 CPCAP_BIT_ADC_PS_FACTOR1 | 593 CPCAP_BIT_ADC_PS_FACTOR0 | 594 CPCAP_BIT_THERMBIAS_EN, 595 value2); 596 if (error) 597 return; 598 599 if (req->timing == CPCAP_ADC_TIMING_IMM) { 600 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, 601 CPCAP_BIT_ADTRIG_DIS); 602 if (error) 603 return; 604 605 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, 606 CPCAP_BIT_ASC); 607 if (error) 608 return; 609 } else { 610 error = regmap_set_bits(ddata->reg, CPCAP_REG_ADCC2, 611 CPCAP_BIT_ADTRIG_ONESHOT); 612 if (error) 613 return; 614 615 error = regmap_clear_bits(ddata->reg, CPCAP_REG_ADCC2, 616 CPCAP_BIT_ADTRIG_DIS); 617 if (error) 618 return; 619 } 620 } 621 622 static int cpcap_adc_start_bank(struct cpcap_adc *ddata, 623 struct cpcap_adc_request *req) 624 { 625 int i, error; 626 627 req->timing = CPCAP_ADC_TIMING_IMM; 628 ddata->done = false; 629 630 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 631 cpcap_adc_setup_bank(ddata, req); 632 error = wait_event_interruptible_timeout(ddata->wq_data_avail, 633 ddata->done, 634 msecs_to_jiffies(50)); 635 if (error > 0) 636 return 0; 637 638 if (error == 0) { 639 error = -ETIMEDOUT; 640 continue; 641 } 642 643 if (error < 0) 644 return error; 645 } 646 647 return error; 648 } 649 650 static int cpcap_adc_stop_bank(struct cpcap_adc *ddata) 651 { 652 int error; 653 654 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 655 0xffff, 656 CPCAP_REG_ADCC1_DEFAULTS); 657 if (error) 658 return error; 659 660 return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 661 0xffff, 662 CPCAP_REG_ADCC2_DEFAULTS); 663 } 664 665 static void cpcap_adc_phase(struct cpcap_adc_request *req) 666 { 667 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 668 const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl; 669 int index = req->channel; 670 671 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 672 switch (req->channel) { 673 case CPCAP_ADC_BATTP: 674 case CPCAP_ADC_BATTP_PI16: 675 index = req->bank_index; 676 req->result -= phase_tbl[index].offset; 677 req->result -= CPCAP_FOUR_POINT_TWO_ADC; 678 req->result *= phase_tbl[index].multiplier; 679 if (phase_tbl[index].divider == 0) 680 return; 681 req->result /= phase_tbl[index].divider; 682 req->result += CPCAP_FOUR_POINT_TWO_ADC; 683 break; 684 case CPCAP_ADC_BATTI_PI17: 685 index = req->bank_index; 686 fallthrough; 687 default: 688 req->result += conv_tbl[index].cal_offset; 689 req->result += conv_tbl[index].align_offset; 690 req->result *= phase_tbl[index].multiplier; 691 if (phase_tbl[index].divider == 0) 692 return; 693 req->result /= phase_tbl[index].divider; 694 req->result += phase_tbl[index].offset; 695 break; 696 } 697 698 if (req->result < phase_tbl[index].min) 699 req->result = phase_tbl[index].min; 700 else if (req->result > phase_tbl[index].max) 701 req->result = phase_tbl[index].max; 702 } 703 704 /* Looks up temperatures in a table and calculates averages if needed */ 705 static int cpcap_adc_table_to_millicelcius(unsigned short value) 706 { 707 int i, result = 0, alpha; 708 709 if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0]) 710 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1]; 711 712 if (value >= temp_map[0][0]) 713 return temp_map[0][1]; 714 715 for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) { 716 if ((value <= temp_map[i][0]) && 717 (value >= temp_map[i + 1][0])) { 718 if (value == temp_map[i][0]) { 719 result = temp_map[i][1]; 720 } else if (value == temp_map[i + 1][0]) { 721 result = temp_map[i + 1][1]; 722 } else { 723 alpha = ((value - temp_map[i][0]) * 1000) / 724 (temp_map[i + 1][0] - temp_map[i][0]); 725 726 result = temp_map[i][1] + 727 ((alpha * (temp_map[i + 1][1] - 728 temp_map[i][1])) / 1000); 729 } 730 break; 731 } 732 } 733 734 return result; 735 } 736 737 static void cpcap_adc_convert(struct cpcap_adc_request *req) 738 { 739 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 740 int index = req->channel; 741 742 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 743 switch (req->channel) { 744 case CPCAP_ADC_BATTP_PI16: 745 index = CPCAP_ADC_BATTP; 746 break; 747 case CPCAP_ADC_BATTI_PI17: 748 index = CPCAP_ADC_BATTI; 749 break; 750 default: 751 break; 752 } 753 754 /* No conversion for raw channels */ 755 if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW) 756 return; 757 758 /* Temperatures use a lookup table instead of conversion table */ 759 if ((req->channel == CPCAP_ADC_AD0) || 760 (req->channel == CPCAP_ADC_AD3)) { 761 req->result = 762 cpcap_adc_table_to_millicelcius(req->result); 763 764 return; 765 } 766 767 /* All processed channels use a conversion table */ 768 req->result *= conv_tbl[index].multiplier; 769 if (conv_tbl[index].divider == 0) 770 return; 771 req->result /= conv_tbl[index].divider; 772 req->result += conv_tbl[index].conv_offset; 773 } 774 775 /* 776 * REVISIT: Check if timed sampling can use multiple channels at the 777 * same time. If not, replace channel_mask with just channel. 778 */ 779 static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata, 780 struct cpcap_adc_request *req) 781 { 782 int calibration_data, error, addr; 783 784 if (ddata->vendor == CPCAP_VENDOR_TI) { 785 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1, 786 &calibration_data); 787 if (error) 788 return error; 789 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset = 790 ((short)calibration_data * -1) + 512; 791 792 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2, 793 &calibration_data); 794 if (error) 795 return error; 796 bank_conversion[CPCAP_ADC_BATTI].cal_offset = 797 ((short)calibration_data * -1) + 512; 798 } 799 800 addr = CPCAP_REG_ADCD0 + req->bank_index * 4; 801 802 error = regmap_read(ddata->reg, addr, &req->result); 803 if (error) 804 return error; 805 806 req->result &= 0x3ff; 807 cpcap_adc_phase(req); 808 cpcap_adc_convert(req); 809 810 return 0; 811 } 812 813 static int cpcap_adc_init_request(struct cpcap_adc_request *req, 814 int channel) 815 { 816 req->channel = channel; 817 req->phase_tbl = bank_phasing; 818 req->conv_tbl = bank_conversion; 819 820 switch (channel) { 821 case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID: 822 req->bank_index = channel; 823 break; 824 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 825 req->bank_index = channel - 8; 826 break; 827 case CPCAP_ADC_BATTP_PI16: 828 req->bank_index = CPCAP_ADC_BATTP; 829 break; 830 case CPCAP_ADC_BATTI_PI17: 831 req->bank_index = CPCAP_ADC_BATTI; 832 break; 833 default: 834 return -EINVAL; 835 } 836 837 return 0; 838 } 839 840 static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata, 841 int addr, int *val) 842 { 843 int error; 844 845 error = regmap_read(ddata->reg, addr, val); 846 if (error) 847 return error; 848 849 *val -= 282; 850 *val *= 114; 851 *val += 25000; 852 853 return 0; 854 } 855 856 static int cpcap_adc_read(struct iio_dev *indio_dev, 857 struct iio_chan_spec const *chan, 858 int *val, int *val2, long mask) 859 { 860 struct cpcap_adc *ddata = iio_priv(indio_dev); 861 struct cpcap_adc_request req; 862 int error; 863 864 error = cpcap_adc_init_request(&req, chan->channel); 865 if (error) 866 return error; 867 868 switch (mask) { 869 case IIO_CHAN_INFO_RAW: 870 mutex_lock(&ddata->lock); 871 error = cpcap_adc_start_bank(ddata, &req); 872 if (error) 873 goto err_unlock; 874 error = regmap_read(ddata->reg, chan->address, val); 875 if (error) 876 goto err_unlock; 877 error = cpcap_adc_stop_bank(ddata); 878 if (error) 879 goto err_unlock; 880 mutex_unlock(&ddata->lock); 881 break; 882 case IIO_CHAN_INFO_PROCESSED: 883 mutex_lock(&ddata->lock); 884 error = cpcap_adc_start_bank(ddata, &req); 885 if (error) 886 goto err_unlock; 887 if ((ddata->vendor == CPCAP_VENDOR_ST) && 888 (chan->channel == CPCAP_ADC_AD3)) { 889 error = cpcap_adc_read_st_die_temp(ddata, 890 chan->address, 891 &req.result); 892 if (error) 893 goto err_unlock; 894 } else { 895 error = cpcap_adc_read_bank_scaled(ddata, &req); 896 if (error) 897 goto err_unlock; 898 } 899 error = cpcap_adc_stop_bank(ddata); 900 if (error) 901 goto err_unlock; 902 mutex_unlock(&ddata->lock); 903 *val = req.result; 904 break; 905 default: 906 return -EINVAL; 907 } 908 909 return IIO_VAL_INT; 910 911 err_unlock: 912 mutex_unlock(&ddata->lock); 913 dev_err(ddata->dev, "error reading ADC: %i\n", error); 914 915 return error; 916 } 917 918 static const struct iio_info cpcap_adc_info = { 919 .read_raw = &cpcap_adc_read, 920 }; 921 922 /* 923 * Configuration for Motorola mapphone series such as droid 4. 924 * Copied from the Motorola mapphone kernel tree. 925 */ 926 static const struct cpcap_adc_ato mapphone_adc = { 927 .ato_in = 0x0480, 928 .atox_in = 0, 929 .adc_ps_factor_in = 0x0200, 930 .atox_ps_factor_in = 0, 931 .ato_out = 0, 932 .atox_out = 0, 933 .adc_ps_factor_out = 0, 934 .atox_ps_factor_out = 0, 935 }; 936 937 static const struct of_device_id cpcap_adc_id_table[] = { 938 { 939 .compatible = "motorola,cpcap-adc", 940 }, 941 { 942 .compatible = "motorola,mapphone-cpcap-adc", 943 .data = &mapphone_adc, 944 }, 945 { /* sentinel */ }, 946 }; 947 MODULE_DEVICE_TABLE(of, cpcap_adc_id_table); 948 949 static int cpcap_adc_probe(struct platform_device *pdev) 950 { 951 struct cpcap_adc *ddata; 952 struct iio_dev *indio_dev; 953 int error; 954 955 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata)); 956 if (!indio_dev) { 957 dev_err(&pdev->dev, "failed to allocate iio device\n"); 958 959 return -ENOMEM; 960 } 961 ddata = iio_priv(indio_dev); 962 ddata->ato = device_get_match_data(&pdev->dev); 963 if (!ddata->ato) 964 return -ENODEV; 965 ddata->dev = &pdev->dev; 966 967 mutex_init(&ddata->lock); 968 init_waitqueue_head(&ddata->wq_data_avail); 969 970 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 971 indio_dev->channels = cpcap_adc_channels; 972 indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels); 973 indio_dev->name = dev_name(&pdev->dev); 974 indio_dev->info = &cpcap_adc_info; 975 976 ddata->reg = dev_get_regmap(pdev->dev.parent, NULL); 977 if (!ddata->reg) 978 return -ENODEV; 979 980 error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor); 981 if (error) 982 return error; 983 984 platform_set_drvdata(pdev, indio_dev); 985 986 ddata->irq = platform_get_irq_byname(pdev, "adcdone"); 987 if (ddata->irq < 0) 988 return -ENODEV; 989 990 error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL, 991 cpcap_adc_irq_thread, 992 IRQF_TRIGGER_NONE | IRQF_ONESHOT, 993 "cpcap-adc", indio_dev); 994 if (error) { 995 dev_err(&pdev->dev, "could not get irq: %i\n", 996 error); 997 998 return error; 999 } 1000 1001 error = cpcap_adc_calibrate(ddata); 1002 if (error) 1003 return error; 1004 1005 dev_info(&pdev->dev, "CPCAP ADC device probed\n"); 1006 1007 return devm_iio_device_register(&pdev->dev, indio_dev); 1008 } 1009 1010 static struct platform_driver cpcap_adc_driver = { 1011 .driver = { 1012 .name = "cpcap_adc", 1013 .of_match_table = cpcap_adc_id_table, 1014 }, 1015 .probe = cpcap_adc_probe, 1016 }; 1017 1018 module_platform_driver(cpcap_adc_driver); 1019 1020 MODULE_ALIAS("platform:cpcap_adc"); 1021 MODULE_DESCRIPTION("CPCAP ADC driver"); 1022 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com"); 1023 MODULE_LICENSE("GPL v2"); 1024