xref: /linux/drivers/iio/adc/aspeed_adc.c (revision d9996de40b121d976a17515aada54c54350e3f21)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aspeed AST2400/2500/2600 ADC
4  *
5  * Copyright (C) 2017 Google, Inc.
6  * Copyright (C) 2021 Aspeed Technology Inc.
7  *
8  * ADC clock formula:
9  * Ast2400/Ast2500:
10  * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
11  * Ast2600:
12  * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/reset.h>
25 #include <linux/spinlock.h>
26 #include <linux/types.h>
27 #include <linux/bitfield.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
30 
31 #include <linux/iio/iio.h>
32 #include <linux/iio/driver.h>
33 #include <linux/iopoll.h>
34 
35 #define ASPEED_RESOLUTION_BITS		10
36 #define ASPEED_CLOCKS_PER_SAMPLE	12
37 
38 #define ASPEED_REG_ENGINE_CONTROL	0x00
39 #define ASPEED_REG_INTERRUPT_CONTROL	0x04
40 #define ASPEED_REG_VGA_DETECT_CONTROL	0x08
41 #define ASPEED_REG_CLOCK_CONTROL	0x0C
42 #define ASPEED_REG_COMPENSATION_TRIM	0xC4
43 /*
44  * The register offset between 0xC8~0xCC can be read and won't affect the
45  * hardware logic in each version of ADC.
46  */
47 #define ASPEED_REG_MAX			0xD0
48 
49 #define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
50 #define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
51 #define ASPEED_ADC_OP_MODE_PWR_DOWN		0
52 #define ASPEED_ADC_OP_MODE_STANDBY		1
53 #define ASPEED_ADC_OP_MODE_NORMAL		7
54 #define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
55 #define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
56 /*
57  * Bit 6 determines not only the reference voltage range but also the dividing
58  * circuit for battery sensing.
59  */
60 #define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
61 #define ASPEED_ADC_REF_VOLTAGE_2500mV		0
62 #define ASPEED_ADC_REF_VOLTAGE_1200mV		1
63 #define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
64 #define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
65 #define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
66 #define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
67 #define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
68 #define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
69 #define ASPEED_ADC_CH7_MODE			BIT(12)
70 #define ASPEED_ADC_CH7_NORMAL			0
71 #define ASPEED_ADC_CH7_BAT			1
72 #define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
73 #define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
74 #define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
75 
76 #define ASPEED_ADC_INIT_POLLING_TIME	500
77 #define ASPEED_ADC_INIT_TIMEOUT		500000
78 /*
79  * When the sampling rate is too high, the ADC may not have enough charging
80  * time, resulting in a low voltage value. Thus, the default uses a slow
81  * sampling rate for most use cases.
82  */
83 #define ASPEED_ADC_DEF_SAMPLING_RATE	65000
84 
85 struct aspeed_adc_trim_locate {
86 	const unsigned int offset;
87 	const unsigned int field;
88 };
89 
90 struct aspeed_adc_model_data {
91 	const char *model_name;
92 	unsigned int min_sampling_rate;	// Hz
93 	unsigned int max_sampling_rate;	// Hz
94 	unsigned int vref_fixed_mv;
95 	bool wait_init_sequence;
96 	bool need_prescaler;
97 	bool bat_sense_sup;
98 	u8 scaler_bit_width;
99 	unsigned int num_channels;
100 	const struct aspeed_adc_trim_locate *trim_locate;
101 };
102 
103 struct adc_gain {
104 	u8 mult;
105 	u8 div;
106 };
107 
108 struct aspeed_adc_data {
109 	struct device		*dev;
110 	const struct aspeed_adc_model_data *model_data;
111 	void __iomem		*base;
112 	spinlock_t		clk_lock;
113 	struct clk_hw		*fixed_div_clk;
114 	struct clk_hw		*clk_prescaler;
115 	struct clk_hw		*clk_scaler;
116 	struct reset_control	*rst;
117 	int			vref_mv;
118 	u32			sample_period_ns;
119 	int			cv;
120 	bool			battery_sensing;
121 	struct adc_gain		battery_mode_gain;
122 };
123 
124 #define ASPEED_CHAN(_idx, _data_reg_addr) {			\
125 	.type = IIO_VOLTAGE,					\
126 	.indexed = 1,						\
127 	.channel = (_idx),					\
128 	.address = (_data_reg_addr),				\
129 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
130 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
131 				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
132 				BIT(IIO_CHAN_INFO_OFFSET),	\
133 }
134 
135 static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
136 	ASPEED_CHAN(0, 0x10),
137 	ASPEED_CHAN(1, 0x12),
138 	ASPEED_CHAN(2, 0x14),
139 	ASPEED_CHAN(3, 0x16),
140 	ASPEED_CHAN(4, 0x18),
141 	ASPEED_CHAN(5, 0x1A),
142 	ASPEED_CHAN(6, 0x1C),
143 	ASPEED_CHAN(7, 0x1E),
144 	ASPEED_CHAN(8, 0x20),
145 	ASPEED_CHAN(9, 0x22),
146 	ASPEED_CHAN(10, 0x24),
147 	ASPEED_CHAN(11, 0x26),
148 	ASPEED_CHAN(12, 0x28),
149 	ASPEED_CHAN(13, 0x2A),
150 	ASPEED_CHAN(14, 0x2C),
151 	ASPEED_CHAN(15, 0x2E),
152 };
153 
154 #define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
155 		.type = IIO_VOLTAGE,						\
156 		.indexed = 1,							\
157 		.channel = (_idx),						\
158 		.address = (_data_reg_addr),					\
159 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
160 				      BIT(IIO_CHAN_INFO_OFFSET),		\
161 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
162 					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
163 }
164 static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
165 	ASPEED_CHAN(0, 0x10),
166 	ASPEED_CHAN(1, 0x12),
167 	ASPEED_CHAN(2, 0x14),
168 	ASPEED_CHAN(3, 0x16),
169 	ASPEED_CHAN(4, 0x18),
170 	ASPEED_CHAN(5, 0x1A),
171 	ASPEED_CHAN(6, 0x1C),
172 	ASPEED_BAT_CHAN(7, 0x1E),
173 };
174 
175 static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
176 {
177 	struct device_node *syscon;
178 	struct regmap *scu;
179 	u32 scu_otp, trimming_val;
180 	struct aspeed_adc_data *data = iio_priv(indio_dev);
181 
182 	syscon = of_find_node_by_name(NULL, "syscon");
183 	if (syscon == NULL) {
184 		dev_warn(data->dev, "Couldn't find syscon node\n");
185 		return -EOPNOTSUPP;
186 	}
187 	scu = syscon_node_to_regmap(syscon);
188 	of_node_put(syscon);
189 	if (IS_ERR(scu)) {
190 		dev_warn(data->dev, "Failed to get syscon regmap\n");
191 		return -EOPNOTSUPP;
192 	}
193 	if (data->model_data->trim_locate) {
194 		if (regmap_read(scu, data->model_data->trim_locate->offset,
195 				&scu_otp)) {
196 			dev_warn(data->dev,
197 				 "Failed to get adc trimming data\n");
198 			trimming_val = 0x8;
199 		} else {
200 			trimming_val =
201 				((scu_otp) &
202 				 (data->model_data->trim_locate->field)) >>
203 				__ffs(data->model_data->trim_locate->field);
204 			if (!trimming_val)
205 				trimming_val = 0x8;
206 		}
207 		dev_dbg(data->dev,
208 			"trimming val = %d, offset = %08x, fields = %08x\n",
209 			trimming_val, data->model_data->trim_locate->offset,
210 			data->model_data->trim_locate->field);
211 		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
212 	}
213 	return 0;
214 }
215 
216 static int aspeed_adc_compensation(struct iio_dev *indio_dev)
217 {
218 	struct aspeed_adc_data *data = iio_priv(indio_dev);
219 	u32 index, adc_raw = 0;
220 	u32 adc_engine_control_reg_val;
221 
222 	adc_engine_control_reg_val =
223 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
224 	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
225 	adc_engine_control_reg_val |=
226 		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
227 		 ASPEED_ADC_ENGINE_ENABLE);
228 	/*
229 	 * Enable compensating sensing:
230 	 * After that, the input voltage of ADC will force to half of the reference
231 	 * voltage. So the expected reading raw data will become half of the max
232 	 * value. We can get compensating value = 0x200 - ADC read raw value.
233 	 * It is recommended to average at least 10 samples to get a final CV.
234 	 */
235 	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
236 		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
237 	       data->base + ASPEED_REG_ENGINE_CONTROL);
238 	/*
239 	 * After enable compensating sensing mode need to wait some time for ADC stable
240 	 * Experiment result is 1ms.
241 	 */
242 	mdelay(1);
243 
244 	for (index = 0; index < 16; index++) {
245 		/*
246 		 * Waiting for the sampling period ensures that the value acquired
247 		 * is fresh each time.
248 		 */
249 		ndelay(data->sample_period_ns);
250 		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
251 	}
252 	adc_raw >>= 4;
253 	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
254 	writel(adc_engine_control_reg_val,
255 	       data->base + ASPEED_REG_ENGINE_CONTROL);
256 	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
257 
258 	return 0;
259 }
260 
261 static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
262 {
263 	struct aspeed_adc_data *data = iio_priv(indio_dev);
264 
265 	if (rate < data->model_data->min_sampling_rate ||
266 	    rate > data->model_data->max_sampling_rate)
267 		return -EINVAL;
268 	/* Each sampling needs 12 clocks to convert.*/
269 	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
270 	rate = clk_get_rate(data->clk_scaler->clk);
271 	data->sample_period_ns = DIV_ROUND_UP_ULL(
272 		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
273 	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
274 		data->sample_period_ns);
275 
276 	return 0;
277 }
278 
279 static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
280 			       struct iio_chan_spec const *chan,
281 			       int *val, int *val2, long mask)
282 {
283 	struct aspeed_adc_data *data = iio_priv(indio_dev);
284 	u32 adc_engine_control_reg_val;
285 
286 	switch (mask) {
287 	case IIO_CHAN_INFO_RAW:
288 		if (data->battery_sensing && chan->channel == 7) {
289 			adc_engine_control_reg_val =
290 				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
291 			writel(adc_engine_control_reg_val |
292 				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
293 						  ASPEED_ADC_CH7_BAT) |
294 				       ASPEED_ADC_BAT_SENSING_ENABLE,
295 			       data->base + ASPEED_REG_ENGINE_CONTROL);
296 			/*
297 			 * After enable battery sensing mode need to wait some time for adc stable
298 			 * Experiment result is 1ms.
299 			 */
300 			mdelay(1);
301 			*val = readw(data->base + chan->address);
302 			*val = (*val * data->battery_mode_gain.mult) /
303 			       data->battery_mode_gain.div;
304 			/* Restore control register value */
305 			writel(adc_engine_control_reg_val,
306 			       data->base + ASPEED_REG_ENGINE_CONTROL);
307 		} else
308 			*val = readw(data->base + chan->address);
309 		return IIO_VAL_INT;
310 
311 	case IIO_CHAN_INFO_OFFSET:
312 		if (data->battery_sensing && chan->channel == 7)
313 			*val = (data->cv * data->battery_mode_gain.mult) /
314 			       data->battery_mode_gain.div;
315 		else
316 			*val = data->cv;
317 		return IIO_VAL_INT;
318 
319 	case IIO_CHAN_INFO_SCALE:
320 		*val = data->vref_mv;
321 		*val2 = ASPEED_RESOLUTION_BITS;
322 		return IIO_VAL_FRACTIONAL_LOG2;
323 
324 	case IIO_CHAN_INFO_SAMP_FREQ:
325 		*val = clk_get_rate(data->clk_scaler->clk) /
326 				ASPEED_CLOCKS_PER_SAMPLE;
327 		return IIO_VAL_INT;
328 
329 	default:
330 		return -EINVAL;
331 	}
332 }
333 
334 static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
335 				struct iio_chan_spec const *chan,
336 				int val, int val2, long mask)
337 {
338 	switch (mask) {
339 	case IIO_CHAN_INFO_SAMP_FREQ:
340 		return aspeed_adc_set_sampling_rate(indio_dev, val);
341 
342 	case IIO_CHAN_INFO_SCALE:
343 	case IIO_CHAN_INFO_RAW:
344 		/*
345 		 * Technically, these could be written but the only reasons
346 		 * for doing so seem better handled in userspace.  EPERM is
347 		 * returned to signal this is a policy choice rather than a
348 		 * hardware limitation.
349 		 */
350 		return -EPERM;
351 
352 	default:
353 		return -EINVAL;
354 	}
355 }
356 
357 static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
358 				 unsigned int reg, unsigned int writeval,
359 				 unsigned int *readval)
360 {
361 	struct aspeed_adc_data *data = iio_priv(indio_dev);
362 
363 	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
364 		return -EINVAL;
365 
366 	*readval = readl(data->base + reg);
367 
368 	return 0;
369 }
370 
371 static const struct iio_info aspeed_adc_iio_info = {
372 	.read_raw = aspeed_adc_read_raw,
373 	.write_raw = aspeed_adc_write_raw,
374 	.debugfs_reg_access = aspeed_adc_reg_access,
375 };
376 
377 static void aspeed_adc_unregister_fixed_divider(void *data)
378 {
379 	struct clk_hw *clk = data;
380 
381 	clk_hw_unregister_fixed_factor(clk);
382 }
383 
384 static void aspeed_adc_reset_assert(void *data)
385 {
386 	struct reset_control *rst = data;
387 
388 	reset_control_assert(rst);
389 }
390 
391 static void aspeed_adc_clk_disable_unprepare(void *data)
392 {
393 	struct clk *clk = data;
394 
395 	clk_disable_unprepare(clk);
396 }
397 
398 static void aspeed_adc_power_down(void *data)
399 {
400 	struct aspeed_adc_data *priv_data = data;
401 
402 	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
403 	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
404 }
405 
406 static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
407 {
408 	struct aspeed_adc_data *data = iio_priv(indio_dev);
409 	int ret;
410 	u32 adc_engine_control_reg_val;
411 
412 	if (data->model_data->vref_fixed_mv) {
413 		data->vref_mv = data->model_data->vref_fixed_mv;
414 		return 0;
415 	}
416 	adc_engine_control_reg_val =
417 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
418 
419 	ret = devm_regulator_get_enable_read_voltage(data->dev, "vref");
420 	if (ret < 0 && ret != -ENODEV)
421 		return ret;
422 
423 	if (ret != -ENODEV) {
424 		data->vref_mv = ret / 1000;
425 
426 		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
427 			writel(adc_engine_control_reg_val |
428 				FIELD_PREP(
429 					ASPEED_ADC_REF_VOLTAGE,
430 					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
431 			data->base + ASPEED_REG_ENGINE_CONTROL);
432 		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
433 			writel(adc_engine_control_reg_val |
434 				FIELD_PREP(
435 					ASPEED_ADC_REF_VOLTAGE,
436 					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
437 			data->base + ASPEED_REG_ENGINE_CONTROL);
438 		else {
439 			dev_err(data->dev, "Regulator voltage %d not support",
440 				data->vref_mv);
441 			return -EOPNOTSUPP;
442 		}
443 	} else {
444 		data->vref_mv = 2500000;
445 		of_property_read_u32(data->dev->of_node,
446 				     "aspeed,int-vref-microvolt",
447 				     &data->vref_mv);
448 		/* Conversion from uV to mV */
449 		data->vref_mv /= 1000;
450 		if (data->vref_mv == 2500)
451 			writel(adc_engine_control_reg_val |
452 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
453 						ASPEED_ADC_REF_VOLTAGE_2500mV),
454 			data->base + ASPEED_REG_ENGINE_CONTROL);
455 		else if (data->vref_mv == 1200)
456 			writel(adc_engine_control_reg_val |
457 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
458 						ASPEED_ADC_REF_VOLTAGE_1200mV),
459 			data->base + ASPEED_REG_ENGINE_CONTROL);
460 		else {
461 			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
462 			return -EOPNOTSUPP;
463 		}
464 	}
465 
466 	return 0;
467 }
468 
469 static int aspeed_adc_probe(struct platform_device *pdev)
470 {
471 	struct iio_dev *indio_dev;
472 	struct aspeed_adc_data *data;
473 	int ret;
474 	u32 adc_engine_control_reg_val;
475 	unsigned long scaler_flags = 0;
476 	char clk_name[32], clk_parent_name[32];
477 
478 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
479 	if (!indio_dev)
480 		return -ENOMEM;
481 
482 	data = iio_priv(indio_dev);
483 	data->dev = &pdev->dev;
484 	data->model_data = of_device_get_match_data(&pdev->dev);
485 	platform_set_drvdata(pdev, indio_dev);
486 
487 	data->base = devm_platform_ioremap_resource(pdev, 0);
488 	if (IS_ERR(data->base))
489 		return PTR_ERR(data->base);
490 
491 	/* Register ADC clock prescaler with source specified by device tree. */
492 	spin_lock_init(&data->clk_lock);
493 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
494 		 of_clk_get_parent_name(pdev->dev.of_node, 0));
495 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
496 		 data->model_data->model_name);
497 	data->fixed_div_clk = clk_hw_register_fixed_factor(
498 		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
499 	if (IS_ERR(data->fixed_div_clk))
500 		return PTR_ERR(data->fixed_div_clk);
501 
502 	ret = devm_add_action_or_reset(data->dev,
503 				       aspeed_adc_unregister_fixed_divider,
504 				       data->fixed_div_clk);
505 	if (ret)
506 		return ret;
507 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
508 
509 	if (data->model_data->need_prescaler) {
510 		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
511 			 data->model_data->model_name);
512 		data->clk_prescaler = devm_clk_hw_register_divider(
513 			&pdev->dev, clk_name, clk_parent_name, 0,
514 			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
515 			&data->clk_lock);
516 		if (IS_ERR(data->clk_prescaler))
517 			return PTR_ERR(data->clk_prescaler);
518 		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
519 			 clk_name);
520 		scaler_flags = CLK_SET_RATE_PARENT;
521 	}
522 	/*
523 	 * Register ADC clock scaler downstream from the prescaler. Allow rate
524 	 * setting to adjust the prescaler as well.
525 	 */
526 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
527 		 data->model_data->model_name);
528 	data->clk_scaler = devm_clk_hw_register_divider(
529 		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
530 		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
531 		data->model_data->scaler_bit_width,
532 		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
533 		&data->clk_lock);
534 	if (IS_ERR(data->clk_scaler))
535 		return PTR_ERR(data->clk_scaler);
536 
537 	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
538 	if (IS_ERR(data->rst)) {
539 		dev_err(&pdev->dev,
540 			"invalid or missing reset controller device tree entry");
541 		return PTR_ERR(data->rst);
542 	}
543 	reset_control_deassert(data->rst);
544 
545 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
546 				       data->rst);
547 	if (ret)
548 		return ret;
549 
550 	ret = aspeed_adc_vref_config(indio_dev);
551 	if (ret)
552 		return ret;
553 
554 	ret = aspeed_adc_set_trim_data(indio_dev);
555 	if (ret)
556 		return ret;
557 
558 	if (of_property_present(data->dev->of_node, "aspeed,battery-sensing")) {
559 		if (data->model_data->bat_sense_sup) {
560 			data->battery_sensing = 1;
561 			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
562 			    ASPEED_ADC_BAT_SENSING_DIV) {
563 				data->battery_mode_gain.mult = 3;
564 				data->battery_mode_gain.div = 1;
565 			} else {
566 				data->battery_mode_gain.mult = 3;
567 				data->battery_mode_gain.div = 2;
568 			}
569 		} else
570 			dev_warn(&pdev->dev,
571 				 "Failed to enable battery-sensing mode\n");
572 	}
573 
574 	ret = clk_prepare_enable(data->clk_scaler->clk);
575 	if (ret)
576 		return ret;
577 	ret = devm_add_action_or_reset(data->dev,
578 				       aspeed_adc_clk_disable_unprepare,
579 				       data->clk_scaler->clk);
580 	if (ret)
581 		return ret;
582 	ret = aspeed_adc_set_sampling_rate(indio_dev,
583 					   ASPEED_ADC_DEF_SAMPLING_RATE);
584 	if (ret)
585 		return ret;
586 
587 	adc_engine_control_reg_val =
588 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
589 	adc_engine_control_reg_val |=
590 		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
591 		ASPEED_ADC_ENGINE_ENABLE;
592 	/* Enable engine in normal mode. */
593 	writel(adc_engine_control_reg_val,
594 	       data->base + ASPEED_REG_ENGINE_CONTROL);
595 
596 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
597 					data);
598 	if (ret)
599 		return ret;
600 
601 	if (data->model_data->wait_init_sequence) {
602 		/* Wait for initial sequence complete. */
603 		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
604 					 adc_engine_control_reg_val,
605 					 adc_engine_control_reg_val &
606 					 ASPEED_ADC_CTRL_INIT_RDY,
607 					 ASPEED_ADC_INIT_POLLING_TIME,
608 					 ASPEED_ADC_INIT_TIMEOUT);
609 		if (ret)
610 			return ret;
611 	}
612 
613 	aspeed_adc_compensation(indio_dev);
614 	/* Start all channels in normal mode. */
615 	adc_engine_control_reg_val =
616 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
617 	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
618 	writel(adc_engine_control_reg_val,
619 	       data->base + ASPEED_REG_ENGINE_CONTROL);
620 
621 	indio_dev->name = data->model_data->model_name;
622 	indio_dev->info = &aspeed_adc_iio_info;
623 	indio_dev->modes = INDIO_DIRECT_MODE;
624 	indio_dev->channels = data->battery_sensing ?
625 					    aspeed_adc_iio_bat_channels :
626 					    aspeed_adc_iio_channels;
627 	indio_dev->num_channels = data->model_data->num_channels;
628 
629 	ret = devm_iio_device_register(data->dev, indio_dev);
630 	return ret;
631 }
632 
633 static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
634 	.offset = 0x154,
635 	.field = GENMASK(31, 28),
636 };
637 
638 static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
639 	.offset = 0x5d0,
640 	.field = GENMASK(3, 0),
641 };
642 
643 static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
644 	.offset = 0x5d0,
645 	.field = GENMASK(7, 4),
646 };
647 
648 static const struct aspeed_adc_model_data ast2400_model_data = {
649 	.model_name = "ast2400-adc",
650 	.vref_fixed_mv = 2500,
651 	.min_sampling_rate = 10000,
652 	.max_sampling_rate = 500000,
653 	.need_prescaler = true,
654 	.scaler_bit_width = 10,
655 	.num_channels = 16,
656 };
657 
658 static const struct aspeed_adc_model_data ast2500_model_data = {
659 	.model_name = "ast2500-adc",
660 	.vref_fixed_mv = 1800,
661 	.min_sampling_rate = 1,
662 	.max_sampling_rate = 1000000,
663 	.wait_init_sequence = true,
664 	.need_prescaler = true,
665 	.scaler_bit_width = 10,
666 	.num_channels = 16,
667 	.trim_locate = &ast2500_adc_trim,
668 };
669 
670 static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
671 	.model_name = "ast2600-adc0",
672 	.min_sampling_rate = 10000,
673 	.max_sampling_rate = 500000,
674 	.wait_init_sequence = true,
675 	.bat_sense_sup = true,
676 	.scaler_bit_width = 16,
677 	.num_channels = 8,
678 	.trim_locate = &ast2600_adc0_trim,
679 };
680 
681 static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
682 	.model_name = "ast2600-adc1",
683 	.min_sampling_rate = 10000,
684 	.max_sampling_rate = 500000,
685 	.wait_init_sequence = true,
686 	.bat_sense_sup = true,
687 	.scaler_bit_width = 16,
688 	.num_channels = 8,
689 	.trim_locate = &ast2600_adc1_trim,
690 };
691 
692 static const struct of_device_id aspeed_adc_matches[] = {
693 	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
694 	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
695 	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
696 	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
697 	{ }
698 };
699 MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
700 
701 static struct platform_driver aspeed_adc_driver = {
702 	.probe = aspeed_adc_probe,
703 	.driver = {
704 		.name = KBUILD_MODNAME,
705 		.of_match_table = aspeed_adc_matches,
706 	}
707 };
708 
709 module_platform_driver(aspeed_adc_driver);
710 
711 MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
712 MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
713 MODULE_LICENSE("GPL");
714