1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Analog Devices AD7768-1 SPI ADC driver 4 * 5 * Copyright 2017 Analog Devices Inc. 6 */ 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/sysfs.h> 17 #include <linux/spi/spi.h> 18 19 #include <linux/iio/buffer.h> 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/trigger.h> 23 #include <linux/iio/triggered_buffer.h> 24 #include <linux/iio/trigger_consumer.h> 25 26 /* AD7768 registers definition */ 27 #define AD7768_REG_CHIP_TYPE 0x3 28 #define AD7768_REG_PROD_ID_L 0x4 29 #define AD7768_REG_PROD_ID_H 0x5 30 #define AD7768_REG_CHIP_GRADE 0x6 31 #define AD7768_REG_SCRATCH_PAD 0x0A 32 #define AD7768_REG_VENDOR_L 0x0C 33 #define AD7768_REG_VENDOR_H 0x0D 34 #define AD7768_REG_INTERFACE_FORMAT 0x14 35 #define AD7768_REG_POWER_CLOCK 0x15 36 #define AD7768_REG_ANALOG 0x16 37 #define AD7768_REG_ANALOG2 0x17 38 #define AD7768_REG_CONVERSION 0x18 39 #define AD7768_REG_DIGITAL_FILTER 0x19 40 #define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A 41 #define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B 42 #define AD7768_REG_DUTY_CYCLE_RATIO 0x1C 43 #define AD7768_REG_SYNC_RESET 0x1D 44 #define AD7768_REG_GPIO_CONTROL 0x1E 45 #define AD7768_REG_GPIO_WRITE 0x1F 46 #define AD7768_REG_GPIO_READ 0x20 47 #define AD7768_REG_OFFSET_HI 0x21 48 #define AD7768_REG_OFFSET_MID 0x22 49 #define AD7768_REG_OFFSET_LO 0x23 50 #define AD7768_REG_GAIN_HI 0x24 51 #define AD7768_REG_GAIN_MID 0x25 52 #define AD7768_REG_GAIN_LO 0x26 53 #define AD7768_REG_SPI_DIAG_ENABLE 0x28 54 #define AD7768_REG_ADC_DIAG_ENABLE 0x29 55 #define AD7768_REG_DIG_DIAG_ENABLE 0x2A 56 #define AD7768_REG_ADC_DATA 0x2C 57 #define AD7768_REG_MASTER_STATUS 0x2D 58 #define AD7768_REG_SPI_DIAG_STATUS 0x2E 59 #define AD7768_REG_ADC_DIAG_STATUS 0x2F 60 #define AD7768_REG_DIG_DIAG_STATUS 0x30 61 #define AD7768_REG_MCLK_COUNTER 0x31 62 63 /* AD7768_REG_POWER_CLOCK */ 64 #define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4) 65 #define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x) 66 #define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0) 67 #define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x) 68 69 /* AD7768_REG_DIGITAL_FILTER */ 70 #define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4) 71 #define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x) 72 #define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0) 73 #define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x) 74 75 /* AD7768_REG_CONVERSION */ 76 #define AD7768_CONV_MODE_MSK GENMASK(2, 0) 77 #define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x) 78 79 #define AD7768_RD_FLAG_MSK(x) (BIT(6) | ((x) & 0x3F)) 80 #define AD7768_WR_FLAG_MSK(x) ((x) & 0x3F) 81 82 enum ad7768_conv_mode { 83 AD7768_CONTINUOUS, 84 AD7768_ONE_SHOT, 85 AD7768_SINGLE, 86 AD7768_PERIODIC, 87 AD7768_STANDBY 88 }; 89 90 enum ad7768_pwrmode { 91 AD7768_ECO_MODE = 0, 92 AD7768_MED_MODE = 2, 93 AD7768_FAST_MODE = 3 94 }; 95 96 enum ad7768_mclk_div { 97 AD7768_MCLK_DIV_16, 98 AD7768_MCLK_DIV_8, 99 AD7768_MCLK_DIV_4, 100 AD7768_MCLK_DIV_2 101 }; 102 103 enum ad7768_dec_rate { 104 AD7768_DEC_RATE_32 = 0, 105 AD7768_DEC_RATE_64 = 1, 106 AD7768_DEC_RATE_128 = 2, 107 AD7768_DEC_RATE_256 = 3, 108 AD7768_DEC_RATE_512 = 4, 109 AD7768_DEC_RATE_1024 = 5, 110 AD7768_DEC_RATE_8 = 9, 111 AD7768_DEC_RATE_16 = 10 112 }; 113 114 struct ad7768_clk_configuration { 115 enum ad7768_mclk_div mclk_div; 116 enum ad7768_dec_rate dec_rate; 117 unsigned int clk_div; 118 enum ad7768_pwrmode pwrmode; 119 }; 120 121 static const struct ad7768_clk_configuration ad7768_clk_config[] = { 122 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_8, 16, AD7768_FAST_MODE }, 123 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_16, 32, AD7768_FAST_MODE }, 124 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_32, 64, AD7768_FAST_MODE }, 125 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_64, 128, AD7768_FAST_MODE }, 126 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_128, 256, AD7768_FAST_MODE }, 127 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_128, 512, AD7768_MED_MODE }, 128 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_256, 1024, AD7768_MED_MODE }, 129 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_512, 2048, AD7768_MED_MODE }, 130 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_1024, 4096, AD7768_MED_MODE }, 131 { AD7768_MCLK_DIV_8, AD7768_DEC_RATE_1024, 8192, AD7768_MED_MODE }, 132 { AD7768_MCLK_DIV_16, AD7768_DEC_RATE_1024, 16384, AD7768_ECO_MODE }, 133 }; 134 135 static const struct iio_chan_spec ad7768_channels[] = { 136 { 137 .type = IIO_VOLTAGE, 138 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 139 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), 140 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 141 .indexed = 1, 142 .channel = 0, 143 .scan_index = 0, 144 .scan_type = { 145 .sign = 'u', 146 .realbits = 24, 147 .storagebits = 32, 148 .shift = 8, 149 .endianness = IIO_BE, 150 }, 151 }, 152 }; 153 154 struct ad7768_state { 155 struct spi_device *spi; 156 struct regulator *vref; 157 struct mutex lock; 158 struct clk *mclk; 159 unsigned int mclk_freq; 160 unsigned int samp_freq; 161 struct completion completion; 162 struct iio_trigger *trig; 163 struct gpio_desc *gpio_sync_in; 164 const char *labels[ARRAY_SIZE(ad7768_channels)]; 165 /* 166 * DMA (thus cache coherency maintenance) may require the 167 * transfer buffers to live in their own cache lines. 168 */ 169 union { 170 struct { 171 __be32 chan; 172 s64 timestamp; 173 } scan; 174 __be32 d32; 175 u8 d8[2]; 176 } data __aligned(IIO_DMA_MINALIGN); 177 }; 178 179 static int ad7768_spi_reg_read(struct ad7768_state *st, unsigned int addr, 180 unsigned int len) 181 { 182 unsigned int shift; 183 int ret; 184 185 shift = 32 - (8 * len); 186 st->data.d8[0] = AD7768_RD_FLAG_MSK(addr); 187 188 ret = spi_write_then_read(st->spi, st->data.d8, 1, 189 &st->data.d32, len); 190 if (ret < 0) 191 return ret; 192 193 return (be32_to_cpu(st->data.d32) >> shift); 194 } 195 196 static int ad7768_spi_reg_write(struct ad7768_state *st, 197 unsigned int addr, 198 unsigned int val) 199 { 200 st->data.d8[0] = AD7768_WR_FLAG_MSK(addr); 201 st->data.d8[1] = val & 0xFF; 202 203 return spi_write(st->spi, st->data.d8, 2); 204 } 205 206 static int ad7768_set_mode(struct ad7768_state *st, 207 enum ad7768_conv_mode mode) 208 { 209 int regval; 210 211 regval = ad7768_spi_reg_read(st, AD7768_REG_CONVERSION, 1); 212 if (regval < 0) 213 return regval; 214 215 regval &= ~AD7768_CONV_MODE_MSK; 216 regval |= AD7768_CONV_MODE(mode); 217 218 return ad7768_spi_reg_write(st, AD7768_REG_CONVERSION, regval); 219 } 220 221 static int ad7768_scan_direct(struct iio_dev *indio_dev) 222 { 223 struct ad7768_state *st = iio_priv(indio_dev); 224 int readval, ret; 225 226 reinit_completion(&st->completion); 227 228 ret = ad7768_set_mode(st, AD7768_ONE_SHOT); 229 if (ret < 0) 230 return ret; 231 232 ret = wait_for_completion_timeout(&st->completion, 233 msecs_to_jiffies(1000)); 234 if (!ret) 235 return -ETIMEDOUT; 236 237 readval = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 238 if (readval < 0) 239 return readval; 240 /* 241 * Any SPI configuration of the AD7768-1 can only be 242 * performed in continuous conversion mode. 243 */ 244 ret = ad7768_set_mode(st, AD7768_CONTINUOUS); 245 if (ret < 0) 246 return ret; 247 248 return readval; 249 } 250 251 static int ad7768_reg_access(struct iio_dev *indio_dev, 252 unsigned int reg, 253 unsigned int writeval, 254 unsigned int *readval) 255 { 256 struct ad7768_state *st = iio_priv(indio_dev); 257 int ret; 258 259 mutex_lock(&st->lock); 260 if (readval) { 261 ret = ad7768_spi_reg_read(st, reg, 1); 262 if (ret < 0) 263 goto err_unlock; 264 *readval = ret; 265 ret = 0; 266 } else { 267 ret = ad7768_spi_reg_write(st, reg, writeval); 268 } 269 err_unlock: 270 mutex_unlock(&st->lock); 271 272 return ret; 273 } 274 275 static int ad7768_set_dig_fil(struct ad7768_state *st, 276 enum ad7768_dec_rate dec_rate) 277 { 278 unsigned int mode; 279 int ret; 280 281 if (dec_rate == AD7768_DEC_RATE_8 || dec_rate == AD7768_DEC_RATE_16) 282 mode = AD7768_DIG_FIL_FIL(dec_rate); 283 else 284 mode = AD7768_DIG_FIL_DEC_RATE(dec_rate); 285 286 ret = ad7768_spi_reg_write(st, AD7768_REG_DIGITAL_FILTER, mode); 287 if (ret < 0) 288 return ret; 289 290 /* A sync-in pulse is required every time the filter dec rate changes */ 291 gpiod_set_value(st->gpio_sync_in, 1); 292 gpiod_set_value(st->gpio_sync_in, 0); 293 294 return 0; 295 } 296 297 static int ad7768_set_freq(struct ad7768_state *st, 298 unsigned int freq) 299 { 300 unsigned int diff_new, diff_old, pwr_mode, i, idx; 301 int res, ret; 302 303 diff_old = U32_MAX; 304 idx = 0; 305 306 res = DIV_ROUND_CLOSEST(st->mclk_freq, freq); 307 308 /* Find the closest match for the desired sampling frequency */ 309 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 310 diff_new = abs(res - ad7768_clk_config[i].clk_div); 311 if (diff_new < diff_old) { 312 diff_old = diff_new; 313 idx = i; 314 } 315 } 316 317 /* 318 * Set both the mclk_div and pwrmode with a single write to the 319 * POWER_CLOCK register 320 */ 321 pwr_mode = AD7768_PWR_MCLK_DIV(ad7768_clk_config[idx].mclk_div) | 322 AD7768_PWR_PWRMODE(ad7768_clk_config[idx].pwrmode); 323 ret = ad7768_spi_reg_write(st, AD7768_REG_POWER_CLOCK, pwr_mode); 324 if (ret < 0) 325 return ret; 326 327 ret = ad7768_set_dig_fil(st, ad7768_clk_config[idx].dec_rate); 328 if (ret < 0) 329 return ret; 330 331 st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq, 332 ad7768_clk_config[idx].clk_div); 333 334 return 0; 335 } 336 337 static ssize_t ad7768_sampling_freq_avail(struct device *dev, 338 struct device_attribute *attr, 339 char *buf) 340 { 341 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 342 struct ad7768_state *st = iio_priv(indio_dev); 343 unsigned int freq; 344 int i, len = 0; 345 346 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 347 freq = DIV_ROUND_CLOSEST(st->mclk_freq, 348 ad7768_clk_config[i].clk_div); 349 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", freq); 350 } 351 352 buf[len - 1] = '\n'; 353 354 return len; 355 } 356 357 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(ad7768_sampling_freq_avail); 358 359 static int ad7768_read_raw(struct iio_dev *indio_dev, 360 struct iio_chan_spec const *chan, 361 int *val, int *val2, long info) 362 { 363 struct ad7768_state *st = iio_priv(indio_dev); 364 int scale_uv, ret; 365 366 switch (info) { 367 case IIO_CHAN_INFO_RAW: 368 ret = iio_device_claim_direct_mode(indio_dev); 369 if (ret) 370 return ret; 371 372 ret = ad7768_scan_direct(indio_dev); 373 if (ret >= 0) 374 *val = ret; 375 376 iio_device_release_direct_mode(indio_dev); 377 if (ret < 0) 378 return ret; 379 380 return IIO_VAL_INT; 381 382 case IIO_CHAN_INFO_SCALE: 383 scale_uv = regulator_get_voltage(st->vref); 384 if (scale_uv < 0) 385 return scale_uv; 386 387 *val = (scale_uv * 2) / 1000; 388 *val2 = chan->scan_type.realbits; 389 390 return IIO_VAL_FRACTIONAL_LOG2; 391 392 case IIO_CHAN_INFO_SAMP_FREQ: 393 *val = st->samp_freq; 394 395 return IIO_VAL_INT; 396 } 397 398 return -EINVAL; 399 } 400 401 static int ad7768_write_raw(struct iio_dev *indio_dev, 402 struct iio_chan_spec const *chan, 403 int val, int val2, long info) 404 { 405 struct ad7768_state *st = iio_priv(indio_dev); 406 407 switch (info) { 408 case IIO_CHAN_INFO_SAMP_FREQ: 409 return ad7768_set_freq(st, val); 410 default: 411 return -EINVAL; 412 } 413 } 414 415 static int ad7768_read_label(struct iio_dev *indio_dev, 416 const struct iio_chan_spec *chan, char *label) 417 { 418 struct ad7768_state *st = iio_priv(indio_dev); 419 420 return sprintf(label, "%s\n", st->labels[chan->channel]); 421 } 422 423 static struct attribute *ad7768_attributes[] = { 424 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 425 NULL 426 }; 427 428 static const struct attribute_group ad7768_group = { 429 .attrs = ad7768_attributes, 430 }; 431 432 static const struct iio_info ad7768_info = { 433 .attrs = &ad7768_group, 434 .read_raw = &ad7768_read_raw, 435 .write_raw = &ad7768_write_raw, 436 .read_label = ad7768_read_label, 437 .debugfs_reg_access = &ad7768_reg_access, 438 }; 439 440 static int ad7768_setup(struct ad7768_state *st) 441 { 442 int ret; 443 444 /* 445 * Two writes to the SPI_RESET[1:0] bits are required to initiate 446 * a software reset. The bits must first be set to 11, and then 447 * to 10. When the sequence is detected, the reset occurs. 448 * See the datasheet, page 70. 449 */ 450 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x3); 451 if (ret) 452 return ret; 453 454 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x2); 455 if (ret) 456 return ret; 457 458 st->gpio_sync_in = devm_gpiod_get(&st->spi->dev, "adi,sync-in", 459 GPIOD_OUT_LOW); 460 if (IS_ERR(st->gpio_sync_in)) 461 return PTR_ERR(st->gpio_sync_in); 462 463 /* Set the default sampling frequency to 32000 kSPS */ 464 return ad7768_set_freq(st, 32000); 465 } 466 467 static irqreturn_t ad7768_trigger_handler(int irq, void *p) 468 { 469 struct iio_poll_func *pf = p; 470 struct iio_dev *indio_dev = pf->indio_dev; 471 struct ad7768_state *st = iio_priv(indio_dev); 472 int ret; 473 474 mutex_lock(&st->lock); 475 476 ret = spi_read(st->spi, &st->data.scan.chan, 3); 477 if (ret < 0) 478 goto err_unlock; 479 480 iio_push_to_buffers_with_timestamp(indio_dev, &st->data.scan, 481 iio_get_time_ns(indio_dev)); 482 483 err_unlock: 484 iio_trigger_notify_done(indio_dev->trig); 485 mutex_unlock(&st->lock); 486 487 return IRQ_HANDLED; 488 } 489 490 static irqreturn_t ad7768_interrupt(int irq, void *dev_id) 491 { 492 struct iio_dev *indio_dev = dev_id; 493 struct ad7768_state *st = iio_priv(indio_dev); 494 495 if (iio_buffer_enabled(indio_dev)) 496 iio_trigger_poll(st->trig); 497 else 498 complete(&st->completion); 499 500 return IRQ_HANDLED; 501 }; 502 503 static int ad7768_buffer_postenable(struct iio_dev *indio_dev) 504 { 505 struct ad7768_state *st = iio_priv(indio_dev); 506 507 /* 508 * Write a 1 to the LSB of the INTERFACE_FORMAT register to enter 509 * continuous read mode. Subsequent data reads do not require an 510 * initial 8-bit write to query the ADC_DATA register. 511 */ 512 return ad7768_spi_reg_write(st, AD7768_REG_INTERFACE_FORMAT, 0x01); 513 } 514 515 static int ad7768_buffer_predisable(struct iio_dev *indio_dev) 516 { 517 struct ad7768_state *st = iio_priv(indio_dev); 518 519 /* 520 * To exit continuous read mode, perform a single read of the ADC_DATA 521 * reg (0x2C), which allows further configuration of the device. 522 */ 523 return ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 524 } 525 526 static const struct iio_buffer_setup_ops ad7768_buffer_ops = { 527 .postenable = &ad7768_buffer_postenable, 528 .predisable = &ad7768_buffer_predisable, 529 }; 530 531 static const struct iio_trigger_ops ad7768_trigger_ops = { 532 .validate_device = iio_trigger_validate_own_device, 533 }; 534 535 static void ad7768_regulator_disable(void *data) 536 { 537 struct ad7768_state *st = data; 538 539 regulator_disable(st->vref); 540 } 541 542 static int ad7768_set_channel_label(struct iio_dev *indio_dev, 543 int num_channels) 544 { 545 struct ad7768_state *st = iio_priv(indio_dev); 546 struct device *device = indio_dev->dev.parent; 547 const char *label; 548 int crt_ch = 0; 549 550 device_for_each_child_node_scoped(device, child) { 551 if (fwnode_property_read_u32(child, "reg", &crt_ch)) 552 continue; 553 554 if (crt_ch >= num_channels) 555 continue; 556 557 if (fwnode_property_read_string(child, "label", &label)) 558 continue; 559 560 st->labels[crt_ch] = label; 561 } 562 563 return 0; 564 } 565 566 static int ad7768_probe(struct spi_device *spi) 567 { 568 struct ad7768_state *st; 569 struct iio_dev *indio_dev; 570 int ret; 571 572 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 573 if (!indio_dev) 574 return -ENOMEM; 575 576 st = iio_priv(indio_dev); 577 st->spi = spi; 578 579 st->vref = devm_regulator_get(&spi->dev, "vref"); 580 if (IS_ERR(st->vref)) 581 return PTR_ERR(st->vref); 582 583 ret = regulator_enable(st->vref); 584 if (ret) { 585 dev_err(&spi->dev, "Failed to enable specified vref supply\n"); 586 return ret; 587 } 588 589 ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st); 590 if (ret) 591 return ret; 592 593 st->mclk = devm_clk_get_enabled(&spi->dev, "mclk"); 594 if (IS_ERR(st->mclk)) 595 return PTR_ERR(st->mclk); 596 597 st->mclk_freq = clk_get_rate(st->mclk); 598 599 mutex_init(&st->lock); 600 601 indio_dev->channels = ad7768_channels; 602 indio_dev->num_channels = ARRAY_SIZE(ad7768_channels); 603 indio_dev->name = spi_get_device_id(spi)->name; 604 indio_dev->info = &ad7768_info; 605 indio_dev->modes = INDIO_DIRECT_MODE; 606 607 ret = ad7768_setup(st); 608 if (ret < 0) { 609 dev_err(&spi->dev, "AD7768 setup failed\n"); 610 return ret; 611 } 612 613 st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d", 614 indio_dev->name, 615 iio_device_id(indio_dev)); 616 if (!st->trig) 617 return -ENOMEM; 618 619 st->trig->ops = &ad7768_trigger_ops; 620 iio_trigger_set_drvdata(st->trig, indio_dev); 621 ret = devm_iio_trigger_register(&spi->dev, st->trig); 622 if (ret) 623 return ret; 624 625 indio_dev->trig = iio_trigger_get(st->trig); 626 627 init_completion(&st->completion); 628 629 ret = ad7768_set_channel_label(indio_dev, ARRAY_SIZE(ad7768_channels)); 630 if (ret) 631 return ret; 632 633 ret = devm_request_irq(&spi->dev, spi->irq, 634 &ad7768_interrupt, 635 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 636 indio_dev->name, indio_dev); 637 if (ret) 638 return ret; 639 640 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, 641 &iio_pollfunc_store_time, 642 &ad7768_trigger_handler, 643 &ad7768_buffer_ops); 644 if (ret) 645 return ret; 646 647 return devm_iio_device_register(&spi->dev, indio_dev); 648 } 649 650 static const struct spi_device_id ad7768_id_table[] = { 651 { "ad7768-1", 0 }, 652 {} 653 }; 654 MODULE_DEVICE_TABLE(spi, ad7768_id_table); 655 656 static const struct of_device_id ad7768_of_match[] = { 657 { .compatible = "adi,ad7768-1" }, 658 { } 659 }; 660 MODULE_DEVICE_TABLE(of, ad7768_of_match); 661 662 static struct spi_driver ad7768_driver = { 663 .driver = { 664 .name = "ad7768-1", 665 .of_match_table = ad7768_of_match, 666 }, 667 .probe = ad7768_probe, 668 .id_table = ad7768_id_table, 669 }; 670 module_spi_driver(ad7768_driver); 671 672 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>"); 673 MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver"); 674 MODULE_LICENSE("GPL v2"); 675