xref: /linux/drivers/iio/adc/ad7380.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD738x Simultaneous Sampling SAR ADCs
4  *
5  * Copyright 2017 Analog Devices Inc.
6  * Copyright 2024 BayLibre, SAS
7  *
8  * Datasheets of supported parts:
9  * ad7380/1 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7380-7381.pdf
10  * ad7383/4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-7384.pdf
11  * ad7380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7380-4.pdf
12  * ad7381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7381-4.pdf
13  * ad7383/4-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-4-ad7384-4.pdf
14  */
15 
16 #include <linux/align.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/cleanup.h>
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/spi/spi.h>
28 
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
33 
34 #define MAX_NUM_CHANNELS		4
35 /* 2.5V internal reference voltage */
36 #define AD7380_INTERNAL_REF_MV		2500
37 
38 /* reading and writing registers is more reliable at lower than max speed */
39 #define AD7380_REG_WR_SPEED_HZ		10000000
40 
41 #define AD7380_REG_WR			BIT(15)
42 #define AD7380_REG_REGADDR		GENMASK(14, 12)
43 #define AD7380_REG_DATA			GENMASK(11, 0)
44 
45 #define AD7380_REG_ADDR_NOP		0x0
46 #define AD7380_REG_ADDR_CONFIG1		0x1
47 #define AD7380_REG_ADDR_CONFIG2		0x2
48 #define AD7380_REG_ADDR_ALERT		0x3
49 #define AD7380_REG_ADDR_ALERT_LOW_TH	0x4
50 #define AD7380_REG_ADDR_ALERT_HIGH_TH	0x5
51 
52 #define AD7380_CONFIG1_OS_MODE		BIT(9)
53 #define AD7380_CONFIG1_OSR		GENMASK(8, 6)
54 #define AD7380_CONFIG1_CRC_W		BIT(5)
55 #define AD7380_CONFIG1_CRC_R		BIT(4)
56 #define AD7380_CONFIG1_ALERTEN		BIT(3)
57 #define AD7380_CONFIG1_RES		BIT(2)
58 #define AD7380_CONFIG1_REFSEL		BIT(1)
59 #define AD7380_CONFIG1_PMODE		BIT(0)
60 
61 #define AD7380_CONFIG2_SDO2		GENMASK(9, 8)
62 #define AD7380_CONFIG2_SDO		BIT(8)
63 #define AD7380_CONFIG2_RESET		GENMASK(7, 0)
64 
65 #define AD7380_CONFIG2_RESET_SOFT	0x3C
66 #define AD7380_CONFIG2_RESET_HARD	0xFF
67 
68 #define AD7380_ALERT_LOW_TH		GENMASK(11, 0)
69 #define AD7380_ALERT_HIGH_TH		GENMASK(11, 0)
70 
71 #define T_CONVERT_NS 190		/* conversion time */
72 #define T_CONVERT_0_NS 10		/* 1st conversion start time (oversampling) */
73 #define T_CONVERT_X_NS 500		/* xth conversion start time (oversampling) */
74 
75 struct ad7380_timing_specs {
76 	const unsigned int t_csh_ns;	/* CS minimum high time */
77 };
78 
79 struct ad7380_chip_info {
80 	const char *name;
81 	const struct iio_chan_spec *channels;
82 	unsigned int num_channels;
83 	const char * const *vcm_supplies;
84 	unsigned int num_vcm_supplies;
85 	const unsigned long *available_scan_masks;
86 	const struct ad7380_timing_specs *timing_specs;
87 };
88 
89 enum {
90 	AD7380_SCAN_TYPE_NORMAL,
91 	AD7380_SCAN_TYPE_RESOLUTION_BOOST,
92 };
93 
94 /* Extended scan types for 14-bit chips. */
95 static const struct iio_scan_type ad7380_scan_type_14[] = {
96 	[AD7380_SCAN_TYPE_NORMAL] = {
97 		.sign = 's',
98 		.realbits = 14,
99 		.storagebits = 16,
100 		.endianness = IIO_CPU
101 	},
102 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
103 		.sign = 's',
104 		.realbits = 16,
105 		.storagebits = 16,
106 		.endianness = IIO_CPU
107 	},
108 };
109 
110 /* Extended scan types for 16-bit chips. */
111 static const struct iio_scan_type ad7380_scan_type_16[] = {
112 	[AD7380_SCAN_TYPE_NORMAL] = {
113 		.sign = 's',
114 		.realbits = 16,
115 		.storagebits = 16,
116 		.endianness = IIO_CPU
117 	},
118 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
119 		.sign = 's',
120 		.realbits = 18,
121 		.storagebits = 32,
122 		.endianness = IIO_CPU
123 	},
124 };
125 
126 #define AD7380_CHANNEL(index, bits, diff) {			\
127 	.type = IIO_VOLTAGE,					\
128 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
129 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),	\
130 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
131 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),		\
132 	.info_mask_shared_by_type_available =			\
133 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),		\
134 	.indexed = 1,						\
135 	.differential = (diff),					\
136 	.channel = (diff) ? (2 * (index)) : (index),		\
137 	.channel2 = (diff) ? (2 * (index) + 1) : 0,		\
138 	.scan_index = (index),					\
139 	.has_ext_scan_type = 1,					\
140 	.ext_scan_type = ad7380_scan_type_##bits,		\
141 	.num_ext_scan_type = ARRAY_SIZE(ad7380_scan_type_##bits),\
142 }
143 
144 #define DEFINE_AD7380_2_CHANNEL(name, bits, diff)	\
145 static const struct iio_chan_spec name[] = {		\
146 	AD7380_CHANNEL(0, bits, diff),			\
147 	AD7380_CHANNEL(1, bits, diff),			\
148 	IIO_CHAN_SOFT_TIMESTAMP(2),			\
149 }
150 
151 #define DEFINE_AD7380_4_CHANNEL(name, bits, diff)	\
152 static const struct iio_chan_spec name[] = {		\
153 	AD7380_CHANNEL(0, bits, diff),			\
154 	AD7380_CHANNEL(1, bits, diff),			\
155 	AD7380_CHANNEL(2, bits, diff),			\
156 	AD7380_CHANNEL(3, bits, diff),			\
157 	IIO_CHAN_SOFT_TIMESTAMP(4),			\
158 }
159 
160 /* fully differential */
161 DEFINE_AD7380_2_CHANNEL(ad7380_channels, 16, 1);
162 DEFINE_AD7380_2_CHANNEL(ad7381_channels, 14, 1);
163 DEFINE_AD7380_4_CHANNEL(ad7380_4_channels, 16, 1);
164 DEFINE_AD7380_4_CHANNEL(ad7381_4_channels, 14, 1);
165 /* pseudo differential */
166 DEFINE_AD7380_2_CHANNEL(ad7383_channels, 16, 0);
167 DEFINE_AD7380_2_CHANNEL(ad7384_channels, 14, 0);
168 DEFINE_AD7380_4_CHANNEL(ad7383_4_channels, 16, 0);
169 DEFINE_AD7380_4_CHANNEL(ad7384_4_channels, 14, 0);
170 
171 static const char * const ad7380_2_channel_vcm_supplies[] = {
172 	"aina", "ainb",
173 };
174 
175 static const char * const ad7380_4_channel_vcm_supplies[] = {
176 	"aina", "ainb", "ainc", "aind",
177 };
178 
179 /* Since this is simultaneous sampling, we don't allow individual channels. */
180 static const unsigned long ad7380_2_channel_scan_masks[] = {
181 	GENMASK(1, 0),
182 	0
183 };
184 
185 static const unsigned long ad7380_4_channel_scan_masks[] = {
186 	GENMASK(3, 0),
187 	0
188 };
189 
190 static const struct ad7380_timing_specs ad7380_timing = {
191 	.t_csh_ns = 10,
192 };
193 
194 static const struct ad7380_timing_specs ad7380_4_timing = {
195 	.t_csh_ns = 20,
196 };
197 
198 /*
199  * Available oversampling ratios. The indices correspond with the bit value
200  * expected by the chip.  The available ratios depend on the averaging mode,
201  * only normal averaging is supported for now.
202  */
203 static const int ad7380_oversampling_ratios[] = {
204 	1, 2, 4, 8, 16, 32,
205 };
206 
207 static const struct ad7380_chip_info ad7380_chip_info = {
208 	.name = "ad7380",
209 	.channels = ad7380_channels,
210 	.num_channels = ARRAY_SIZE(ad7380_channels),
211 	.available_scan_masks = ad7380_2_channel_scan_masks,
212 	.timing_specs = &ad7380_timing,
213 };
214 
215 static const struct ad7380_chip_info ad7381_chip_info = {
216 	.name = "ad7381",
217 	.channels = ad7381_channels,
218 	.num_channels = ARRAY_SIZE(ad7381_channels),
219 	.available_scan_masks = ad7380_2_channel_scan_masks,
220 	.timing_specs = &ad7380_timing,
221 };
222 
223 static const struct ad7380_chip_info ad7383_chip_info = {
224 	.name = "ad7383",
225 	.channels = ad7383_channels,
226 	.num_channels = ARRAY_SIZE(ad7383_channels),
227 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
228 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
229 	.available_scan_masks = ad7380_2_channel_scan_masks,
230 	.timing_specs = &ad7380_timing,
231 };
232 
233 static const struct ad7380_chip_info ad7384_chip_info = {
234 	.name = "ad7384",
235 	.channels = ad7384_channels,
236 	.num_channels = ARRAY_SIZE(ad7384_channels),
237 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
238 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
239 	.available_scan_masks = ad7380_2_channel_scan_masks,
240 	.timing_specs = &ad7380_timing,
241 };
242 
243 static const struct ad7380_chip_info ad7380_4_chip_info = {
244 	.name = "ad7380-4",
245 	.channels = ad7380_4_channels,
246 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
247 	.available_scan_masks = ad7380_4_channel_scan_masks,
248 	.timing_specs = &ad7380_4_timing,
249 };
250 
251 static const struct ad7380_chip_info ad7381_4_chip_info = {
252 	.name = "ad7381-4",
253 	.channels = ad7381_4_channels,
254 	.num_channels = ARRAY_SIZE(ad7381_4_channels),
255 	.available_scan_masks = ad7380_4_channel_scan_masks,
256 	.timing_specs = &ad7380_4_timing,
257 };
258 
259 static const struct ad7380_chip_info ad7383_4_chip_info = {
260 	.name = "ad7383-4",
261 	.channels = ad7383_4_channels,
262 	.num_channels = ARRAY_SIZE(ad7383_4_channels),
263 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
264 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
265 	.available_scan_masks = ad7380_4_channel_scan_masks,
266 	.timing_specs = &ad7380_4_timing,
267 };
268 
269 static const struct ad7380_chip_info ad7384_4_chip_info = {
270 	.name = "ad7384-4",
271 	.channels = ad7384_4_channels,
272 	.num_channels = ARRAY_SIZE(ad7384_4_channels),
273 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
274 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
275 	.available_scan_masks = ad7380_4_channel_scan_masks,
276 	.timing_specs = &ad7380_4_timing,
277 };
278 
279 struct ad7380_state {
280 	const struct ad7380_chip_info *chip_info;
281 	struct spi_device *spi;
282 	struct regmap *regmap;
283 	unsigned int oversampling_ratio;
284 	bool resolution_boost_enabled;
285 	unsigned int vref_mv;
286 	unsigned int vcm_mv[MAX_NUM_CHANNELS];
287 	/* xfers, message an buffer for reading sample data */
288 	struct spi_transfer xfer[2];
289 	struct spi_message msg;
290 	/*
291 	 * DMA (thus cache coherency maintenance) requires the transfer buffers
292 	 * to live in their own cache lines.
293 	 *
294 	 * Make the buffer large enough for MAX_NUM_CHANNELS 32-bit samples and
295 	 * one 64-bit aligned 64-bit timestamp.
296 	 */
297 	u8 scan_data[ALIGN(MAX_NUM_CHANNELS * sizeof(u32), sizeof(s64))
298 			   + sizeof(s64)] __aligned(IIO_DMA_MINALIGN);
299 	/* buffers for reading/writing registers */
300 	u16 tx;
301 	u16 rx;
302 };
303 
304 static int ad7380_regmap_reg_write(void *context, unsigned int reg,
305 				   unsigned int val)
306 {
307 	struct ad7380_state *st = context;
308 	struct spi_transfer xfer = {
309 		.speed_hz = AD7380_REG_WR_SPEED_HZ,
310 		.bits_per_word = 16,
311 		.len = 2,
312 		.tx_buf = &st->tx,
313 	};
314 
315 	st->tx = FIELD_PREP(AD7380_REG_WR, 1) |
316 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
317 		 FIELD_PREP(AD7380_REG_DATA, val);
318 
319 	return spi_sync_transfer(st->spi, &xfer, 1);
320 }
321 
322 static int ad7380_regmap_reg_read(void *context, unsigned int reg,
323 				  unsigned int *val)
324 {
325 	struct ad7380_state *st = context;
326 	struct spi_transfer xfers[] = {
327 		{
328 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
329 			.bits_per_word = 16,
330 			.len = 2,
331 			.tx_buf = &st->tx,
332 			.cs_change = 1,
333 			.cs_change_delay = {
334 				.value = st->chip_info->timing_specs->t_csh_ns,
335 				.unit = SPI_DELAY_UNIT_NSECS,
336 			},
337 		}, {
338 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
339 			.bits_per_word = 16,
340 			.len = 2,
341 			.rx_buf = &st->rx,
342 		},
343 	};
344 	int ret;
345 
346 	st->tx = FIELD_PREP(AD7380_REG_WR, 0) |
347 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
348 		 FIELD_PREP(AD7380_REG_DATA, 0);
349 
350 	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
351 	if (ret < 0)
352 		return ret;
353 
354 	*val = FIELD_GET(AD7380_REG_DATA, st->rx);
355 
356 	return 0;
357 }
358 
359 static const struct regmap_config ad7380_regmap_config = {
360 	.reg_bits = 3,
361 	.val_bits = 12,
362 	.reg_read = ad7380_regmap_reg_read,
363 	.reg_write = ad7380_regmap_reg_write,
364 	.max_register = AD7380_REG_ADDR_ALERT_HIGH_TH,
365 	.can_sleep = true,
366 };
367 
368 static int ad7380_debugfs_reg_access(struct iio_dev *indio_dev, u32 reg,
369 				     u32 writeval, u32 *readval)
370 {
371 	iio_device_claim_direct_scoped(return  -EBUSY, indio_dev) {
372 		struct ad7380_state *st = iio_priv(indio_dev);
373 
374 		if (readval)
375 			return regmap_read(st->regmap, reg, readval);
376 		else
377 			return regmap_write(st->regmap, reg, writeval);
378 	}
379 	unreachable();
380 }
381 
382 /**
383  * ad7380_update_xfers - update the SPI transfers base on the current scan type
384  * @st:		device instance specific state
385  * @scan_type:	current scan type
386  */
387 static void ad7380_update_xfers(struct ad7380_state *st,
388 				const struct iio_scan_type *scan_type)
389 {
390 	/*
391 	 * First xfer only triggers conversion and has to be long enough for
392 	 * all conversions to complete, which can be multiple conversion in the
393 	 * case of oversampling. Technically T_CONVERT_X_NS is lower for some
394 	 * chips, but we use the maximum value for simplicity for now.
395 	 */
396 	if (st->oversampling_ratio > 1)
397 		st->xfer[0].delay.value = T_CONVERT_0_NS + T_CONVERT_X_NS *
398 						(st->oversampling_ratio - 1);
399 	else
400 		st->xfer[0].delay.value = T_CONVERT_NS;
401 
402 	st->xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
403 
404 	/*
405 	 * Second xfer reads all channels. Data size depends on if resolution
406 	 * boost is enabled or not.
407 	 */
408 	st->xfer[1].bits_per_word = scan_type->realbits;
409 	st->xfer[1].len = BITS_TO_BYTES(scan_type->storagebits) *
410 			  (st->chip_info->num_channels - 1);
411 }
412 
413 static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
414 {
415 	struct ad7380_state *st = iio_priv(indio_dev);
416 	const struct iio_scan_type *scan_type;
417 
418 	/*
419 	 * Currently, we always read all channels at the same time. The scan_type
420 	 * is the same for all channels, so we just pass the first channel.
421 	 */
422 	scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
423 	if (IS_ERR(scan_type))
424 		return PTR_ERR(scan_type);
425 
426 	ad7380_update_xfers(st, scan_type);
427 
428 	return spi_optimize_message(st->spi, &st->msg);
429 }
430 
431 static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
432 {
433 	struct ad7380_state *st = iio_priv(indio_dev);
434 
435 	spi_unoptimize_message(&st->msg);
436 
437 	return 0;
438 }
439 
440 static const struct iio_buffer_setup_ops ad7380_buffer_setup_ops = {
441 	.preenable = ad7380_triggered_buffer_preenable,
442 	.postdisable = ad7380_triggered_buffer_postdisable,
443 };
444 
445 static irqreturn_t ad7380_trigger_handler(int irq, void *p)
446 {
447 	struct iio_poll_func *pf = p;
448 	struct iio_dev *indio_dev = pf->indio_dev;
449 	struct ad7380_state *st = iio_priv(indio_dev);
450 	int ret;
451 
452 	ret = spi_sync(st->spi, &st->msg);
453 	if (ret)
454 		goto out;
455 
456 	iio_push_to_buffers_with_timestamp(indio_dev, &st->scan_data,
457 					   pf->timestamp);
458 
459 out:
460 	iio_trigger_notify_done(indio_dev->trig);
461 
462 	return IRQ_HANDLED;
463 }
464 
465 static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
466 			      const struct iio_scan_type *scan_type, int *val)
467 {
468 	int ret;
469 
470 	ad7380_update_xfers(st, scan_type);
471 
472 	ret = spi_sync(st->spi, &st->msg);
473 	if (ret < 0)
474 		return ret;
475 
476 	if (scan_type->storagebits > 16)
477 		*val = sign_extend32(*(u32 *)(st->scan_data + 4 * scan_index),
478 				     scan_type->realbits - 1);
479 	else
480 		*val = sign_extend32(*(u16 *)(st->scan_data + 2 * scan_index),
481 				     scan_type->realbits - 1);
482 
483 	return IIO_VAL_INT;
484 }
485 
486 static int ad7380_read_raw(struct iio_dev *indio_dev,
487 			   struct iio_chan_spec const *chan,
488 			   int *val, int *val2, long info)
489 {
490 	struct ad7380_state *st = iio_priv(indio_dev);
491 	const struct iio_scan_type *scan_type;
492 
493 	scan_type = iio_get_current_scan_type(indio_dev, chan);
494 
495 	if (IS_ERR(scan_type))
496 		return PTR_ERR(scan_type);
497 
498 	switch (info) {
499 	case IIO_CHAN_INFO_RAW:
500 		iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
501 			return ad7380_read_direct(st, chan->scan_index,
502 						  scan_type, val);
503 		}
504 		unreachable();
505 	case IIO_CHAN_INFO_SCALE:
506 		/*
507 		 * According to the datasheet, the LSB size is:
508 		 *    * (2 × VREF) / 2^N, for differential chips
509 		 *    * VREF / 2^N, for pseudo-differential chips
510 		 * where N is the ADC resolution (i.e realbits)
511 		 */
512 		*val = st->vref_mv;
513 		*val2 = scan_type->realbits - chan->differential;
514 
515 		return IIO_VAL_FRACTIONAL_LOG2;
516 	case IIO_CHAN_INFO_OFFSET:
517 		/*
518 		 * According to IIO ABI, offset is applied before scale,
519 		 * so offset is: vcm_mv / scale
520 		 */
521 		*val = st->vcm_mv[chan->channel] * (1 << scan_type->realbits)
522 			/ st->vref_mv;
523 
524 		return IIO_VAL_INT;
525 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
526 		*val = st->oversampling_ratio;
527 
528 		return IIO_VAL_INT;
529 	default:
530 		return -EINVAL;
531 	}
532 }
533 
534 static int ad7380_read_avail(struct iio_dev *indio_dev,
535 			     struct iio_chan_spec const *chan,
536 			     const int **vals, int *type, int *length,
537 			     long mask)
538 {
539 	switch (mask) {
540 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
541 		*vals = ad7380_oversampling_ratios;
542 		*length = ARRAY_SIZE(ad7380_oversampling_ratios);
543 		*type = IIO_VAL_INT;
544 
545 		return IIO_AVAIL_LIST;
546 	default:
547 		return -EINVAL;
548 	}
549 }
550 
551 /**
552  * ad7380_osr_to_regval - convert ratio to OSR register value
553  * @ratio: ratio to check
554  *
555  * Check if ratio is present in the list of available ratios and return the
556  * corresponding value that needs to be written to the register to select that
557  * ratio.
558  *
559  * Returns: register value (0 to 7) or -EINVAL if there is not an exact match
560  */
561 static int ad7380_osr_to_regval(int ratio)
562 {
563 	int i;
564 
565 	for (i = 0; i < ARRAY_SIZE(ad7380_oversampling_ratios); i++) {
566 		if (ratio == ad7380_oversampling_ratios[i])
567 			return i;
568 	}
569 
570 	return -EINVAL;
571 }
572 
573 static int ad7380_write_raw(struct iio_dev *indio_dev,
574 			    struct iio_chan_spec const *chan, int val,
575 			    int val2, long mask)
576 {
577 	struct ad7380_state *st = iio_priv(indio_dev);
578 	int ret, osr, boost;
579 
580 	switch (mask) {
581 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
582 		osr = ad7380_osr_to_regval(val);
583 		if (osr < 0)
584 			return osr;
585 
586 		/* always enable resolution boost when oversampling is enabled */
587 		boost = osr > 0 ? 1 : 0;
588 
589 		iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
590 			ret = regmap_update_bits(st->regmap,
591 					AD7380_REG_ADDR_CONFIG1,
592 					AD7380_CONFIG1_OSR | AD7380_CONFIG1_RES,
593 					FIELD_PREP(AD7380_CONFIG1_OSR, osr) |
594 					FIELD_PREP(AD7380_CONFIG1_RES, boost));
595 
596 			if (ret)
597 				return ret;
598 
599 			st->oversampling_ratio = val;
600 			st->resolution_boost_enabled = boost;
601 
602 			/*
603 			 * Perform a soft reset. This will flush the oversampling
604 			 * block and FIFO but will maintain the content of the
605 			 * configurable registers.
606 			 */
607 			return regmap_update_bits(st->regmap,
608 					AD7380_REG_ADDR_CONFIG2,
609 					AD7380_CONFIG2_RESET,
610 					FIELD_PREP(AD7380_CONFIG2_RESET,
611 						   AD7380_CONFIG2_RESET_SOFT));
612 		}
613 		unreachable();
614 	default:
615 		return -EINVAL;
616 	}
617 }
618 
619 static int ad7380_get_current_scan_type(const struct iio_dev *indio_dev,
620 					const struct iio_chan_spec *chan)
621 {
622 	struct ad7380_state *st = iio_priv(indio_dev);
623 
624 	return st->resolution_boost_enabled ? AD7380_SCAN_TYPE_RESOLUTION_BOOST
625 					    : AD7380_SCAN_TYPE_NORMAL;
626 }
627 
628 static const struct iio_info ad7380_info = {
629 	.read_raw = &ad7380_read_raw,
630 	.read_avail = &ad7380_read_avail,
631 	.write_raw = &ad7380_write_raw,
632 	.get_current_scan_type = &ad7380_get_current_scan_type,
633 	.debugfs_reg_access = &ad7380_debugfs_reg_access,
634 };
635 
636 static int ad7380_init(struct ad7380_state *st, struct regulator *vref)
637 {
638 	int ret;
639 
640 	/* perform hard reset */
641 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
642 				 AD7380_CONFIG2_RESET,
643 				 FIELD_PREP(AD7380_CONFIG2_RESET,
644 					    AD7380_CONFIG2_RESET_HARD));
645 	if (ret < 0)
646 		return ret;
647 
648 	/* select internal or external reference voltage */
649 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
650 				 AD7380_CONFIG1_REFSEL,
651 				 FIELD_PREP(AD7380_CONFIG1_REFSEL,
652 					    vref ? 1 : 0));
653 	if (ret < 0)
654 		return ret;
655 
656 	/* This is the default value after reset. */
657 	st->oversampling_ratio = 1;
658 
659 	/* SPI 1-wire mode */
660 	return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
661 				  AD7380_CONFIG2_SDO,
662 				  FIELD_PREP(AD7380_CONFIG2_SDO, 1));
663 }
664 
665 static void ad7380_regulator_disable(void *p)
666 {
667 	regulator_disable(p);
668 }
669 
670 static int ad7380_probe(struct spi_device *spi)
671 {
672 	struct iio_dev *indio_dev;
673 	struct ad7380_state *st;
674 	struct regulator *vref;
675 	int ret, i;
676 
677 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
678 	if (!indio_dev)
679 		return -ENOMEM;
680 
681 	st = iio_priv(indio_dev);
682 	st->spi = spi;
683 	st->chip_info = spi_get_device_match_data(spi);
684 	if (!st->chip_info)
685 		return dev_err_probe(&spi->dev, -EINVAL, "missing match data\n");
686 
687 	vref = devm_regulator_get_optional(&spi->dev, "refio");
688 	if (IS_ERR(vref)) {
689 		if (PTR_ERR(vref) != -ENODEV)
690 			return dev_err_probe(&spi->dev, PTR_ERR(vref),
691 					     "Failed to get refio regulator\n");
692 
693 		vref = NULL;
694 	}
695 
696 	/*
697 	 * If there is no REFIO supply, then it means that we are using
698 	 * the internal 2.5V reference, otherwise REFIO is reference voltage.
699 	 */
700 	if (vref) {
701 		ret = regulator_enable(vref);
702 		if (ret)
703 			return ret;
704 
705 		ret = devm_add_action_or_reset(&spi->dev,
706 					       ad7380_regulator_disable, vref);
707 		if (ret)
708 			return ret;
709 
710 		ret = regulator_get_voltage(vref);
711 		if (ret < 0)
712 			return ret;
713 
714 		st->vref_mv = ret / 1000;
715 	} else {
716 		st->vref_mv = AD7380_INTERNAL_REF_MV;
717 	}
718 
719 	if (st->chip_info->num_vcm_supplies > ARRAY_SIZE(st->vcm_mv))
720 		return dev_err_probe(&spi->dev, -EINVAL,
721 				     "invalid number of VCM supplies\n");
722 
723 	/*
724 	 * pseudo-differential chips have common mode supplies for the negative
725 	 * input pin.
726 	 */
727 	for (i = 0; i < st->chip_info->num_vcm_supplies; i++) {
728 		struct regulator *vcm;
729 
730 		vcm = devm_regulator_get(&spi->dev,
731 					 st->chip_info->vcm_supplies[i]);
732 		if (IS_ERR(vcm))
733 			return dev_err_probe(&spi->dev, PTR_ERR(vcm),
734 					     "Failed to get %s regulator\n",
735 					     st->chip_info->vcm_supplies[i]);
736 
737 		ret = regulator_enable(vcm);
738 		if (ret)
739 			return ret;
740 
741 		ret = devm_add_action_or_reset(&spi->dev,
742 					       ad7380_regulator_disable, vcm);
743 		if (ret)
744 			return ret;
745 
746 		ret = regulator_get_voltage(vcm);
747 		if (ret < 0)
748 			return ret;
749 
750 		st->vcm_mv[i] = ret / 1000;
751 	}
752 
753 	st->regmap = devm_regmap_init(&spi->dev, NULL, st, &ad7380_regmap_config);
754 	if (IS_ERR(st->regmap))
755 		return dev_err_probe(&spi->dev, PTR_ERR(st->regmap),
756 				     "failed to allocate register map\n");
757 
758 	/*
759 	 * Setting up a low latency read for getting sample data. Used for both
760 	 * direct read an triggered buffer. Additional fields will be set up in
761 	 * ad7380_update_xfers() based on the current state of the driver at the
762 	 * time of the read.
763 	 */
764 
765 	/* toggle CS (no data xfer) to trigger a conversion */
766 	st->xfer[0].cs_change = 1;
767 	st->xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
768 	st->xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
769 
770 	/* then do a second xfer to read the data */
771 	st->xfer[1].rx_buf = st->scan_data;
772 
773 	spi_message_init_with_transfers(&st->msg, st->xfer, ARRAY_SIZE(st->xfer));
774 
775 	indio_dev->channels = st->chip_info->channels;
776 	indio_dev->num_channels = st->chip_info->num_channels;
777 	indio_dev->name = st->chip_info->name;
778 	indio_dev->info = &ad7380_info;
779 	indio_dev->modes = INDIO_DIRECT_MODE;
780 	indio_dev->available_scan_masks = st->chip_info->available_scan_masks;
781 
782 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
783 					      iio_pollfunc_store_time,
784 					      ad7380_trigger_handler,
785 					      &ad7380_buffer_setup_ops);
786 	if (ret)
787 		return ret;
788 
789 	ret = ad7380_init(st, vref);
790 	if (ret)
791 		return ret;
792 
793 	return devm_iio_device_register(&spi->dev, indio_dev);
794 }
795 
796 static const struct of_device_id ad7380_of_match_table[] = {
797 	{ .compatible = "adi,ad7380", .data = &ad7380_chip_info },
798 	{ .compatible = "adi,ad7381", .data = &ad7381_chip_info },
799 	{ .compatible = "adi,ad7383", .data = &ad7383_chip_info },
800 	{ .compatible = "adi,ad7384", .data = &ad7384_chip_info },
801 	{ .compatible = "adi,ad7380-4", .data = &ad7380_4_chip_info },
802 	{ .compatible = "adi,ad7381-4", .data = &ad7381_4_chip_info },
803 	{ .compatible = "adi,ad7383-4", .data = &ad7383_4_chip_info },
804 	{ .compatible = "adi,ad7384-4", .data = &ad7384_4_chip_info },
805 	{ }
806 };
807 
808 static const struct spi_device_id ad7380_id_table[] = {
809 	{ "ad7380", (kernel_ulong_t)&ad7380_chip_info },
810 	{ "ad7381", (kernel_ulong_t)&ad7381_chip_info },
811 	{ "ad7383", (kernel_ulong_t)&ad7383_chip_info },
812 	{ "ad7384", (kernel_ulong_t)&ad7384_chip_info },
813 	{ "ad7380-4", (kernel_ulong_t)&ad7380_4_chip_info },
814 	{ "ad7381-4", (kernel_ulong_t)&ad7381_4_chip_info },
815 	{ "ad7383-4", (kernel_ulong_t)&ad7383_4_chip_info },
816 	{ "ad7384-4", (kernel_ulong_t)&ad7384_4_chip_info },
817 	{ }
818 };
819 MODULE_DEVICE_TABLE(spi, ad7380_id_table);
820 
821 static struct spi_driver ad7380_driver = {
822 	.driver = {
823 		.name = "ad7380",
824 		.of_match_table = ad7380_of_match_table,
825 	},
826 	.probe = ad7380_probe,
827 	.id_table = ad7380_id_table,
828 };
829 module_spi_driver(ad7380_driver);
830 
831 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
832 MODULE_DESCRIPTION("Analog Devices AD738x ADC driver");
833 MODULE_LICENSE("GPL");
834