xref: /linux/drivers/iio/adc/ad7380.c (revision 3ed8d344e061f382069c27705543c1882aca468a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD738x Simultaneous Sampling SAR ADCs
4  *
5  * Copyright 2017 Analog Devices Inc.
6  * Copyright 2024 BayLibre, SAS
7  *
8  * Datasheets of supported parts:
9  * ad7380/1 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7380-7381.pdf
10  * ad7383/4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-7384.pdf
11  * ad7386/7/8 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7386-7387-7388.pdf
12  * ad7380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7380-4.pdf
13  * ad7381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7381-4.pdf
14  * ad7383/4-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-4-ad7384-4.pdf
15  * ad7386/7/8-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7386-4-7387-4-7388-4.pdf
16  */
17 
18 #include <linux/align.h>
19 #include <linux/bitfield.h>
20 #include <linux/bitops.h>
21 #include <linux/cleanup.h>
22 #include <linux/device.h>
23 #include <linux/err.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/slab.h>
29 #include <linux/spi/spi.h>
30 
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/iio.h>
33 #include <linux/iio/trigger_consumer.h>
34 #include <linux/iio/triggered_buffer.h>
35 
36 #define MAX_NUM_CHANNELS		8
37 /* 2.5V internal reference voltage */
38 #define AD7380_INTERNAL_REF_MV		2500
39 
40 /* reading and writing registers is more reliable at lower than max speed */
41 #define AD7380_REG_WR_SPEED_HZ		10000000
42 
43 #define AD7380_REG_WR			BIT(15)
44 #define AD7380_REG_REGADDR		GENMASK(14, 12)
45 #define AD7380_REG_DATA			GENMASK(11, 0)
46 
47 #define AD7380_REG_ADDR_NOP		0x0
48 #define AD7380_REG_ADDR_CONFIG1		0x1
49 #define AD7380_REG_ADDR_CONFIG2		0x2
50 #define AD7380_REG_ADDR_ALERT		0x3
51 #define AD7380_REG_ADDR_ALERT_LOW_TH	0x4
52 #define AD7380_REG_ADDR_ALERT_HIGH_TH	0x5
53 
54 #define AD7380_CONFIG1_CH		BIT(11)
55 #define AD7380_CONFIG1_SEQ		BIT(10)
56 #define AD7380_CONFIG1_OS_MODE		BIT(9)
57 #define AD7380_CONFIG1_OSR		GENMASK(8, 6)
58 #define AD7380_CONFIG1_CRC_W		BIT(5)
59 #define AD7380_CONFIG1_CRC_R		BIT(4)
60 #define AD7380_CONFIG1_ALERTEN		BIT(3)
61 #define AD7380_CONFIG1_RES		BIT(2)
62 #define AD7380_CONFIG1_REFSEL		BIT(1)
63 #define AD7380_CONFIG1_PMODE		BIT(0)
64 
65 #define AD7380_CONFIG2_SDO2		GENMASK(9, 8)
66 #define AD7380_CONFIG2_SDO		BIT(8)
67 #define AD7380_CONFIG2_RESET		GENMASK(7, 0)
68 
69 #define AD7380_CONFIG2_RESET_SOFT	0x3C
70 #define AD7380_CONFIG2_RESET_HARD	0xFF
71 
72 #define AD7380_ALERT_LOW_TH		GENMASK(11, 0)
73 #define AD7380_ALERT_HIGH_TH		GENMASK(11, 0)
74 
75 #define T_CONVERT_NS 190		/* conversion time */
76 #define T_CONVERT_0_NS 10		/* 1st conversion start time (oversampling) */
77 #define T_CONVERT_X_NS 500		/* xth conversion start time (oversampling) */
78 
79 struct ad7380_timing_specs {
80 	const unsigned int t_csh_ns;	/* CS minimum high time */
81 };
82 
83 struct ad7380_chip_info {
84 	const char *name;
85 	const struct iio_chan_spec *channels;
86 	unsigned int num_channels;
87 	unsigned int num_simult_channels;
88 	bool has_mux;
89 	const char * const *vcm_supplies;
90 	unsigned int num_vcm_supplies;
91 	const unsigned long *available_scan_masks;
92 	const struct ad7380_timing_specs *timing_specs;
93 };
94 
95 enum {
96 	AD7380_SCAN_TYPE_NORMAL,
97 	AD7380_SCAN_TYPE_RESOLUTION_BOOST,
98 };
99 
100 /* Extended scan types for 12-bit unsigned chips. */
101 static const struct iio_scan_type ad7380_scan_type_12_u[] = {
102 	[AD7380_SCAN_TYPE_NORMAL] = {
103 		.sign = 'u',
104 		.realbits = 12,
105 		.storagebits = 16,
106 		.endianness = IIO_CPU,
107 	},
108 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
109 		.sign = 'u',
110 		.realbits = 14,
111 		.storagebits = 16,
112 		.endianness = IIO_CPU,
113 	},
114 };
115 
116 /* Extended scan types for 14-bit signed chips. */
117 static const struct iio_scan_type ad7380_scan_type_14_s[] = {
118 	[AD7380_SCAN_TYPE_NORMAL] = {
119 		.sign = 's',
120 		.realbits = 14,
121 		.storagebits = 16,
122 		.endianness = IIO_CPU,
123 	},
124 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
125 		.sign = 's',
126 		.realbits = 16,
127 		.storagebits = 16,
128 		.endianness = IIO_CPU,
129 	},
130 };
131 
132 /* Extended scan types for 14-bit unsigned chips. */
133 static const struct iio_scan_type ad7380_scan_type_14_u[] = {
134 	[AD7380_SCAN_TYPE_NORMAL] = {
135 		.sign = 'u',
136 		.realbits = 14,
137 		.storagebits = 16,
138 		.endianness = IIO_CPU,
139 	},
140 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
141 		.sign = 'u',
142 		.realbits = 16,
143 		.storagebits = 16,
144 		.endianness = IIO_CPU,
145 	},
146 };
147 
148 /* Extended scan types for 16-bit signed_chips. */
149 static const struct iio_scan_type ad7380_scan_type_16_s[] = {
150 	[AD7380_SCAN_TYPE_NORMAL] = {
151 		.sign = 's',
152 		.realbits = 16,
153 		.storagebits = 16,
154 		.endianness = IIO_CPU,
155 	},
156 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
157 		.sign = 's',
158 		.realbits = 18,
159 		.storagebits = 32,
160 		.endianness = IIO_CPU,
161 	},
162 };
163 
164 /* Extended scan types for 16-bit unsigned chips. */
165 static const struct iio_scan_type ad7380_scan_type_16_u[] = {
166 	[AD7380_SCAN_TYPE_NORMAL] = {
167 		.sign = 'u',
168 		.realbits = 16,
169 		.storagebits = 16,
170 		.endianness = IIO_CPU,
171 	},
172 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
173 		.sign = 'u',
174 		.realbits = 18,
175 		.storagebits = 32,
176 		.endianness = IIO_CPU,
177 	},
178 };
179 
180 #define AD7380_CHANNEL(index, bits, diff, sign) {				\
181 	.type = IIO_VOLTAGE,							\
182 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
183 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),			\
184 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |			\
185 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
186 	.info_mask_shared_by_type_available =					\
187 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
188 	.indexed = 1,								\
189 	.differential = (diff),							\
190 	.channel = (diff) ? (2 * (index)) : (index),				\
191 	.channel2 = (diff) ? (2 * (index) + 1) : 0,				\
192 	.scan_index = (index),							\
193 	.has_ext_scan_type = 1,							\
194 	.ext_scan_type = ad7380_scan_type_##bits##_##sign,			\
195 	.num_ext_scan_type = ARRAY_SIZE(ad7380_scan_type_##bits##_##sign),	\
196 }
197 
198 #define DEFINE_AD7380_2_CHANNEL(name, bits, diff, sign)	\
199 static const struct iio_chan_spec name[] = {		\
200 	AD7380_CHANNEL(0, bits, diff, sign),		\
201 	AD7380_CHANNEL(1, bits, diff, sign),		\
202 	IIO_CHAN_SOFT_TIMESTAMP(2),			\
203 }
204 
205 #define DEFINE_AD7380_4_CHANNEL(name, bits, diff, sign)	\
206 static const struct iio_chan_spec name[] = {		\
207 	AD7380_CHANNEL(0, bits, diff, sign),		\
208 	AD7380_CHANNEL(1, bits, diff, sign),		\
209 	AD7380_CHANNEL(2, bits, diff, sign),		\
210 	AD7380_CHANNEL(3, bits, diff, sign),		\
211 	IIO_CHAN_SOFT_TIMESTAMP(4),			\
212 }
213 
214 #define DEFINE_AD7380_8_CHANNEL(name, bits, diff, sign)	\
215 static const struct iio_chan_spec name[] = {		\
216 	AD7380_CHANNEL(0, bits, diff, sign),		\
217 	AD7380_CHANNEL(1, bits, diff, sign),		\
218 	AD7380_CHANNEL(2, bits, diff, sign),		\
219 	AD7380_CHANNEL(3, bits, diff, sign),		\
220 	AD7380_CHANNEL(4, bits, diff, sign),		\
221 	AD7380_CHANNEL(5, bits, diff, sign),		\
222 	AD7380_CHANNEL(6, bits, diff, sign),		\
223 	AD7380_CHANNEL(7, bits, diff, sign),		\
224 	IIO_CHAN_SOFT_TIMESTAMP(8),			\
225 }
226 
227 /* fully differential */
228 DEFINE_AD7380_2_CHANNEL(ad7380_channels, 16, 1, s);
229 DEFINE_AD7380_2_CHANNEL(ad7381_channels, 14, 1, s);
230 DEFINE_AD7380_4_CHANNEL(ad7380_4_channels, 16, 1, s);
231 DEFINE_AD7380_4_CHANNEL(ad7381_4_channels, 14, 1, s);
232 /* pseudo differential */
233 DEFINE_AD7380_2_CHANNEL(ad7383_channels, 16, 0, s);
234 DEFINE_AD7380_2_CHANNEL(ad7384_channels, 14, 0, s);
235 DEFINE_AD7380_4_CHANNEL(ad7383_4_channels, 16, 0, s);
236 DEFINE_AD7380_4_CHANNEL(ad7384_4_channels, 14, 0, s);
237 
238 /* Single ended */
239 DEFINE_AD7380_4_CHANNEL(ad7386_channels, 16, 0, u);
240 DEFINE_AD7380_4_CHANNEL(ad7387_channels, 14, 0, u);
241 DEFINE_AD7380_4_CHANNEL(ad7388_channels, 12, 0, u);
242 DEFINE_AD7380_8_CHANNEL(ad7386_4_channels, 16, 0, u);
243 DEFINE_AD7380_8_CHANNEL(ad7387_4_channels, 14, 0, u);
244 DEFINE_AD7380_8_CHANNEL(ad7388_4_channels, 12, 0, u);
245 
246 static const char * const ad7380_2_channel_vcm_supplies[] = {
247 	"aina", "ainb",
248 };
249 
250 static const char * const ad7380_4_channel_vcm_supplies[] = {
251 	"aina", "ainb", "ainc", "aind",
252 };
253 
254 /* Since this is simultaneous sampling, we don't allow individual channels. */
255 static const unsigned long ad7380_2_channel_scan_masks[] = {
256 	GENMASK(1, 0),
257 	0
258 };
259 
260 static const unsigned long ad7380_4_channel_scan_masks[] = {
261 	GENMASK(3, 0),
262 	0
263 };
264 
265 /*
266  * Single ended parts have a 2:1 multiplexer in front of each ADC.
267  *
268  * From an IIO point of view, all inputs are exported, i.e ad7386/7/8
269  * export 4 channels and ad7386-4/7-4/8-4 export 8 channels.
270  *
271  * Inputs AinX0 of multiplexers correspond to the first half of IIO channels
272  * (i.e 0-1 or 0-3) and inputs AinX1 correspond to second half (i.e 2-3 or
273  * 4-7). Example for AD7386/7/8 (2 channels parts):
274  *
275  *           IIO   | AD7386/7/8
276  *                 |         +----------------------------
277  *                 |         |     _____        ______
278  *                 |         |    |     |      |      |
279  *        voltage0 | AinA0 --|--->|     |      |      |
280  *                 |         |    | mux |----->| ADCA |---
281  *        voltage2 | AinA1 --|--->|     |      |      |
282  *                 |         |    |_____|      |_____ |
283  *                 |         |     _____        ______
284  *                 |         |    |     |      |      |
285  *        voltage1 | AinB0 --|--->|     |      |      |
286  *                 |         |    | mux |----->| ADCB |---
287  *        voltage3 | AinB1 --|--->|     |      |      |
288  *                 |         |    |_____|      |______|
289  *                 |         |
290  *                 |         +----------------------------
291  *
292  * Since this is simultaneous sampling for AinX0 OR AinX1 we have two separate
293  * scan masks.
294  * When sequencer mode is enabled, chip automatically cycles through
295  * AinX0 and AinX1 channels. From an IIO point of view, we ca enable all
296  * channels, at the cost of an extra read, thus dividing the maximum rate by
297  * two.
298  */
299 enum {
300 	AD7380_SCAN_MASK_CH_0,
301 	AD7380_SCAN_MASK_CH_1,
302 	AD7380_SCAN_MASK_SEQ,
303 };
304 
305 static const unsigned long ad7380_2x2_channel_scan_masks[] = {
306 	[AD7380_SCAN_MASK_CH_0] = GENMASK(1, 0),
307 	[AD7380_SCAN_MASK_CH_1] = GENMASK(3, 2),
308 	[AD7380_SCAN_MASK_SEQ] = GENMASK(3, 0),
309 	0
310 };
311 
312 static const unsigned long ad7380_2x4_channel_scan_masks[] = {
313 	[AD7380_SCAN_MASK_CH_0] = GENMASK(3, 0),
314 	[AD7380_SCAN_MASK_CH_1] = GENMASK(7, 4),
315 	[AD7380_SCAN_MASK_SEQ] = GENMASK(7, 0),
316 	0
317 };
318 
319 static const struct ad7380_timing_specs ad7380_timing = {
320 	.t_csh_ns = 10,
321 };
322 
323 static const struct ad7380_timing_specs ad7380_4_timing = {
324 	.t_csh_ns = 20,
325 };
326 
327 /*
328  * Available oversampling ratios. The indices correspond with the bit value
329  * expected by the chip.  The available ratios depend on the averaging mode,
330  * only normal averaging is supported for now.
331  */
332 static const int ad7380_oversampling_ratios[] = {
333 	1, 2, 4, 8, 16, 32,
334 };
335 
336 static const struct ad7380_chip_info ad7380_chip_info = {
337 	.name = "ad7380",
338 	.channels = ad7380_channels,
339 	.num_channels = ARRAY_SIZE(ad7380_channels),
340 	.num_simult_channels = 2,
341 	.available_scan_masks = ad7380_2_channel_scan_masks,
342 	.timing_specs = &ad7380_timing,
343 };
344 
345 static const struct ad7380_chip_info ad7381_chip_info = {
346 	.name = "ad7381",
347 	.channels = ad7381_channels,
348 	.num_channels = ARRAY_SIZE(ad7381_channels),
349 	.num_simult_channels = 2,
350 	.available_scan_masks = ad7380_2_channel_scan_masks,
351 	.timing_specs = &ad7380_timing,
352 };
353 
354 static const struct ad7380_chip_info ad7383_chip_info = {
355 	.name = "ad7383",
356 	.channels = ad7383_channels,
357 	.num_channels = ARRAY_SIZE(ad7383_channels),
358 	.num_simult_channels = 2,
359 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
360 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
361 	.available_scan_masks = ad7380_2_channel_scan_masks,
362 	.timing_specs = &ad7380_timing,
363 };
364 
365 static const struct ad7380_chip_info ad7384_chip_info = {
366 	.name = "ad7384",
367 	.channels = ad7384_channels,
368 	.num_channels = ARRAY_SIZE(ad7384_channels),
369 	.num_simult_channels = 2,
370 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
371 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
372 	.available_scan_masks = ad7380_2_channel_scan_masks,
373 	.timing_specs = &ad7380_timing,
374 };
375 
376 static const struct ad7380_chip_info ad7386_chip_info = {
377 	.name = "ad7386",
378 	.channels = ad7386_channels,
379 	.num_channels = ARRAY_SIZE(ad7386_channels),
380 	.num_simult_channels = 2,
381 	.has_mux = true,
382 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
383 	.timing_specs = &ad7380_timing,
384 };
385 
386 static const struct ad7380_chip_info ad7387_chip_info = {
387 	.name = "ad7387",
388 	.channels = ad7387_channels,
389 	.num_channels = ARRAY_SIZE(ad7387_channels),
390 	.num_simult_channels = 2,
391 	.has_mux = true,
392 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
393 	.timing_specs = &ad7380_timing,
394 };
395 
396 static const struct ad7380_chip_info ad7388_chip_info = {
397 	.name = "ad7388",
398 	.channels = ad7388_channels,
399 	.num_channels = ARRAY_SIZE(ad7388_channels),
400 	.num_simult_channels = 2,
401 	.has_mux = true,
402 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
403 	.timing_specs = &ad7380_timing,
404 };
405 
406 static const struct ad7380_chip_info ad7380_4_chip_info = {
407 	.name = "ad7380-4",
408 	.channels = ad7380_4_channels,
409 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
410 	.num_simult_channels = 4,
411 	.available_scan_masks = ad7380_4_channel_scan_masks,
412 	.timing_specs = &ad7380_4_timing,
413 };
414 
415 static const struct ad7380_chip_info ad7381_4_chip_info = {
416 	.name = "ad7381-4",
417 	.channels = ad7381_4_channels,
418 	.num_channels = ARRAY_SIZE(ad7381_4_channels),
419 	.num_simult_channels = 4,
420 	.available_scan_masks = ad7380_4_channel_scan_masks,
421 	.timing_specs = &ad7380_4_timing,
422 };
423 
424 static const struct ad7380_chip_info ad7383_4_chip_info = {
425 	.name = "ad7383-4",
426 	.channels = ad7383_4_channels,
427 	.num_channels = ARRAY_SIZE(ad7383_4_channels),
428 	.num_simult_channels = 4,
429 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
430 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
431 	.available_scan_masks = ad7380_4_channel_scan_masks,
432 	.timing_specs = &ad7380_4_timing,
433 };
434 
435 static const struct ad7380_chip_info ad7384_4_chip_info = {
436 	.name = "ad7384-4",
437 	.channels = ad7384_4_channels,
438 	.num_channels = ARRAY_SIZE(ad7384_4_channels),
439 	.num_simult_channels = 4,
440 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
441 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
442 	.available_scan_masks = ad7380_4_channel_scan_masks,
443 	.timing_specs = &ad7380_4_timing,
444 };
445 
446 static const struct ad7380_chip_info ad7386_4_chip_info = {
447 	.name = "ad7386-4",
448 	.channels = ad7386_4_channels,
449 	.num_channels = ARRAY_SIZE(ad7386_4_channels),
450 	.num_simult_channels = 4,
451 	.has_mux = true,
452 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
453 	.timing_specs = &ad7380_4_timing,
454 };
455 
456 static const struct ad7380_chip_info ad7387_4_chip_info = {
457 	.name = "ad7387-4",
458 	.channels = ad7387_4_channels,
459 	.num_channels = ARRAY_SIZE(ad7387_4_channels),
460 	.num_simult_channels = 4,
461 	.has_mux = true,
462 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
463 	.timing_specs = &ad7380_4_timing,
464 };
465 
466 static const struct ad7380_chip_info ad7388_4_chip_info = {
467 	.name = "ad7388-4",
468 	.channels = ad7388_4_channels,
469 	.num_channels = ARRAY_SIZE(ad7388_4_channels),
470 	.num_simult_channels = 4,
471 	.has_mux = true,
472 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
473 	.timing_specs = &ad7380_4_timing,
474 };
475 
476 struct ad7380_state {
477 	const struct ad7380_chip_info *chip_info;
478 	struct spi_device *spi;
479 	struct regmap *regmap;
480 	unsigned int oversampling_ratio;
481 	bool resolution_boost_enabled;
482 	unsigned int ch;
483 	bool seq;
484 	unsigned int vref_mv;
485 	unsigned int vcm_mv[MAX_NUM_CHANNELS];
486 	/* xfers, message an buffer for reading sample data */
487 	struct spi_transfer normal_xfer[2];
488 	struct spi_message normal_msg;
489 	struct spi_transfer seq_xfer[4];
490 	struct spi_message seq_msg;
491 	/*
492 	 * DMA (thus cache coherency maintenance) requires the transfer buffers
493 	 * to live in their own cache lines.
494 	 *
495 	 * Make the buffer large enough for MAX_NUM_CHANNELS 32-bit samples and
496 	 * one 64-bit aligned 64-bit timestamp.
497 	 */
498 	u8 scan_data[ALIGN(MAX_NUM_CHANNELS * sizeof(u32), sizeof(s64))
499 			   + sizeof(s64)] __aligned(IIO_DMA_MINALIGN);
500 	/* buffers for reading/writing registers */
501 	u16 tx;
502 	u16 rx;
503 };
504 
505 static int ad7380_regmap_reg_write(void *context, unsigned int reg,
506 				   unsigned int val)
507 {
508 	struct ad7380_state *st = context;
509 	struct spi_transfer xfer = {
510 		.speed_hz = AD7380_REG_WR_SPEED_HZ,
511 		.bits_per_word = 16,
512 		.len = 2,
513 		.tx_buf = &st->tx,
514 	};
515 
516 	st->tx = FIELD_PREP(AD7380_REG_WR, 1) |
517 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
518 		 FIELD_PREP(AD7380_REG_DATA, val);
519 
520 	return spi_sync_transfer(st->spi, &xfer, 1);
521 }
522 
523 static int ad7380_regmap_reg_read(void *context, unsigned int reg,
524 				  unsigned int *val)
525 {
526 	struct ad7380_state *st = context;
527 	struct spi_transfer xfers[] = {
528 		{
529 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
530 			.bits_per_word = 16,
531 			.len = 2,
532 			.tx_buf = &st->tx,
533 			.cs_change = 1,
534 			.cs_change_delay = {
535 				.value = st->chip_info->timing_specs->t_csh_ns,
536 				.unit = SPI_DELAY_UNIT_NSECS,
537 			},
538 		}, {
539 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
540 			.bits_per_word = 16,
541 			.len = 2,
542 			.rx_buf = &st->rx,
543 		},
544 	};
545 	int ret;
546 
547 	st->tx = FIELD_PREP(AD7380_REG_WR, 0) |
548 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
549 		 FIELD_PREP(AD7380_REG_DATA, 0);
550 
551 	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
552 	if (ret < 0)
553 		return ret;
554 
555 	*val = FIELD_GET(AD7380_REG_DATA, st->rx);
556 
557 	return 0;
558 }
559 
560 static const struct regmap_config ad7380_regmap_config = {
561 	.reg_bits = 3,
562 	.val_bits = 12,
563 	.reg_read = ad7380_regmap_reg_read,
564 	.reg_write = ad7380_regmap_reg_write,
565 	.max_register = AD7380_REG_ADDR_ALERT_HIGH_TH,
566 	.can_sleep = true,
567 };
568 
569 static int ad7380_debugfs_reg_access(struct iio_dev *indio_dev, u32 reg,
570 				     u32 writeval, u32 *readval)
571 {
572 	iio_device_claim_direct_scoped(return  -EBUSY, indio_dev) {
573 		struct ad7380_state *st = iio_priv(indio_dev);
574 
575 		if (readval)
576 			return regmap_read(st->regmap, reg, readval);
577 		else
578 			return regmap_write(st->regmap, reg, writeval);
579 	}
580 	unreachable();
581 }
582 
583 /*
584  * When switching channel, the ADC require an additional settling time.
585  * According to the datasheet, data is value on the third CS low. We already
586  * have an extra toggle before each read (either direct reads or buffered reads)
587  * to sample correct data, so we just add a single CS toggle at the end of the
588  * register write.
589  */
590 static int ad7380_set_ch(struct ad7380_state *st, unsigned int ch)
591 {
592 	struct spi_transfer xfer = {
593 		.delay = {
594 			.value = T_CONVERT_NS,
595 			.unit = SPI_DELAY_UNIT_NSECS,
596 		}
597 	};
598 	int ret;
599 
600 	if (st->ch == ch)
601 		return 0;
602 
603 	ret = regmap_update_bits(st->regmap,
604 				 AD7380_REG_ADDR_CONFIG1,
605 				 AD7380_CONFIG1_CH,
606 				 FIELD_PREP(AD7380_CONFIG1_CH, ch));
607 
608 	if (ret)
609 		return ret;
610 
611 	st->ch = ch;
612 
613 	if (st->oversampling_ratio > 1)
614 		xfer.delay.value = T_CONVERT_0_NS +
615 			T_CONVERT_X_NS * (st->oversampling_ratio - 1);
616 
617 	return spi_sync_transfer(st->spi, &xfer, 1);
618 }
619 
620 /**
621  * ad7380_update_xfers - update the SPI transfers base on the current scan type
622  * @st:		device instance specific state
623  * @scan_type:	current scan type
624  */
625 static void ad7380_update_xfers(struct ad7380_state *st,
626 				const struct iio_scan_type *scan_type)
627 {
628 	struct spi_transfer *xfer = st->seq ? st->seq_xfer : st->normal_xfer;
629 	unsigned int t_convert = T_CONVERT_NS;
630 
631 	/*
632 	 * In the case of oversampling, conversion time is higher than in normal
633 	 * mode. Technically T_CONVERT_X_NS is lower for some chips, but we use
634 	 * the maximum value for simplicity for now.
635 	 */
636 	if (st->oversampling_ratio > 1)
637 		t_convert = T_CONVERT_0_NS + T_CONVERT_X_NS *
638 			(st->oversampling_ratio - 1);
639 
640 	if (st->seq) {
641 		xfer[0].delay.value = xfer[1].delay.value = t_convert;
642 		xfer[0].delay.unit = xfer[1].delay.unit = SPI_DELAY_UNIT_NSECS;
643 		xfer[2].bits_per_word = xfer[3].bits_per_word =
644 			scan_type->realbits;
645 		xfer[2].len = xfer[3].len =
646 			BITS_TO_BYTES(scan_type->storagebits) *
647 			st->chip_info->num_simult_channels;
648 		xfer[3].rx_buf = xfer[2].rx_buf + xfer[2].len;
649 		/* Additional delay required here when oversampling is enabled */
650 		if (st->oversampling_ratio > 1)
651 			xfer[2].delay.value = t_convert;
652 		else
653 			xfer[2].delay.value = 0;
654 		xfer[2].delay.unit = SPI_DELAY_UNIT_NSECS;
655 	} else {
656 		xfer[0].delay.value = t_convert;
657 		xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
658 		xfer[1].bits_per_word = scan_type->realbits;
659 		xfer[1].len = BITS_TO_BYTES(scan_type->storagebits) *
660 			st->chip_info->num_simult_channels;
661 	}
662 }
663 
664 static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
665 {
666 	struct ad7380_state *st = iio_priv(indio_dev);
667 	const struct iio_scan_type *scan_type;
668 	struct spi_message *msg = &st->normal_msg;
669 
670 	/*
671 	 * Currently, we always read all channels at the same time. The scan_type
672 	 * is the same for all channels, so we just pass the first channel.
673 	 */
674 	scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
675 	if (IS_ERR(scan_type))
676 		return PTR_ERR(scan_type);
677 
678 	if (st->chip_info->has_mux) {
679 		unsigned int index;
680 		int ret;
681 
682 		/*
683 		 * Depending on the requested scan_mask and current state,
684 		 * we need to either change CH bit, or enable sequencer mode
685 		 * to sample correct data.
686 		 * Sequencer mode is enabled if active mask corresponds to all
687 		 * IIO channels enabled. Otherwise, CH bit is set.
688 		 */
689 		ret = iio_active_scan_mask_index(indio_dev);
690 		if (ret < 0)
691 			return ret;
692 
693 		index = ret;
694 		if (index == AD7380_SCAN_MASK_SEQ) {
695 			ret = regmap_update_bits(st->regmap,
696 						 AD7380_REG_ADDR_CONFIG1,
697 						 AD7380_CONFIG1_SEQ,
698 						 FIELD_PREP(AD7380_CONFIG1_SEQ, 1));
699 			if (ret)
700 				return ret;
701 			msg = &st->seq_msg;
702 			st->seq = true;
703 		} else {
704 			ret = ad7380_set_ch(st, index);
705 			if (ret)
706 				return ret;
707 		}
708 
709 	}
710 
711 	ad7380_update_xfers(st, scan_type);
712 
713 	return spi_optimize_message(st->spi, msg);
714 }
715 
716 static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
717 {
718 	struct ad7380_state *st = iio_priv(indio_dev);
719 	struct spi_message *msg = &st->normal_msg;
720 	int ret;
721 
722 	if (st->seq) {
723 		ret = regmap_update_bits(st->regmap,
724 					 AD7380_REG_ADDR_CONFIG1,
725 					 AD7380_CONFIG1_SEQ,
726 					 FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
727 		if (ret)
728 			return ret;
729 
730 		msg = &st->seq_msg;
731 		st->seq = false;
732 	}
733 
734 	spi_unoptimize_message(msg);
735 
736 	return 0;
737 }
738 
739 static const struct iio_buffer_setup_ops ad7380_buffer_setup_ops = {
740 	.preenable = ad7380_triggered_buffer_preenable,
741 	.postdisable = ad7380_triggered_buffer_postdisable,
742 };
743 
744 static irqreturn_t ad7380_trigger_handler(int irq, void *p)
745 {
746 	struct iio_poll_func *pf = p;
747 	struct iio_dev *indio_dev = pf->indio_dev;
748 	struct ad7380_state *st = iio_priv(indio_dev);
749 	struct spi_message *msg = st->seq ? &st->seq_msg : &st->normal_msg;
750 	int ret;
751 
752 	ret = spi_sync(st->spi, msg);
753 	if (ret)
754 		goto out;
755 
756 	iio_push_to_buffers_with_timestamp(indio_dev, &st->scan_data,
757 					   pf->timestamp);
758 
759 out:
760 	iio_trigger_notify_done(indio_dev->trig);
761 
762 	return IRQ_HANDLED;
763 }
764 
765 static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
766 			      const struct iio_scan_type *scan_type, int *val)
767 {
768 	unsigned int index = scan_index;
769 	int ret;
770 
771 	if (st->chip_info->has_mux) {
772 		unsigned int ch = 0;
773 
774 		if (index >= st->chip_info->num_simult_channels) {
775 			index -= st->chip_info->num_simult_channels;
776 			ch = 1;
777 		}
778 
779 		ret = ad7380_set_ch(st, ch);
780 		if (ret)
781 			return ret;
782 	}
783 
784 	ad7380_update_xfers(st, scan_type);
785 
786 	ret = spi_sync(st->spi, &st->normal_msg);
787 	if (ret < 0)
788 		return ret;
789 
790 	if (scan_type->storagebits > 16) {
791 		if (scan_type->sign == 's')
792 			*val = sign_extend32(*(u32 *)(st->scan_data + 4 * index),
793 					     scan_type->realbits - 1);
794 		else
795 			*val = *(u32 *)(st->scan_data + 4 * index) &
796 				GENMASK(scan_type->realbits - 1, 0);
797 	} else {
798 		if (scan_type->sign == 's')
799 			*val = sign_extend32(*(u16 *)(st->scan_data + 2 * index),
800 					     scan_type->realbits - 1);
801 		else
802 			*val = *(u16 *)(st->scan_data + 2 * index) &
803 				GENMASK(scan_type->realbits - 1, 0);
804 	}
805 
806 	return IIO_VAL_INT;
807 }
808 
809 static int ad7380_read_raw(struct iio_dev *indio_dev,
810 			   struct iio_chan_spec const *chan,
811 			   int *val, int *val2, long info)
812 {
813 	struct ad7380_state *st = iio_priv(indio_dev);
814 	const struct iio_scan_type *scan_type;
815 
816 	scan_type = iio_get_current_scan_type(indio_dev, chan);
817 
818 	if (IS_ERR(scan_type))
819 		return PTR_ERR(scan_type);
820 
821 	switch (info) {
822 	case IIO_CHAN_INFO_RAW:
823 		iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
824 			return ad7380_read_direct(st, chan->scan_index,
825 						  scan_type, val);
826 		}
827 		unreachable();
828 	case IIO_CHAN_INFO_SCALE:
829 		/*
830 		 * According to the datasheet, the LSB size is:
831 		 *    * (2 × VREF) / 2^N, for differential chips
832 		 *    * VREF / 2^N, for pseudo-differential chips
833 		 * where N is the ADC resolution (i.e realbits)
834 		 */
835 		*val = st->vref_mv;
836 		*val2 = scan_type->realbits - chan->differential;
837 
838 		return IIO_VAL_FRACTIONAL_LOG2;
839 	case IIO_CHAN_INFO_OFFSET:
840 		/*
841 		 * According to IIO ABI, offset is applied before scale,
842 		 * so offset is: vcm_mv / scale
843 		 */
844 		*val = st->vcm_mv[chan->channel] * (1 << scan_type->realbits)
845 			/ st->vref_mv;
846 
847 		return IIO_VAL_INT;
848 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
849 		*val = st->oversampling_ratio;
850 
851 		return IIO_VAL_INT;
852 	default:
853 		return -EINVAL;
854 	}
855 }
856 
857 static int ad7380_read_avail(struct iio_dev *indio_dev,
858 			     struct iio_chan_spec const *chan,
859 			     const int **vals, int *type, int *length,
860 			     long mask)
861 {
862 	switch (mask) {
863 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
864 		*vals = ad7380_oversampling_ratios;
865 		*length = ARRAY_SIZE(ad7380_oversampling_ratios);
866 		*type = IIO_VAL_INT;
867 
868 		return IIO_AVAIL_LIST;
869 	default:
870 		return -EINVAL;
871 	}
872 }
873 
874 /**
875  * ad7380_osr_to_regval - convert ratio to OSR register value
876  * @ratio: ratio to check
877  *
878  * Check if ratio is present in the list of available ratios and return the
879  * corresponding value that needs to be written to the register to select that
880  * ratio.
881  *
882  * Returns: register value (0 to 7) or -EINVAL if there is not an exact match
883  */
884 static int ad7380_osr_to_regval(int ratio)
885 {
886 	int i;
887 
888 	for (i = 0; i < ARRAY_SIZE(ad7380_oversampling_ratios); i++) {
889 		if (ratio == ad7380_oversampling_ratios[i])
890 			return i;
891 	}
892 
893 	return -EINVAL;
894 }
895 
896 static int ad7380_write_raw(struct iio_dev *indio_dev,
897 			    struct iio_chan_spec const *chan, int val,
898 			    int val2, long mask)
899 {
900 	struct ad7380_state *st = iio_priv(indio_dev);
901 	int ret, osr, boost;
902 
903 	switch (mask) {
904 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
905 		osr = ad7380_osr_to_regval(val);
906 		if (osr < 0)
907 			return osr;
908 
909 		/* always enable resolution boost when oversampling is enabled */
910 		boost = osr > 0 ? 1 : 0;
911 
912 		iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
913 			ret = regmap_update_bits(st->regmap,
914 					AD7380_REG_ADDR_CONFIG1,
915 					AD7380_CONFIG1_OSR | AD7380_CONFIG1_RES,
916 					FIELD_PREP(AD7380_CONFIG1_OSR, osr) |
917 					FIELD_PREP(AD7380_CONFIG1_RES, boost));
918 
919 			if (ret)
920 				return ret;
921 
922 			st->oversampling_ratio = val;
923 			st->resolution_boost_enabled = boost;
924 
925 			/*
926 			 * Perform a soft reset. This will flush the oversampling
927 			 * block and FIFO but will maintain the content of the
928 			 * configurable registers.
929 			 */
930 			return regmap_update_bits(st->regmap,
931 					AD7380_REG_ADDR_CONFIG2,
932 					AD7380_CONFIG2_RESET,
933 					FIELD_PREP(AD7380_CONFIG2_RESET,
934 						   AD7380_CONFIG2_RESET_SOFT));
935 		}
936 		unreachable();
937 	default:
938 		return -EINVAL;
939 	}
940 }
941 
942 static int ad7380_get_current_scan_type(const struct iio_dev *indio_dev,
943 					const struct iio_chan_spec *chan)
944 {
945 	struct ad7380_state *st = iio_priv(indio_dev);
946 
947 	return st->resolution_boost_enabled ? AD7380_SCAN_TYPE_RESOLUTION_BOOST
948 					    : AD7380_SCAN_TYPE_NORMAL;
949 }
950 
951 static const struct iio_info ad7380_info = {
952 	.read_raw = &ad7380_read_raw,
953 	.read_avail = &ad7380_read_avail,
954 	.write_raw = &ad7380_write_raw,
955 	.get_current_scan_type = &ad7380_get_current_scan_type,
956 	.debugfs_reg_access = &ad7380_debugfs_reg_access,
957 };
958 
959 static int ad7380_init(struct ad7380_state *st, struct regulator *vref)
960 {
961 	int ret;
962 
963 	/* perform hard reset */
964 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
965 				 AD7380_CONFIG2_RESET,
966 				 FIELD_PREP(AD7380_CONFIG2_RESET,
967 					    AD7380_CONFIG2_RESET_HARD));
968 	if (ret < 0)
969 		return ret;
970 
971 	/* select internal or external reference voltage */
972 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
973 				 AD7380_CONFIG1_REFSEL,
974 				 FIELD_PREP(AD7380_CONFIG1_REFSEL,
975 					    vref ? 1 : 0));
976 	if (ret < 0)
977 		return ret;
978 
979 	/* This is the default value after reset. */
980 	st->oversampling_ratio = 1;
981 	st->ch = 0;
982 	st->seq = false;
983 
984 	/* SPI 1-wire mode */
985 	return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
986 				  AD7380_CONFIG2_SDO,
987 				  FIELD_PREP(AD7380_CONFIG2_SDO, 1));
988 }
989 
990 static void ad7380_regulator_disable(void *p)
991 {
992 	regulator_disable(p);
993 }
994 
995 static int ad7380_probe(struct spi_device *spi)
996 {
997 	struct iio_dev *indio_dev;
998 	struct ad7380_state *st;
999 	struct regulator *vref;
1000 	int ret, i;
1001 
1002 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1003 	if (!indio_dev)
1004 		return -ENOMEM;
1005 
1006 	st = iio_priv(indio_dev);
1007 	st->spi = spi;
1008 	st->chip_info = spi_get_device_match_data(spi);
1009 	if (!st->chip_info)
1010 		return dev_err_probe(&spi->dev, -EINVAL, "missing match data\n");
1011 
1012 	vref = devm_regulator_get_optional(&spi->dev, "refio");
1013 	if (IS_ERR(vref)) {
1014 		if (PTR_ERR(vref) != -ENODEV)
1015 			return dev_err_probe(&spi->dev, PTR_ERR(vref),
1016 					     "Failed to get refio regulator\n");
1017 
1018 		vref = NULL;
1019 	}
1020 
1021 	/*
1022 	 * If there is no REFIO supply, then it means that we are using
1023 	 * the internal 2.5V reference, otherwise REFIO is reference voltage.
1024 	 */
1025 	if (vref) {
1026 		ret = regulator_enable(vref);
1027 		if (ret)
1028 			return ret;
1029 
1030 		ret = devm_add_action_or_reset(&spi->dev,
1031 					       ad7380_regulator_disable, vref);
1032 		if (ret)
1033 			return ret;
1034 
1035 		ret = regulator_get_voltage(vref);
1036 		if (ret < 0)
1037 			return ret;
1038 
1039 		st->vref_mv = ret / 1000;
1040 	} else {
1041 		st->vref_mv = AD7380_INTERNAL_REF_MV;
1042 	}
1043 
1044 	if (st->chip_info->num_vcm_supplies > ARRAY_SIZE(st->vcm_mv))
1045 		return dev_err_probe(&spi->dev, -EINVAL,
1046 				     "invalid number of VCM supplies\n");
1047 
1048 	/*
1049 	 * pseudo-differential chips have common mode supplies for the negative
1050 	 * input pin.
1051 	 */
1052 	for (i = 0; i < st->chip_info->num_vcm_supplies; i++) {
1053 		struct regulator *vcm;
1054 
1055 		vcm = devm_regulator_get(&spi->dev,
1056 					 st->chip_info->vcm_supplies[i]);
1057 		if (IS_ERR(vcm))
1058 			return dev_err_probe(&spi->dev, PTR_ERR(vcm),
1059 					     "Failed to get %s regulator\n",
1060 					     st->chip_info->vcm_supplies[i]);
1061 
1062 		ret = regulator_enable(vcm);
1063 		if (ret)
1064 			return ret;
1065 
1066 		ret = devm_add_action_or_reset(&spi->dev,
1067 					       ad7380_regulator_disable, vcm);
1068 		if (ret)
1069 			return ret;
1070 
1071 		ret = regulator_get_voltage(vcm);
1072 		if (ret < 0)
1073 			return ret;
1074 
1075 		st->vcm_mv[i] = ret / 1000;
1076 	}
1077 
1078 	st->regmap = devm_regmap_init(&spi->dev, NULL, st, &ad7380_regmap_config);
1079 	if (IS_ERR(st->regmap))
1080 		return dev_err_probe(&spi->dev, PTR_ERR(st->regmap),
1081 				     "failed to allocate register map\n");
1082 
1083 	/*
1084 	 * Setting up xfer structures for both normal and sequence mode. These
1085 	 * struct are used for both direct read and triggered buffer. Additional
1086 	 * fields will be set up in ad7380_update_xfers() based on the current
1087 	 * state of the driver at the time of the read.
1088 	 */
1089 
1090 	/*
1091 	 * In normal mode a read is composed of two steps:
1092 	 *   - first, toggle CS (no data xfer) to trigger a conversion
1093 	 *   - then, read data
1094 	 */
1095 	st->normal_xfer[0].cs_change = 1;
1096 	st->normal_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
1097 	st->normal_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
1098 	st->normal_xfer[1].rx_buf = st->scan_data;
1099 
1100 	spi_message_init_with_transfers(&st->normal_msg, st->normal_xfer,
1101 					ARRAY_SIZE(st->normal_xfer));
1102 	/*
1103 	 * In sequencer mode a read is composed of four steps:
1104 	 *   - CS toggle (no data xfer) to get the right point in the sequence
1105 	 *   - CS toggle (no data xfer) to trigger a conversion of AinX0 and
1106 	 *   acquisition of AinX1
1107 	 *   - 2 data reads, to read AinX0 and AinX1
1108 	 */
1109 	st->seq_xfer[0].cs_change = 1;
1110 	st->seq_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
1111 	st->seq_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
1112 	st->seq_xfer[1].cs_change = 1;
1113 	st->seq_xfer[1].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
1114 	st->seq_xfer[1].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
1115 
1116 	st->seq_xfer[2].rx_buf = st->scan_data;
1117 	st->seq_xfer[2].cs_change = 1;
1118 	st->seq_xfer[2].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
1119 	st->seq_xfer[2].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
1120 
1121 	spi_message_init_with_transfers(&st->seq_msg, st->seq_xfer,
1122 					ARRAY_SIZE(st->seq_xfer));
1123 
1124 	indio_dev->channels = st->chip_info->channels;
1125 	indio_dev->num_channels = st->chip_info->num_channels;
1126 	indio_dev->name = st->chip_info->name;
1127 	indio_dev->info = &ad7380_info;
1128 	indio_dev->modes = INDIO_DIRECT_MODE;
1129 	indio_dev->available_scan_masks = st->chip_info->available_scan_masks;
1130 
1131 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
1132 					      iio_pollfunc_store_time,
1133 					      ad7380_trigger_handler,
1134 					      &ad7380_buffer_setup_ops);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = ad7380_init(st, vref);
1139 	if (ret)
1140 		return ret;
1141 
1142 	return devm_iio_device_register(&spi->dev, indio_dev);
1143 }
1144 
1145 static const struct of_device_id ad7380_of_match_table[] = {
1146 	{ .compatible = "adi,ad7380", .data = &ad7380_chip_info },
1147 	{ .compatible = "adi,ad7381", .data = &ad7381_chip_info },
1148 	{ .compatible = "adi,ad7383", .data = &ad7383_chip_info },
1149 	{ .compatible = "adi,ad7384", .data = &ad7384_chip_info },
1150 	{ .compatible = "adi,ad7386", .data = &ad7386_chip_info },
1151 	{ .compatible = "adi,ad7387", .data = &ad7387_chip_info },
1152 	{ .compatible = "adi,ad7388", .data = &ad7388_chip_info },
1153 	{ .compatible = "adi,ad7380-4", .data = &ad7380_4_chip_info },
1154 	{ .compatible = "adi,ad7381-4", .data = &ad7381_4_chip_info },
1155 	{ .compatible = "adi,ad7383-4", .data = &ad7383_4_chip_info },
1156 	{ .compatible = "adi,ad7384-4", .data = &ad7384_4_chip_info },
1157 	{ .compatible = "adi,ad7386-4", .data = &ad7386_4_chip_info },
1158 	{ .compatible = "adi,ad7387-4", .data = &ad7387_4_chip_info },
1159 	{ .compatible = "adi,ad7388-4", .data = &ad7388_4_chip_info },
1160 	{ }
1161 };
1162 
1163 static const struct spi_device_id ad7380_id_table[] = {
1164 	{ "ad7380", (kernel_ulong_t)&ad7380_chip_info },
1165 	{ "ad7381", (kernel_ulong_t)&ad7381_chip_info },
1166 	{ "ad7383", (kernel_ulong_t)&ad7383_chip_info },
1167 	{ "ad7384", (kernel_ulong_t)&ad7384_chip_info },
1168 	{ "ad7386", (kernel_ulong_t)&ad7386_chip_info },
1169 	{ "ad7387", (kernel_ulong_t)&ad7387_chip_info },
1170 	{ "ad7388", (kernel_ulong_t)&ad7388_chip_info },
1171 	{ "ad7380-4", (kernel_ulong_t)&ad7380_4_chip_info },
1172 	{ "ad7381-4", (kernel_ulong_t)&ad7381_4_chip_info },
1173 	{ "ad7383-4", (kernel_ulong_t)&ad7383_4_chip_info },
1174 	{ "ad7384-4", (kernel_ulong_t)&ad7384_4_chip_info },
1175 	{ "ad7386-4", (kernel_ulong_t)&ad7386_4_chip_info },
1176 	{ "ad7387-4", (kernel_ulong_t)&ad7387_4_chip_info },
1177 	{ "ad7388-4", (kernel_ulong_t)&ad7388_4_chip_info },
1178 	{ }
1179 };
1180 MODULE_DEVICE_TABLE(spi, ad7380_id_table);
1181 
1182 static struct spi_driver ad7380_driver = {
1183 	.driver = {
1184 		.name = "ad7380",
1185 		.of_match_table = ad7380_of_match_table,
1186 	},
1187 	.probe = ad7380_probe,
1188 	.id_table = ad7380_id_table,
1189 };
1190 module_spi_driver(ad7380_driver);
1191 
1192 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
1193 MODULE_DESCRIPTION("Analog Devices AD738x ADC driver");
1194 MODULE_LICENSE("GPL");
1195