1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * STMicroelectronics accelerometers driver 4 * 5 * Copyright 2012-2013 STMicroelectronics Inc. 6 * 7 * Denis Ciocca <denis.ciocca@st.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/mutex.h> 13 #include <linux/sysfs.h> 14 #include <linux/slab.h> 15 #include <linux/acpi.h> 16 #include <linux/iio/iio.h> 17 #include <linux/iio/sysfs.h> 18 #include <linux/iio/trigger.h> 19 20 #include <linux/iio/common/st_sensors.h> 21 #include "st_accel.h" 22 23 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3 24 25 /* DEFAULT VALUE FOR SENSORS */ 26 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28 27 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a 28 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c 29 30 /* FULLSCALE */ 31 #define ST_ACCEL_FS_AVL_2G 2 32 #define ST_ACCEL_FS_AVL_4G 4 33 #define ST_ACCEL_FS_AVL_6G 6 34 #define ST_ACCEL_FS_AVL_8G 8 35 #define ST_ACCEL_FS_AVL_16G 16 36 #define ST_ACCEL_FS_AVL_100G 100 37 #define ST_ACCEL_FS_AVL_200G 200 38 #define ST_ACCEL_FS_AVL_400G 400 39 40 static const struct iio_mount_matrix * 41 st_accel_get_mount_matrix(const struct iio_dev *indio_dev, 42 const struct iio_chan_spec *chan) 43 { 44 struct st_sensor_data *adata = iio_priv(indio_dev); 45 46 return &adata->mount_matrix; 47 } 48 49 static const struct iio_chan_spec_ext_info st_accel_mount_matrix_ext_info[] = { 50 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, st_accel_get_mount_matrix), 51 { } 52 }; 53 54 static const struct iio_chan_spec st_accel_8bit_channels[] = { 55 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 56 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 57 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8, 58 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1, 59 st_accel_mount_matrix_ext_info), 60 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 61 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 62 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8, 63 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1, 64 st_accel_mount_matrix_ext_info), 65 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 67 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8, 68 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1, 69 st_accel_mount_matrix_ext_info), 70 IIO_CHAN_SOFT_TIMESTAMP(3) 71 }; 72 73 static const struct iio_chan_spec st_accel_12bit_channels[] = { 74 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 75 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 76 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16, 77 ST_ACCEL_DEFAULT_OUT_X_L_ADDR, 78 st_accel_mount_matrix_ext_info), 79 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 80 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 81 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16, 82 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR, 83 st_accel_mount_matrix_ext_info), 84 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 85 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 86 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16, 87 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR, 88 st_accel_mount_matrix_ext_info), 89 IIO_CHAN_SOFT_TIMESTAMP(3) 90 }; 91 92 static const struct iio_chan_spec st_accel_16bit_channels[] = { 93 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 94 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 95 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, 96 ST_ACCEL_DEFAULT_OUT_X_L_ADDR, 97 st_accel_mount_matrix_ext_info), 98 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 99 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 100 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, 101 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR, 102 st_accel_mount_matrix_ext_info), 103 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL, 104 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 105 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, 106 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR, 107 st_accel_mount_matrix_ext_info), 108 IIO_CHAN_SOFT_TIMESTAMP(3) 109 }; 110 111 static const struct st_sensor_settings st_accel_sensors_settings[] = { 112 { 113 .wai = 0x33, 114 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 115 .sensors_supported = { 116 [0] = LIS3DH_ACCEL_DEV_NAME, 117 [1] = LSM303DLHC_ACCEL_DEV_NAME, 118 [2] = LSM330D_ACCEL_DEV_NAME, 119 [3] = LSM330DL_ACCEL_DEV_NAME, 120 [4] = LSM330DLC_ACCEL_DEV_NAME, 121 [5] = LSM303AGR_ACCEL_DEV_NAME, 122 [6] = LIS2DH12_ACCEL_DEV_NAME, 123 [7] = LIS3DE_ACCEL_DEV_NAME, 124 }, 125 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 126 .odr = { 127 .addr = 0x20, 128 .mask = 0xf0, 129 .odr_avl = { 130 { .hz = 1, .value = 0x01, }, 131 { .hz = 10, .value = 0x02, }, 132 { .hz = 25, .value = 0x03, }, 133 { .hz = 50, .value = 0x04, }, 134 { .hz = 100, .value = 0x05, }, 135 { .hz = 200, .value = 0x06, }, 136 { .hz = 400, .value = 0x07, }, 137 { .hz = 1600, .value = 0x08, }, 138 }, 139 }, 140 .pw = { 141 .addr = 0x20, 142 .mask = 0xf0, 143 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 144 }, 145 .enable_axis = { 146 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 147 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 148 }, 149 .fs = { 150 .addr = 0x23, 151 .mask = 0x30, 152 .fs_avl = { 153 [0] = { 154 .num = ST_ACCEL_FS_AVL_2G, 155 .value = 0x00, 156 .gain = IIO_G_TO_M_S_2(1000), 157 }, 158 [1] = { 159 .num = ST_ACCEL_FS_AVL_4G, 160 .value = 0x01, 161 .gain = IIO_G_TO_M_S_2(2000), 162 }, 163 [2] = { 164 .num = ST_ACCEL_FS_AVL_8G, 165 .value = 0x02, 166 .gain = IIO_G_TO_M_S_2(4000), 167 }, 168 [3] = { 169 .num = ST_ACCEL_FS_AVL_16G, 170 .value = 0x03, 171 .gain = IIO_G_TO_M_S_2(12000), 172 }, 173 }, 174 }, 175 .bdu = { 176 .addr = 0x23, 177 .mask = 0x80, 178 }, 179 .drdy_irq = { 180 .int1 = { 181 .addr = 0x22, 182 .mask = 0x10, 183 }, 184 .addr_ihl = 0x25, 185 .mask_ihl = 0x02, 186 .stat_drdy = { 187 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 188 .mask = 0x07, 189 }, 190 }, 191 .sim = { 192 .addr = 0x23, 193 .value = BIT(0), 194 }, 195 .multi_read_bit = true, 196 .bootime = 2, 197 }, 198 { 199 .wai = 0x32, 200 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 201 .sensors_supported = { 202 [0] = LIS331DLH_ACCEL_DEV_NAME, 203 [1] = LSM303DL_ACCEL_DEV_NAME, 204 [2] = LSM303DLH_ACCEL_DEV_NAME, 205 [3] = LSM303DLM_ACCEL_DEV_NAME, 206 }, 207 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 208 .odr = { 209 .addr = 0x20, 210 .mask = 0x18, 211 .odr_avl = { 212 { .hz = 50, .value = 0x00, }, 213 { .hz = 100, .value = 0x01, }, 214 { .hz = 400, .value = 0x02, }, 215 { .hz = 1000, .value = 0x03, }, 216 }, 217 }, 218 .pw = { 219 .addr = 0x20, 220 .mask = 0xe0, 221 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 222 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 223 }, 224 .enable_axis = { 225 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 226 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 227 }, 228 .fs = { 229 .addr = 0x23, 230 .mask = 0x30, 231 .fs_avl = { 232 [0] = { 233 .num = ST_ACCEL_FS_AVL_2G, 234 .value = 0x00, 235 .gain = IIO_G_TO_M_S_2(1000), 236 }, 237 [1] = { 238 .num = ST_ACCEL_FS_AVL_4G, 239 .value = 0x01, 240 .gain = IIO_G_TO_M_S_2(2000), 241 }, 242 [2] = { 243 .num = ST_ACCEL_FS_AVL_8G, 244 .value = 0x03, 245 .gain = IIO_G_TO_M_S_2(3900), 246 }, 247 }, 248 }, 249 .bdu = { 250 .addr = 0x23, 251 .mask = 0x80, 252 }, 253 .drdy_irq = { 254 .int1 = { 255 .addr = 0x22, 256 .mask = 0x02, 257 .addr_od = 0x22, 258 .mask_od = 0x40, 259 }, 260 .int2 = { 261 .addr = 0x22, 262 .mask = 0x10, 263 .addr_od = 0x22, 264 .mask_od = 0x40, 265 }, 266 .addr_ihl = 0x22, 267 .mask_ihl = 0x80, 268 .stat_drdy = { 269 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 270 .mask = 0x07, 271 }, 272 }, 273 .sim = { 274 .addr = 0x23, 275 .value = BIT(0), 276 }, 277 .multi_read_bit = true, 278 .bootime = 2, 279 }, 280 { 281 .wai = 0x40, 282 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 283 .sensors_supported = { 284 [0] = LSM330_ACCEL_DEV_NAME, 285 }, 286 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 287 .odr = { 288 .addr = 0x20, 289 .mask = 0xf0, 290 .odr_avl = { 291 { .hz = 3, .value = 0x01, }, 292 { .hz = 6, .value = 0x02, }, 293 { .hz = 12, .value = 0x03, }, 294 { .hz = 25, .value = 0x04, }, 295 { .hz = 50, .value = 0x05, }, 296 { .hz = 100, .value = 0x06, }, 297 { .hz = 200, .value = 0x07, }, 298 { .hz = 400, .value = 0x08, }, 299 { .hz = 800, .value = 0x09, }, 300 { .hz = 1600, .value = 0x0a, }, 301 }, 302 }, 303 .pw = { 304 .addr = 0x20, 305 .mask = 0xf0, 306 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 307 }, 308 .enable_axis = { 309 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 310 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 311 }, 312 .fs = { 313 .addr = 0x24, 314 .mask = 0x38, 315 .fs_avl = { 316 [0] = { 317 .num = ST_ACCEL_FS_AVL_2G, 318 .value = 0x00, 319 .gain = IIO_G_TO_M_S_2(61), 320 }, 321 [1] = { 322 .num = ST_ACCEL_FS_AVL_4G, 323 .value = 0x01, 324 .gain = IIO_G_TO_M_S_2(122), 325 }, 326 [2] = { 327 .num = ST_ACCEL_FS_AVL_6G, 328 .value = 0x02, 329 .gain = IIO_G_TO_M_S_2(183), 330 }, 331 [3] = { 332 .num = ST_ACCEL_FS_AVL_8G, 333 .value = 0x03, 334 .gain = IIO_G_TO_M_S_2(244), 335 }, 336 [4] = { 337 .num = ST_ACCEL_FS_AVL_16G, 338 .value = 0x04, 339 .gain = IIO_G_TO_M_S_2(732), 340 }, 341 }, 342 }, 343 .bdu = { 344 .addr = 0x20, 345 .mask = 0x08, 346 }, 347 .drdy_irq = { 348 .int1 = { 349 .addr = 0x23, 350 .mask = 0x80, 351 }, 352 .addr_ihl = 0x23, 353 .mask_ihl = 0x40, 354 .stat_drdy = { 355 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 356 .mask = 0x07, 357 }, 358 .ig1 = { 359 .en_addr = 0x23, 360 .en_mask = 0x08, 361 }, 362 }, 363 .sim = { 364 .addr = 0x24, 365 .value = BIT(0), 366 }, 367 .multi_read_bit = false, 368 .bootime = 2, 369 }, 370 { 371 .wai = 0x3a, 372 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 373 .sensors_supported = { 374 [0] = LIS3LV02DL_ACCEL_DEV_NAME, 375 }, 376 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 377 .odr = { 378 .addr = 0x20, 379 .mask = 0x30, /* DF1 and DF0 */ 380 .odr_avl = { 381 { .hz = 40, .value = 0x00, }, 382 { .hz = 160, .value = 0x01, }, 383 { .hz = 640, .value = 0x02, }, 384 { .hz = 2560, .value = 0x03, }, 385 }, 386 }, 387 .pw = { 388 .addr = 0x20, 389 .mask = 0xc0, 390 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 391 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 392 }, 393 .enable_axis = { 394 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 395 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 396 }, 397 .fs = { 398 .addr = 0x21, 399 .mask = 0x80, 400 .fs_avl = { 401 [0] = { 402 .num = ST_ACCEL_FS_AVL_2G, 403 .value = 0x00, 404 .gain = IIO_G_TO_M_S_2(1000), 405 }, 406 [1] = { 407 .num = ST_ACCEL_FS_AVL_6G, 408 .value = 0x01, 409 .gain = IIO_G_TO_M_S_2(3000), 410 }, 411 }, 412 }, 413 .bdu = { 414 .addr = 0x21, 415 .mask = 0x40, 416 }, 417 /* 418 * Data Alignment Setting - needs to be set to get 419 * left-justified data like all other sensors. 420 */ 421 .das = { 422 .addr = 0x21, 423 .mask = 0x01, 424 }, 425 .drdy_irq = { 426 .int1 = { 427 .addr = 0x21, 428 .mask = 0x04, 429 }, 430 .stat_drdy = { 431 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 432 .mask = 0x07, 433 }, 434 }, 435 .sim = { 436 .addr = 0x21, 437 .value = BIT(1), 438 }, 439 .multi_read_bit = true, 440 .bootime = 2, /* guess */ 441 }, 442 { 443 .wai = 0x3b, 444 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 445 .sensors_supported = { 446 [0] = LIS331DL_ACCEL_DEV_NAME, 447 [1] = LIS302DL_ACCEL_DEV_NAME, 448 }, 449 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 450 .odr = { 451 .addr = 0x20, 452 .mask = 0x80, 453 .odr_avl = { 454 { .hz = 100, .value = 0x00, }, 455 { .hz = 400, .value = 0x01, }, 456 }, 457 }, 458 .pw = { 459 .addr = 0x20, 460 .mask = 0x40, 461 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 462 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 463 }, 464 .enable_axis = { 465 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 466 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 467 }, 468 .fs = { 469 .addr = 0x20, 470 .mask = 0x20, 471 /* 472 * TODO: check these resulting gain settings, these are 473 * not in the datsheet 474 */ 475 .fs_avl = { 476 [0] = { 477 .num = ST_ACCEL_FS_AVL_2G, 478 .value = 0x00, 479 .gain = IIO_G_TO_M_S_2(18000), 480 }, 481 [1] = { 482 .num = ST_ACCEL_FS_AVL_8G, 483 .value = 0x01, 484 .gain = IIO_G_TO_M_S_2(72000), 485 }, 486 }, 487 }, 488 .drdy_irq = { 489 .int1 = { 490 .addr = 0x22, 491 .mask = 0x04, 492 .addr_od = 0x22, 493 .mask_od = 0x40, 494 }, 495 .int2 = { 496 .addr = 0x22, 497 .mask = 0x20, 498 .addr_od = 0x22, 499 .mask_od = 0x40, 500 }, 501 .addr_ihl = 0x22, 502 .mask_ihl = 0x80, 503 .stat_drdy = { 504 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 505 .mask = 0x07, 506 }, 507 }, 508 .sim = { 509 .addr = 0x21, 510 .value = BIT(7), 511 }, 512 .multi_read_bit = false, 513 .bootime = 2, /* guess */ 514 }, 515 { 516 .wai = 0x32, 517 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 518 .sensors_supported = { 519 [0] = H3LIS331DL_ACCEL_DEV_NAME, 520 }, 521 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 522 .odr = { 523 .addr = 0x20, 524 .mask = 0x18, 525 .odr_avl = { 526 { .hz = 50, .value = 0x00, }, 527 { .hz = 100, .value = 0x01, }, 528 { .hz = 400, .value = 0x02, }, 529 { .hz = 1000, .value = 0x03, }, 530 }, 531 }, 532 .pw = { 533 .addr = 0x20, 534 .mask = 0x20, 535 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 536 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 537 }, 538 .enable_axis = { 539 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 540 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 541 }, 542 .fs = { 543 .addr = 0x23, 544 .mask = 0x30, 545 .fs_avl = { 546 [0] = { 547 .num = ST_ACCEL_FS_AVL_100G, 548 .value = 0x00, 549 .gain = IIO_G_TO_M_S_2(49000), 550 }, 551 [1] = { 552 .num = ST_ACCEL_FS_AVL_200G, 553 .value = 0x01, 554 .gain = IIO_G_TO_M_S_2(98000), 555 }, 556 [2] = { 557 .num = ST_ACCEL_FS_AVL_400G, 558 .value = 0x03, 559 .gain = IIO_G_TO_M_S_2(195000), 560 }, 561 }, 562 }, 563 .bdu = { 564 .addr = 0x23, 565 .mask = 0x80, 566 }, 567 .drdy_irq = { 568 .int1 = { 569 .addr = 0x22, 570 .mask = 0x02, 571 }, 572 .int2 = { 573 .addr = 0x22, 574 .mask = 0x10, 575 }, 576 .addr_ihl = 0x22, 577 .mask_ihl = 0x80, 578 }, 579 .sim = { 580 .addr = 0x23, 581 .value = BIT(0), 582 }, 583 .multi_read_bit = true, 584 .bootime = 2, 585 }, 586 { 587 /* No WAI register present */ 588 .sensors_supported = { 589 [0] = LIS3L02DQ_ACCEL_DEV_NAME, 590 }, 591 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 592 .odr = { 593 .addr = 0x20, 594 .mask = 0x30, 595 .odr_avl = { 596 { .hz = 280, .value = 0x00, }, 597 { .hz = 560, .value = 0x01, }, 598 { .hz = 1120, .value = 0x02, }, 599 { .hz = 4480, .value = 0x03, }, 600 }, 601 }, 602 .pw = { 603 .addr = 0x20, 604 .mask = 0xc0, 605 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 606 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 607 }, 608 .enable_axis = { 609 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 610 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 611 }, 612 .fs = { 613 .fs_avl = { 614 [0] = { 615 .num = ST_ACCEL_FS_AVL_2G, 616 .gain = IIO_G_TO_M_S_2(488), 617 }, 618 }, 619 }, 620 /* 621 * The part has a BDU bit but if set the data is never 622 * updated so don't set it. 623 */ 624 .bdu = { 625 }, 626 .drdy_irq = { 627 .int1 = { 628 .addr = 0x21, 629 .mask = 0x04, 630 }, 631 .stat_drdy = { 632 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 633 .mask = 0x07, 634 }, 635 }, 636 .sim = { 637 .addr = 0x21, 638 .value = BIT(1), 639 }, 640 .multi_read_bit = false, 641 .bootime = 2, 642 }, 643 { 644 .wai = 0x33, 645 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 646 .sensors_supported = { 647 [0] = LNG2DM_ACCEL_DEV_NAME, 648 }, 649 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 650 .odr = { 651 .addr = 0x20, 652 .mask = 0xf0, 653 .odr_avl = { 654 { .hz = 1, .value = 0x01, }, 655 { .hz = 10, .value = 0x02, }, 656 { .hz = 25, .value = 0x03, }, 657 { .hz = 50, .value = 0x04, }, 658 { .hz = 100, .value = 0x05, }, 659 { .hz = 200, .value = 0x06, }, 660 { .hz = 400, .value = 0x07, }, 661 { .hz = 1600, .value = 0x08, }, 662 }, 663 }, 664 .pw = { 665 .addr = 0x20, 666 .mask = 0xf0, 667 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 668 }, 669 .enable_axis = { 670 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 671 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 672 }, 673 .fs = { 674 .addr = 0x23, 675 .mask = 0x30, 676 .fs_avl = { 677 [0] = { 678 .num = ST_ACCEL_FS_AVL_2G, 679 .value = 0x00, 680 .gain = IIO_G_TO_M_S_2(15600), 681 }, 682 [1] = { 683 .num = ST_ACCEL_FS_AVL_4G, 684 .value = 0x01, 685 .gain = IIO_G_TO_M_S_2(31200), 686 }, 687 [2] = { 688 .num = ST_ACCEL_FS_AVL_8G, 689 .value = 0x02, 690 .gain = IIO_G_TO_M_S_2(62500), 691 }, 692 [3] = { 693 .num = ST_ACCEL_FS_AVL_16G, 694 .value = 0x03, 695 .gain = IIO_G_TO_M_S_2(187500), 696 }, 697 }, 698 }, 699 .drdy_irq = { 700 .int1 = { 701 .addr = 0x22, 702 .mask = 0x10, 703 }, 704 .addr_ihl = 0x25, 705 .mask_ihl = 0x02, 706 .stat_drdy = { 707 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 708 .mask = 0x07, 709 }, 710 }, 711 .sim = { 712 .addr = 0x23, 713 .value = BIT(0), 714 }, 715 .multi_read_bit = true, 716 .bootime = 2, 717 }, 718 { 719 .wai = 0x44, 720 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 721 .sensors_supported = { 722 [0] = LIS2DW12_ACCEL_DEV_NAME, 723 }, 724 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 725 .odr = { 726 .addr = 0x20, 727 .mask = 0xf0, 728 .odr_avl = { 729 { .hz = 1, .value = 0x01, }, 730 { .hz = 12, .value = 0x02, }, 731 { .hz = 25, .value = 0x03, }, 732 { .hz = 50, .value = 0x04, }, 733 { .hz = 100, .value = 0x05, }, 734 { .hz = 200, .value = 0x06, }, 735 }, 736 }, 737 .pw = { 738 .addr = 0x20, 739 .mask = 0xf0, 740 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 741 }, 742 .fs = { 743 .addr = 0x25, 744 .mask = 0x30, 745 .fs_avl = { 746 [0] = { 747 .num = ST_ACCEL_FS_AVL_2G, 748 .value = 0x00, 749 .gain = IIO_G_TO_M_S_2(976), 750 }, 751 [1] = { 752 .num = ST_ACCEL_FS_AVL_4G, 753 .value = 0x01, 754 .gain = IIO_G_TO_M_S_2(1952), 755 }, 756 [2] = { 757 .num = ST_ACCEL_FS_AVL_8G, 758 .value = 0x02, 759 .gain = IIO_G_TO_M_S_2(3904), 760 }, 761 [3] = { 762 .num = ST_ACCEL_FS_AVL_16G, 763 .value = 0x03, 764 .gain = IIO_G_TO_M_S_2(7808), 765 }, 766 }, 767 }, 768 .bdu = { 769 .addr = 0x21, 770 .mask = 0x08, 771 }, 772 .drdy_irq = { 773 .int1 = { 774 .addr = 0x23, 775 .mask = 0x01, 776 .addr_od = 0x22, 777 .mask_od = 0x20, 778 }, 779 .int2 = { 780 .addr = 0x24, 781 .mask = 0x01, 782 .addr_od = 0x22, 783 .mask_od = 0x20, 784 }, 785 .addr_ihl = 0x22, 786 .mask_ihl = 0x08, 787 .stat_drdy = { 788 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 789 .mask = 0x01, 790 }, 791 }, 792 .sim = { 793 .addr = 0x21, 794 .value = BIT(0), 795 }, 796 .multi_read_bit = false, 797 .bootime = 2, 798 }, 799 { 800 .wai = 0x11, 801 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 802 .sensors_supported = { 803 [0] = LIS3DHH_ACCEL_DEV_NAME, 804 }, 805 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 806 .odr = { 807 /* just ODR = 1100Hz available */ 808 .odr_avl = { 809 { .hz = 1100, .value = 0x00, }, 810 }, 811 }, 812 .pw = { 813 .addr = 0x20, 814 .mask = 0x80, 815 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 816 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 817 }, 818 .fs = { 819 .fs_avl = { 820 [0] = { 821 .num = ST_ACCEL_FS_AVL_2G, 822 .gain = IIO_G_TO_M_S_2(76), 823 }, 824 }, 825 }, 826 .bdu = { 827 .addr = 0x20, 828 .mask = 0x01, 829 }, 830 .drdy_irq = { 831 .int1 = { 832 .addr = 0x21, 833 .mask = 0x80, 834 .addr_od = 0x23, 835 .mask_od = 0x04, 836 }, 837 .int2 = { 838 .addr = 0x22, 839 .mask = 0x80, 840 .addr_od = 0x23, 841 .mask_od = 0x08, 842 }, 843 .stat_drdy = { 844 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 845 .mask = 0x07, 846 }, 847 }, 848 .multi_read_bit = false, 849 .bootime = 2, 850 }, 851 { 852 .wai = 0x33, 853 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 854 .sensors_supported = { 855 [0] = LIS2DE12_ACCEL_DEV_NAME, 856 }, 857 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 858 .odr = { 859 .addr = 0x20, 860 .mask = 0xf0, 861 .odr_avl = { 862 { .hz = 1, .value = 0x01, }, 863 { .hz = 10, .value = 0x02, }, 864 { .hz = 25, .value = 0x03, }, 865 { .hz = 50, .value = 0x04, }, 866 { .hz = 100, .value = 0x05, }, 867 { .hz = 200, .value = 0x06, }, 868 { .hz = 400, .value = 0x07, }, 869 { .hz = 1620, .value = 0x08, }, 870 { .hz = 5376, .value = 0x09, }, 871 }, 872 }, 873 .pw = { 874 .addr = 0x20, 875 .mask = 0xf0, 876 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 877 }, 878 .enable_axis = { 879 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 880 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 881 }, 882 .fs = { 883 .addr = 0x23, 884 .mask = 0x30, 885 .fs_avl = { 886 [0] = { 887 .num = ST_ACCEL_FS_AVL_2G, 888 .value = 0x00, 889 .gain = IIO_G_TO_M_S_2(15600), 890 }, 891 [1] = { 892 .num = ST_ACCEL_FS_AVL_4G, 893 .value = 0x01, 894 .gain = IIO_G_TO_M_S_2(31200), 895 }, 896 [2] = { 897 .num = ST_ACCEL_FS_AVL_8G, 898 .value = 0x02, 899 .gain = IIO_G_TO_M_S_2(62500), 900 }, 901 [3] = { 902 .num = ST_ACCEL_FS_AVL_16G, 903 .value = 0x03, 904 .gain = IIO_G_TO_M_S_2(187500), 905 }, 906 }, 907 }, 908 .drdy_irq = { 909 .int1 = { 910 .addr = 0x22, 911 .mask = 0x10, 912 }, 913 .addr_ihl = 0x25, 914 .mask_ihl = 0x02, 915 .stat_drdy = { 916 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 917 .mask = 0x07, 918 }, 919 }, 920 .sim = { 921 .addr = 0x23, 922 .value = BIT(0), 923 }, 924 .multi_read_bit = true, 925 .bootime = 2, 926 }, 927 { 928 .wai = 0x41, 929 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 930 .sensors_supported = { 931 [0] = LIS2HH12_ACCEL_DEV_NAME, 932 [1] = LSM303C_ACCEL_DEV_NAME, 933 }, 934 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 935 .odr = { 936 .addr = 0x20, 937 .mask = 0x70, 938 .odr_avl = { 939 { .hz = 10, .value = 0x01, }, 940 { .hz = 50, .value = 0x02, }, 941 { .hz = 100, .value = 0x03, }, 942 { .hz = 200, .value = 0x04, }, 943 { .hz = 400, .value = 0x05, }, 944 { .hz = 800, .value = 0x06, }, 945 }, 946 }, 947 .pw = { 948 .addr = 0x20, 949 .mask = 0x70, 950 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 951 }, 952 .enable_axis = { 953 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 954 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 955 }, 956 .fs = { 957 .addr = 0x23, 958 .mask = 0x30, 959 .fs_avl = { 960 [0] = { 961 .num = ST_ACCEL_FS_AVL_2G, 962 .value = 0x00, 963 .gain = IIO_G_TO_M_S_2(61), 964 }, 965 [1] = { 966 .num = ST_ACCEL_FS_AVL_4G, 967 .value = 0x02, 968 .gain = IIO_G_TO_M_S_2(122), 969 }, 970 [2] = { 971 .num = ST_ACCEL_FS_AVL_8G, 972 .value = 0x03, 973 .gain = IIO_G_TO_M_S_2(244), 974 }, 975 }, 976 }, 977 .bdu = { 978 .addr = 0x20, 979 .mask = 0x08, 980 }, 981 .drdy_irq = { 982 .int1 = { 983 .addr = 0x22, 984 .mask = 0x01, 985 }, 986 .int2 = { 987 .addr = 0x25, 988 .mask = 0x01, 989 }, 990 .addr_ihl = 0x24, 991 .mask_ihl = 0x02, 992 .stat_drdy = { 993 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 994 .mask = 0x07, 995 }, 996 }, 997 .sim = { 998 .addr = 0x23, 999 .value = BIT(0), 1000 }, 1001 .multi_read_bit = true, 1002 .bootime = 2, 1003 }, 1004 { 1005 .wai = 0x49, 1006 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 1007 .sensors_supported = { 1008 [0] = LSM9DS0_IMU_DEV_NAME, 1009 }, 1010 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 1011 .odr = { 1012 .addr = 0x20, 1013 .mask = GENMASK(7, 4), 1014 .odr_avl = { 1015 { 3, 0x01, }, 1016 { 6, 0x02, }, 1017 { 12, 0x03, }, 1018 { 25, 0x04, }, 1019 { 50, 0x05, }, 1020 { 100, 0x06, }, 1021 { 200, 0x07, }, 1022 { 400, 0x08, }, 1023 { 800, 0x09, }, 1024 { 1600, 0x0a, }, 1025 }, 1026 }, 1027 .pw = { 1028 .addr = 0x20, 1029 .mask = GENMASK(7, 4), 1030 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 1031 }, 1032 .enable_axis = { 1033 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 1034 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 1035 }, 1036 .fs = { 1037 .addr = 0x21, 1038 .mask = GENMASK(5, 3), 1039 .fs_avl = { 1040 [0] = { 1041 .num = ST_ACCEL_FS_AVL_2G, 1042 .value = 0x00, 1043 .gain = IIO_G_TO_M_S_2(61), 1044 }, 1045 [1] = { 1046 .num = ST_ACCEL_FS_AVL_4G, 1047 .value = 0x01, 1048 .gain = IIO_G_TO_M_S_2(122), 1049 }, 1050 [2] = { 1051 .num = ST_ACCEL_FS_AVL_6G, 1052 .value = 0x02, 1053 .gain = IIO_G_TO_M_S_2(183), 1054 }, 1055 [3] = { 1056 .num = ST_ACCEL_FS_AVL_8G, 1057 .value = 0x03, 1058 .gain = IIO_G_TO_M_S_2(244), 1059 }, 1060 [4] = { 1061 .num = ST_ACCEL_FS_AVL_16G, 1062 .value = 0x04, 1063 .gain = IIO_G_TO_M_S_2(732), 1064 }, 1065 }, 1066 }, 1067 .bdu = { 1068 .addr = 0x20, 1069 .mask = BIT(3), 1070 }, 1071 .drdy_irq = { 1072 .int1 = { 1073 .addr = 0x22, 1074 .mask = BIT(2), 1075 }, 1076 .int2 = { 1077 .addr = 0x23, 1078 .mask = BIT(3), 1079 }, 1080 .stat_drdy = { 1081 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 1082 .mask = GENMASK(2, 0), 1083 }, 1084 }, 1085 .sim = { 1086 .addr = 0x21, 1087 .value = BIT(0), 1088 }, 1089 .multi_read_bit = true, 1090 .bootime = 2, 1091 }, 1092 { 1093 /* 1094 * Not an ST part. Register-compatible with the LIS2DH, even 1095 * though the WAI value is different. 1096 */ 1097 .wai = 0x11, 1098 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 1099 .sensors_supported = { 1100 [0] = SC7A20_ACCEL_DEV_NAME, 1101 }, 1102 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 1103 .odr = { 1104 .addr = 0x20, 1105 .mask = 0xf0, 1106 .odr_avl = { 1107 { .hz = 1, .value = 0x01, }, 1108 { .hz = 10, .value = 0x02, }, 1109 { .hz = 25, .value = 0x03, }, 1110 { .hz = 50, .value = 0x04, }, 1111 { .hz = 100, .value = 0x05, }, 1112 { .hz = 200, .value = 0x06, }, 1113 { .hz = 400, .value = 0x07, }, 1114 { .hz = 1600, .value = 0x08, }, 1115 }, 1116 }, 1117 .pw = { 1118 .addr = 0x20, 1119 .mask = 0xf0, 1120 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 1121 }, 1122 .enable_axis = { 1123 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 1124 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 1125 }, 1126 .fs = { 1127 .addr = 0x23, 1128 .mask = 0x30, 1129 .fs_avl = { 1130 [0] = { 1131 .num = ST_ACCEL_FS_AVL_2G, 1132 .value = 0x00, 1133 .gain = IIO_G_TO_M_S_2(1000), 1134 }, 1135 [1] = { 1136 .num = ST_ACCEL_FS_AVL_4G, 1137 .value = 0x01, 1138 .gain = IIO_G_TO_M_S_2(2000), 1139 }, 1140 [2] = { 1141 .num = ST_ACCEL_FS_AVL_8G, 1142 .value = 0x02, 1143 .gain = IIO_G_TO_M_S_2(4000), 1144 }, 1145 [3] = { 1146 .num = ST_ACCEL_FS_AVL_16G, 1147 .value = 0x03, 1148 .gain = IIO_G_TO_M_S_2(12000), 1149 }, 1150 }, 1151 }, 1152 .bdu = { 1153 .addr = 0x23, 1154 .mask = 0x80, 1155 }, 1156 .drdy_irq = { 1157 .int1 = { 1158 .addr = 0x22, 1159 .mask = 0x10, 1160 }, 1161 .addr_ihl = 0x25, 1162 .mask_ihl = 0x02, 1163 .stat_drdy = { 1164 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 1165 .mask = 0x07, 1166 }, 1167 }, 1168 .sim = { 1169 .addr = 0x23, 1170 .value = BIT(0), 1171 }, 1172 .multi_read_bit = true, 1173 .bootime = 2, 1174 }, 1175 }; 1176 1177 /* Default accel DRDY is available on INT1 pin */ 1178 static const struct st_sensors_platform_data default_accel_pdata = { 1179 .drdy_int_pin = 1, 1180 }; 1181 1182 static int st_accel_read_raw(struct iio_dev *indio_dev, 1183 struct iio_chan_spec const *ch, int *val, 1184 int *val2, long mask) 1185 { 1186 int err; 1187 struct st_sensor_data *adata = iio_priv(indio_dev); 1188 1189 switch (mask) { 1190 case IIO_CHAN_INFO_RAW: 1191 err = st_sensors_read_info_raw(indio_dev, ch, val); 1192 if (err < 0) 1193 goto read_error; 1194 1195 return IIO_VAL_INT; 1196 case IIO_CHAN_INFO_SCALE: 1197 *val = adata->current_fullscale->gain / 1000000; 1198 *val2 = adata->current_fullscale->gain % 1000000; 1199 return IIO_VAL_INT_PLUS_MICRO; 1200 case IIO_CHAN_INFO_SAMP_FREQ: 1201 *val = adata->odr; 1202 return IIO_VAL_INT; 1203 default: 1204 return -EINVAL; 1205 } 1206 1207 read_error: 1208 return err; 1209 } 1210 1211 static int st_accel_write_raw(struct iio_dev *indio_dev, 1212 struct iio_chan_spec const *chan, int val, int val2, long mask) 1213 { 1214 switch (mask) { 1215 case IIO_CHAN_INFO_SCALE: { 1216 int gain; 1217 1218 gain = val * 1000000 + val2; 1219 return st_sensors_set_fullscale_by_gain(indio_dev, gain); 1220 } 1221 case IIO_CHAN_INFO_SAMP_FREQ: 1222 if (val2) 1223 return -EINVAL; 1224 1225 return st_sensors_set_odr(indio_dev, val); 1226 default: 1227 return -EINVAL; 1228 } 1229 } 1230 1231 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); 1232 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available); 1233 1234 static struct attribute *st_accel_attributes[] = { 1235 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 1236 &iio_dev_attr_in_accel_scale_available.dev_attr.attr, 1237 NULL, 1238 }; 1239 1240 static const struct attribute_group st_accel_attribute_group = { 1241 .attrs = st_accel_attributes, 1242 }; 1243 1244 static const struct iio_info accel_info = { 1245 .attrs = &st_accel_attribute_group, 1246 .read_raw = &st_accel_read_raw, 1247 .write_raw = &st_accel_write_raw, 1248 .debugfs_reg_access = &st_sensors_debugfs_reg_access, 1249 }; 1250 1251 #ifdef CONFIG_IIO_TRIGGER 1252 static const struct iio_trigger_ops st_accel_trigger_ops = { 1253 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE, 1254 .validate_device = st_sensors_validate_device, 1255 }; 1256 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops) 1257 #else 1258 #define ST_ACCEL_TRIGGER_OPS NULL 1259 #endif 1260 1261 #ifdef CONFIG_ACPI 1262 /* Read ST-specific _ONT orientation data from ACPI and generate an 1263 * appropriate mount matrix. 1264 */ 1265 static int apply_acpi_orientation(struct iio_dev *indio_dev) 1266 { 1267 struct st_sensor_data *adata = iio_priv(indio_dev); 1268 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 1269 struct acpi_device *adev; 1270 union acpi_object *ont; 1271 union acpi_object *elements; 1272 acpi_status status; 1273 int ret = -EINVAL; 1274 unsigned int val; 1275 int i, j; 1276 int final_ont[3][3] = { { 0 }, }; 1277 1278 /* For some reason, ST's _ONT translation does not apply directly 1279 * to the data read from the sensor. Another translation must be 1280 * performed first, as described by the matrix below. Perhaps 1281 * ST required this specific translation for the first product 1282 * where the device was mounted? 1283 */ 1284 const int default_ont[3][3] = { 1285 { 0, 1, 0 }, 1286 { -1, 0, 0 }, 1287 { 0, 0, -1 }, 1288 }; 1289 1290 1291 adev = ACPI_COMPANION(indio_dev->dev.parent); 1292 if (!adev) 1293 return 0; 1294 1295 /* Read _ONT data, which should be a package of 6 integers. */ 1296 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer); 1297 if (status == AE_NOT_FOUND) { 1298 return 0; 1299 } else if (ACPI_FAILURE(status)) { 1300 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n", 1301 status); 1302 return status; 1303 } 1304 1305 ont = buffer.pointer; 1306 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6) 1307 goto out; 1308 1309 /* The first 3 integers provide axis order information. 1310 * e.g. 0 1 2 would indicate normal X,Y,Z ordering. 1311 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z. 1312 */ 1313 elements = ont->package.elements; 1314 for (i = 0; i < 3; i++) { 1315 if (elements[i].type != ACPI_TYPE_INTEGER) 1316 goto out; 1317 1318 val = elements[i].integer.value; 1319 if (val > 2) 1320 goto out; 1321 1322 /* Avoiding full matrix multiplication, we simply reorder the 1323 * columns in the default_ont matrix according to the 1324 * ordering provided by _ONT. 1325 */ 1326 final_ont[0][i] = default_ont[0][val]; 1327 final_ont[1][i] = default_ont[1][val]; 1328 final_ont[2][i] = default_ont[2][val]; 1329 } 1330 1331 /* The final 3 integers provide sign flip information. 1332 * 0 means no change, 1 means flip. 1333 * e.g. 0 0 1 means that Z data should be sign-flipped. 1334 * This is applied after the axis reordering from above. 1335 */ 1336 elements += 3; 1337 for (i = 0; i < 3; i++) { 1338 if (elements[i].type != ACPI_TYPE_INTEGER) 1339 goto out; 1340 1341 val = elements[i].integer.value; 1342 if (val != 0 && val != 1) 1343 goto out; 1344 if (!val) 1345 continue; 1346 1347 /* Flip the values in the indicated column */ 1348 final_ont[0][i] *= -1; 1349 final_ont[1][i] *= -1; 1350 final_ont[2][i] *= -1; 1351 } 1352 1353 /* Convert our integer matrix to a string-based iio_mount_matrix */ 1354 for (i = 0; i < 3; i++) { 1355 for (j = 0; j < 3; j++) { 1356 int matrix_val = final_ont[i][j]; 1357 char *str_value; 1358 1359 switch (matrix_val) { 1360 case -1: 1361 str_value = "-1"; 1362 break; 1363 case 0: 1364 str_value = "0"; 1365 break; 1366 case 1: 1367 str_value = "1"; 1368 break; 1369 default: 1370 goto out; 1371 } 1372 adata->mount_matrix.rotation[i * 3 + j] = str_value; 1373 } 1374 } 1375 1376 ret = 0; 1377 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n"); 1378 1379 out: 1380 kfree(buffer.pointer); 1381 if (ret) 1382 dev_dbg(&indio_dev->dev, 1383 "failed to apply ACPI orientation data: %d\n", ret); 1384 1385 return ret; 1386 } 1387 #else /* !CONFIG_ACPI */ 1388 static int apply_acpi_orientation(struct iio_dev *indio_dev) 1389 { 1390 return -EINVAL; 1391 } 1392 #endif 1393 1394 /* 1395 * st_accel_get_settings() - get sensor settings from device name 1396 * @name: device name buffer reference. 1397 * 1398 * Return: valid reference on success, NULL otherwise. 1399 */ 1400 const struct st_sensor_settings *st_accel_get_settings(const char *name) 1401 { 1402 int index = st_sensors_get_settings_index(name, 1403 st_accel_sensors_settings, 1404 ARRAY_SIZE(st_accel_sensors_settings)); 1405 if (index < 0) 1406 return NULL; 1407 1408 return &st_accel_sensors_settings[index]; 1409 } 1410 EXPORT_SYMBOL_NS(st_accel_get_settings, IIO_ST_SENSORS); 1411 1412 int st_accel_common_probe(struct iio_dev *indio_dev) 1413 { 1414 struct st_sensor_data *adata = iio_priv(indio_dev); 1415 struct device *parent = indio_dev->dev.parent; 1416 struct st_sensors_platform_data *pdata = dev_get_platdata(parent); 1417 int err; 1418 1419 indio_dev->modes = INDIO_DIRECT_MODE; 1420 indio_dev->info = &accel_info; 1421 1422 err = st_sensors_verify_id(indio_dev); 1423 if (err < 0) 1424 return err; 1425 1426 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS; 1427 indio_dev->channels = adata->sensor_settings->ch; 1428 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; 1429 1430 /* 1431 * First try specific ACPI methods to retrieve orientation then try the 1432 * generic function. 1433 */ 1434 err = apply_acpi_orientation(indio_dev); 1435 if (err) { 1436 err = iio_read_mount_matrix(parent, &adata->mount_matrix); 1437 if (err) 1438 return err; 1439 } 1440 1441 adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0]; 1442 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz; 1443 1444 if (!pdata) 1445 pdata = (struct st_sensors_platform_data *)&default_accel_pdata; 1446 1447 err = st_sensors_init_sensor(indio_dev, pdata); 1448 if (err < 0) 1449 return err; 1450 1451 err = st_accel_allocate_ring(indio_dev); 1452 if (err < 0) 1453 return err; 1454 1455 if (adata->irq > 0) { 1456 err = st_sensors_allocate_trigger(indio_dev, 1457 ST_ACCEL_TRIGGER_OPS); 1458 if (err < 0) 1459 return err; 1460 } 1461 1462 return devm_iio_device_register(parent, indio_dev); 1463 } 1464 EXPORT_SYMBOL_NS(st_accel_common_probe, IIO_ST_SENSORS); 1465 1466 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); 1467 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver"); 1468 MODULE_LICENSE("GPL v2"); 1469 MODULE_IMPORT_NS(IIO_ST_SENSORS); 1470