1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI 4 * 5 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org> 6 * 7 * See industrialio/accels/sca3000.h for comments. 8 */ 9 10 #include <linux/interrupt.h> 11 #include <linux/fs.h> 12 #include <linux/device.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/spi/spi.h> 16 #include <linux/sysfs.h> 17 #include <linux/module.h> 18 #include <linux/uaccess.h> 19 #include <linux/iio/iio.h> 20 #include <linux/iio/sysfs.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/buffer.h> 23 #include <linux/iio/kfifo_buf.h> 24 25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02) 26 #define SCA3000_READ_REG(a) ((a) << 2) 27 28 #define SCA3000_REG_REVID_ADDR 0x00 29 #define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4) 30 #define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0) 31 32 #define SCA3000_REG_STATUS_ADDR 0x02 33 #define SCA3000_LOCKED BIT(5) 34 #define SCA3000_EEPROM_CS_ERROR BIT(1) 35 #define SCA3000_SPI_FRAME_ERROR BIT(0) 36 37 /* All reads done using register decrement so no need to directly access LSBs */ 38 #define SCA3000_REG_X_MSB_ADDR 0x05 39 #define SCA3000_REG_Y_MSB_ADDR 0x07 40 #define SCA3000_REG_Z_MSB_ADDR 0x09 41 42 #define SCA3000_REG_RING_OUT_ADDR 0x0f 43 44 /* Temp read untested - the e05 doesn't have the sensor */ 45 #define SCA3000_REG_TEMP_MSB_ADDR 0x13 46 47 #define SCA3000_REG_MODE_ADDR 0x14 48 #define SCA3000_MODE_PROT_MASK 0x28 49 #define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7) 50 #define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6) 51 52 /* 53 * Free fall detection triggers an interrupt if the acceleration 54 * is below a threshold for equivalent of 25cm drop 55 */ 56 #define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4) 57 #define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00 58 #define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01 59 #define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02 60 61 /* 62 * In motion detection mode the accelerations are band pass filtered 63 * (approx 1 - 25Hz) and then a programmable threshold used to trigger 64 * and interrupt. 65 */ 66 #define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03 67 #define SCA3000_REG_MODE_MODE_MASK 0x03 68 69 #define SCA3000_REG_BUF_COUNT_ADDR 0x15 70 71 #define SCA3000_REG_INT_STATUS_ADDR 0x16 72 #define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7) 73 #define SCA3000_REG_INT_STATUS_HALF BIT(6) 74 75 #define SCA3000_INT_STATUS_FREE_FALL BIT(3) 76 #define SCA3000_INT_STATUS_Y_TRIGGER BIT(2) 77 #define SCA3000_INT_STATUS_X_TRIGGER BIT(1) 78 #define SCA3000_INT_STATUS_Z_TRIGGER BIT(0) 79 80 /* Used to allow access to multiplexed registers */ 81 #define SCA3000_REG_CTRL_SEL_ADDR 0x18 82 /* Only available for SCA3000-D03 and SCA3000-D01 */ 83 #define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01 84 #define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02 85 #define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03 86 #define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04 87 #define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05 88 /* 89 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device 90 * will not function 91 */ 92 #define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B 93 94 #define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0 95 #define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10 96 #define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08 97 #define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04 98 #define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03 99 #define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02 100 #define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01 101 102 103 /* 104 * Control which motion detector interrupts are on. 105 * For now only OR combinations are supported. 106 */ 107 #define SCA3000_MD_CTRL_PROT_MASK 0xC0 108 #define SCA3000_MD_CTRL_OR_Y BIT(0) 109 #define SCA3000_MD_CTRL_OR_X BIT(1) 110 #define SCA3000_MD_CTRL_OR_Z BIT(2) 111 /* Currently unsupported */ 112 #define SCA3000_MD_CTRL_AND_Y BIT(3) 113 #define SCA3000_MD_CTRL_AND_X BIT(4) 114 #define SCA3000_MD_CTRL_AND_Z BIT(5) 115 116 /* 117 * Some control registers of complex access methods requiring this register to 118 * be used to remove a lock. 119 */ 120 #define SCA3000_REG_UNLOCK_ADDR 0x1e 121 122 #define SCA3000_REG_INT_MASK_ADDR 0x21 123 #define SCA3000_REG_INT_MASK_PROT_MASK 0x1C 124 125 #define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7) 126 #define SCA3000_REG_INT_MASK_RING_HALF BIT(6) 127 128 #define SCA3000_REG_INT_MASK_ALL_INTS 0x02 129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01 130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00 131 /* Values of multiplexed registers (write to ctrl_data after select) */ 132 #define SCA3000_REG_CTRL_DATA_ADDR 0x22 133 134 /* 135 * Measurement modes available on some sca3000 series chips. Code assumes others 136 * may become available in the future. 137 * 138 * Bypass - Bypass the low-pass filter in the signal channel so as to increase 139 * signal bandwidth. 140 * 141 * Narrow - Narrow low-pass filtering of the signal channel and half output 142 * data rate by decimation. 143 * 144 * Wide - Widen low-pass filtering of signal channel to increase bandwidth 145 */ 146 #define SCA3000_OP_MODE_BYPASS 0x01 147 #define SCA3000_OP_MODE_NARROW 0x02 148 #define SCA3000_OP_MODE_WIDE 0x04 149 #define SCA3000_MAX_TX 6 150 #define SCA3000_MAX_RX 2 151 152 /** 153 * struct sca3000_state - device instance state information 154 * @us: the associated spi device 155 * @info: chip variant information 156 * @last_timestamp: the timestamp of the last event 157 * @mo_det_use_count: reference counter for the motion detection unit 158 * @lock: lock used to protect elements of sca3000_state 159 * and the underlying device state. 160 * @tx: dma-able transmit buffer 161 * @rx: dma-able receive buffer 162 **/ 163 struct sca3000_state { 164 struct spi_device *us; 165 const struct sca3000_chip_info *info; 166 s64 last_timestamp; 167 int mo_det_use_count; 168 struct mutex lock; 169 /* Can these share a cacheline ? */ 170 u8 rx[384] __aligned(IIO_DMA_MINALIGN); 171 u8 tx[6] __aligned(IIO_DMA_MINALIGN); 172 }; 173 174 /** 175 * struct sca3000_chip_info - model dependent parameters 176 * @scale: scale * 10^-6 177 * @temp_output: some devices have temperature sensors. 178 * @measurement_mode_freq: normal mode sampling frequency 179 * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for 180 * the normal measurement mode. 181 * @option_mode_1: first optional mode. Not all models have one 182 * @option_mode_1_freq: option mode 1 sampling frequency 183 * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for 184 * the first option mode. 185 * @option_mode_2: second optional mode. Not all chips have one 186 * @option_mode_2_freq: option mode 2 sampling frequency 187 * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for 188 * the second option mode. 189 * @mot_det_mult_xz: Bit wise multipliers to calculate the threshold 190 * for motion detection in the x and z axis. 191 * @mot_det_mult_y: Bit wise multipliers to calculate the threshold 192 * for motion detection in the y axis. 193 * 194 * This structure is used to hold information about the functionality of a given 195 * sca3000 variant. 196 **/ 197 struct sca3000_chip_info { 198 unsigned int scale; 199 bool temp_output; 200 int measurement_mode_freq; 201 int measurement_mode_3db_freq; 202 int option_mode_1; 203 int option_mode_1_freq; 204 int option_mode_1_3db_freq; 205 int option_mode_2; 206 int option_mode_2_freq; 207 int option_mode_2_3db_freq; 208 int mot_det_mult_xz[6]; 209 int mot_det_mult_y[7]; 210 }; 211 212 enum sca3000_variant { 213 d01, 214 e02, 215 e04, 216 e05, 217 }; 218 219 /* 220 * Note where option modes are not defined, the chip simply does not 221 * support any. 222 * Other chips in the sca3000 series use i2c and are not included here. 223 * 224 * Some of these devices are only listed in the family data sheet and 225 * do not actually appear to be available. 226 */ 227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = { 228 [d01] = { 229 .scale = 7357, 230 .temp_output = true, 231 .measurement_mode_freq = 250, 232 .measurement_mode_3db_freq = 45, 233 .option_mode_1 = SCA3000_OP_MODE_BYPASS, 234 .option_mode_1_freq = 250, 235 .option_mode_1_3db_freq = 70, 236 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300}, 237 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750}, 238 }, 239 [e02] = { 240 .scale = 9810, 241 .measurement_mode_freq = 125, 242 .measurement_mode_3db_freq = 40, 243 .option_mode_1 = SCA3000_OP_MODE_NARROW, 244 .option_mode_1_freq = 63, 245 .option_mode_1_3db_freq = 11, 246 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050}, 247 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700}, 248 }, 249 [e04] = { 250 .scale = 19620, 251 .measurement_mode_freq = 100, 252 .measurement_mode_3db_freq = 38, 253 .option_mode_1 = SCA3000_OP_MODE_NARROW, 254 .option_mode_1_freq = 50, 255 .option_mode_1_3db_freq = 9, 256 .option_mode_2 = SCA3000_OP_MODE_WIDE, 257 .option_mode_2_freq = 400, 258 .option_mode_2_3db_freq = 70, 259 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100}, 260 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000}, 261 }, 262 [e05] = { 263 .scale = 61313, 264 .measurement_mode_freq = 200, 265 .measurement_mode_3db_freq = 60, 266 .option_mode_1 = SCA3000_OP_MODE_NARROW, 267 .option_mode_1_freq = 50, 268 .option_mode_1_3db_freq = 9, 269 .option_mode_2 = SCA3000_OP_MODE_WIDE, 270 .option_mode_2_freq = 400, 271 .option_mode_2_3db_freq = 75, 272 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900}, 273 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600}, 274 }, 275 }; 276 277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val) 278 { 279 st->tx[0] = SCA3000_WRITE_REG(address); 280 st->tx[1] = val; 281 return spi_write(st->us, st->tx, 2); 282 } 283 284 static int sca3000_read_data_short(struct sca3000_state *st, 285 u8 reg_address_high, 286 int len) 287 { 288 struct spi_transfer xfer[2] = { 289 { 290 .len = 1, 291 .tx_buf = st->tx, 292 }, { 293 .len = len, 294 .rx_buf = st->rx, 295 } 296 }; 297 st->tx[0] = SCA3000_READ_REG(reg_address_high); 298 299 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 300 } 301 302 /** 303 * sca3000_reg_lock_on() - test if the ctrl register lock is on 304 * @st: Driver specific device instance data. 305 * 306 * Lock must be held. 307 **/ 308 static int sca3000_reg_lock_on(struct sca3000_state *st) 309 { 310 int ret; 311 312 ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1); 313 if (ret < 0) 314 return ret; 315 316 return !(st->rx[0] & SCA3000_LOCKED); 317 } 318 319 /** 320 * __sca3000_unlock_reg_lock() - unlock the control registers 321 * @st: Driver specific device instance data. 322 * 323 * Note the device does not appear to support doing this in a single transfer. 324 * This should only ever be used as part of ctrl reg read. 325 * Lock must be held before calling this 326 */ 327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st) 328 { 329 struct spi_transfer xfer[3] = { 330 { 331 .len = 2, 332 .cs_change = 1, 333 .tx_buf = st->tx, 334 }, { 335 .len = 2, 336 .cs_change = 1, 337 .tx_buf = st->tx + 2, 338 }, { 339 .len = 2, 340 .tx_buf = st->tx + 4, 341 }, 342 }; 343 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 344 st->tx[1] = 0x00; 345 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 346 st->tx[3] = 0x50; 347 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 348 st->tx[5] = 0xA0; 349 350 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 351 } 352 353 /** 354 * sca3000_write_ctrl_reg() - write to a lock protect ctrl register 355 * @st: Driver specific device instance data. 356 * @sel: selects which registers we wish to write to 357 * @val: the value to be written 358 * 359 * Certain control registers are protected against overwriting by the lock 360 * register and use a shared write address. This function allows writing of 361 * these registers. 362 * Lock must be held. 363 */ 364 static int sca3000_write_ctrl_reg(struct sca3000_state *st, 365 u8 sel, 366 uint8_t val) 367 { 368 int ret; 369 370 ret = sca3000_reg_lock_on(st); 371 if (ret < 0) 372 goto error_ret; 373 if (ret) { 374 ret = __sca3000_unlock_reg_lock(st); 375 if (ret) 376 goto error_ret; 377 } 378 379 /* Set the control select register */ 380 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel); 381 if (ret) 382 goto error_ret; 383 384 /* Write the actual value into the register */ 385 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val); 386 387 error_ret: 388 return ret; 389 } 390 391 /** 392 * sca3000_read_ctrl_reg() - read from lock protected control register. 393 * @st: Driver specific device instance data. 394 * @ctrl_reg: Which ctrl register do we want to read. 395 * 396 * Lock must be held. 397 */ 398 static int sca3000_read_ctrl_reg(struct sca3000_state *st, 399 u8 ctrl_reg) 400 { 401 int ret; 402 403 ret = sca3000_reg_lock_on(st); 404 if (ret < 0) 405 goto error_ret; 406 if (ret) { 407 ret = __sca3000_unlock_reg_lock(st); 408 if (ret) 409 goto error_ret; 410 } 411 /* Set the control select register */ 412 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg); 413 if (ret) 414 goto error_ret; 415 ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1); 416 if (ret) 417 goto error_ret; 418 return st->rx[0]; 419 error_ret: 420 return ret; 421 } 422 423 /** 424 * sca3000_print_rev() - sysfs interface to read the chip revision number 425 * @indio_dev: Device instance specific generic IIO data. 426 * Driver specific device instance data can be obtained via 427 * iio_priv(indio_dev) 428 */ 429 static int sca3000_print_rev(struct iio_dev *indio_dev) 430 { 431 int ret; 432 struct sca3000_state *st = iio_priv(indio_dev); 433 434 mutex_lock(&st->lock); 435 ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1); 436 if (ret < 0) 437 goto error_ret; 438 dev_info(&indio_dev->dev, 439 "sca3000 revision major=%lu, minor=%lu\n", 440 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK, 441 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK); 442 error_ret: 443 mutex_unlock(&st->lock); 444 445 return ret; 446 } 447 448 static ssize_t 449 sca3000_show_available_3db_freqs(struct device *dev, 450 struct device_attribute *attr, 451 char *buf) 452 { 453 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 454 struct sca3000_state *st = iio_priv(indio_dev); 455 int len; 456 457 len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq); 458 if (st->info->option_mode_1) 459 len += sprintf(buf + len, " %d", 460 st->info->option_mode_1_3db_freq); 461 if (st->info->option_mode_2) 462 len += sprintf(buf + len, " %d", 463 st->info->option_mode_2_3db_freq); 464 len += sprintf(buf + len, "\n"); 465 466 return len; 467 } 468 469 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, 470 S_IRUGO, sca3000_show_available_3db_freqs, 471 NULL, 0); 472 473 static const struct iio_event_spec sca3000_event = { 474 .type = IIO_EV_TYPE_MAG, 475 .dir = IIO_EV_DIR_RISING, 476 .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), 477 }; 478 479 /* 480 * Note the hack in the number of bits to pretend we have 2 more than 481 * we do in the fifo. 482 */ 483 #define SCA3000_CHAN(index, mod) \ 484 { \ 485 .type = IIO_ACCEL, \ 486 .modified = 1, \ 487 .channel2 = mod, \ 488 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 489 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\ 490 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\ 491 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 492 .address = index, \ 493 .scan_index = index, \ 494 .scan_type = { \ 495 .sign = 's', \ 496 .realbits = 13, \ 497 .storagebits = 16, \ 498 .shift = 3, \ 499 .endianness = IIO_BE, \ 500 }, \ 501 .event_spec = &sca3000_event, \ 502 .num_event_specs = 1, \ 503 } 504 505 static const struct iio_event_spec sca3000_freefall_event_spec = { 506 .type = IIO_EV_TYPE_MAG, 507 .dir = IIO_EV_DIR_FALLING, 508 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 509 BIT(IIO_EV_INFO_PERIOD), 510 }; 511 512 static const struct iio_chan_spec sca3000_channels[] = { 513 SCA3000_CHAN(0, IIO_MOD_X), 514 SCA3000_CHAN(1, IIO_MOD_Y), 515 SCA3000_CHAN(2, IIO_MOD_Z), 516 { 517 .type = IIO_ACCEL, 518 .modified = 1, 519 .channel2 = IIO_MOD_X_AND_Y_AND_Z, 520 .scan_index = -1, /* Fake channel */ 521 .event_spec = &sca3000_freefall_event_spec, 522 .num_event_specs = 1, 523 }, 524 }; 525 526 static const struct iio_chan_spec sca3000_channels_with_temp[] = { 527 SCA3000_CHAN(0, IIO_MOD_X), 528 SCA3000_CHAN(1, IIO_MOD_Y), 529 SCA3000_CHAN(2, IIO_MOD_Z), 530 { 531 .type = IIO_TEMP, 532 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 533 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | 534 BIT(IIO_CHAN_INFO_OFFSET), 535 /* No buffer support */ 536 .scan_index = -1, 537 .scan_type = { 538 .sign = 'u', 539 .realbits = 9, 540 .storagebits = 16, 541 .shift = 5, 542 .endianness = IIO_BE, 543 }, 544 }, 545 { 546 .type = IIO_ACCEL, 547 .modified = 1, 548 .channel2 = IIO_MOD_X_AND_Y_AND_Z, 549 .scan_index = -1, /* Fake channel */ 550 .event_spec = &sca3000_freefall_event_spec, 551 .num_event_specs = 1, 552 }, 553 }; 554 555 static u8 sca3000_addresses[3][3] = { 556 [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH, 557 SCA3000_MD_CTRL_OR_X}, 558 [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH, 559 SCA3000_MD_CTRL_OR_Y}, 560 [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH, 561 SCA3000_MD_CTRL_OR_Z}, 562 }; 563 564 /** 565 * __sca3000_get_base_freq() - obtain mode specific base frequency 566 * @st: Private driver specific device instance specific state. 567 * @info: chip type specific information. 568 * @base_freq: Base frequency for the current measurement mode. 569 * 570 * lock must be held 571 */ 572 static inline int __sca3000_get_base_freq(struct sca3000_state *st, 573 const struct sca3000_chip_info *info, 574 int *base_freq) 575 { 576 int ret; 577 578 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 579 if (ret) 580 goto error_ret; 581 switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) { 582 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 583 *base_freq = info->measurement_mode_freq; 584 break; 585 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 586 *base_freq = info->option_mode_1_freq; 587 break; 588 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 589 *base_freq = info->option_mode_2_freq; 590 break; 591 default: 592 ret = -EINVAL; 593 } 594 error_ret: 595 return ret; 596 } 597 598 /** 599 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ 600 * @st: Private driver specific device instance specific state. 601 * @val: The frequency read back. 602 * 603 * lock must be held 604 **/ 605 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val) 606 { 607 int ret; 608 609 ret = __sca3000_get_base_freq(st, st->info, val); 610 if (ret) 611 return ret; 612 613 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 614 if (ret < 0) 615 return ret; 616 617 if (*val > 0) { 618 ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; 619 switch (ret) { 620 case SCA3000_REG_OUT_CTRL_BUF_DIV_2: 621 *val /= 2; 622 break; 623 case SCA3000_REG_OUT_CTRL_BUF_DIV_4: 624 *val /= 4; 625 break; 626 } 627 } 628 629 return 0; 630 } 631 632 /** 633 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ 634 * @st: Private driver specific device instance specific state. 635 * @val: The frequency desired. 636 * 637 * lock must be held 638 */ 639 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val) 640 { 641 int ret, base_freq, ctrlval; 642 643 ret = __sca3000_get_base_freq(st, st->info, &base_freq); 644 if (ret) 645 return ret; 646 647 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 648 if (ret < 0) 649 return ret; 650 651 ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; 652 653 if (val == base_freq / 2) 654 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2; 655 if (val == base_freq / 4) 656 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4; 657 else if (val != base_freq) 658 return -EINVAL; 659 660 return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, 661 ctrlval); 662 } 663 664 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val) 665 { 666 int ret; 667 668 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 669 if (ret) 670 return ret; 671 672 /* mask bottom 2 bits - only ones that are relevant */ 673 st->rx[0] &= SCA3000_REG_MODE_MODE_MASK; 674 switch (st->rx[0]) { 675 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 676 *val = st->info->measurement_mode_3db_freq; 677 return IIO_VAL_INT; 678 case SCA3000_REG_MODE_MEAS_MODE_MOT_DET: 679 return -EBUSY; 680 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 681 *val = st->info->option_mode_1_3db_freq; 682 return IIO_VAL_INT; 683 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 684 *val = st->info->option_mode_2_3db_freq; 685 return IIO_VAL_INT; 686 default: 687 return -EINVAL; 688 } 689 } 690 691 static int sca3000_write_3db_freq(struct sca3000_state *st, int val) 692 { 693 int ret; 694 int mode; 695 696 if (val == st->info->measurement_mode_3db_freq) 697 mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL; 698 else if (st->info->option_mode_1 && 699 (val == st->info->option_mode_1_3db_freq)) 700 mode = SCA3000_REG_MODE_MEAS_MODE_OP_1; 701 else if (st->info->option_mode_2 && 702 (val == st->info->option_mode_2_3db_freq)) 703 mode = SCA3000_REG_MODE_MEAS_MODE_OP_2; 704 else 705 return -EINVAL; 706 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 707 if (ret) 708 return ret; 709 710 st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK; 711 st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK); 712 713 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]); 714 } 715 716 static int sca3000_read_raw(struct iio_dev *indio_dev, 717 struct iio_chan_spec const *chan, 718 int *val, 719 int *val2, 720 long mask) 721 { 722 struct sca3000_state *st = iio_priv(indio_dev); 723 int ret; 724 u8 address; 725 726 switch (mask) { 727 case IIO_CHAN_INFO_RAW: 728 mutex_lock(&st->lock); 729 if (chan->type == IIO_ACCEL) { 730 if (st->mo_det_use_count) { 731 mutex_unlock(&st->lock); 732 return -EBUSY; 733 } 734 address = sca3000_addresses[chan->address][0]; 735 ret = sca3000_read_data_short(st, address, 2); 736 if (ret < 0) { 737 mutex_unlock(&st->lock); 738 return ret; 739 } 740 *val = sign_extend32(be16_to_cpup((__be16 *)st->rx) >> 741 chan->scan_type.shift, 742 chan->scan_type.realbits - 1); 743 } else { 744 /* get the temperature when available */ 745 ret = sca3000_read_data_short(st, 746 SCA3000_REG_TEMP_MSB_ADDR, 747 2); 748 if (ret < 0) { 749 mutex_unlock(&st->lock); 750 return ret; 751 } 752 *val = (be16_to_cpup((__be16 *)st->rx) >> 753 chan->scan_type.shift) & 754 GENMASK(chan->scan_type.realbits - 1, 0); 755 } 756 mutex_unlock(&st->lock); 757 return IIO_VAL_INT; 758 case IIO_CHAN_INFO_SCALE: 759 *val = 0; 760 if (chan->type == IIO_ACCEL) 761 *val2 = st->info->scale; 762 else /* temperature */ 763 *val2 = 555556; 764 return IIO_VAL_INT_PLUS_MICRO; 765 case IIO_CHAN_INFO_OFFSET: 766 *val = -214; 767 *val2 = 600000; 768 return IIO_VAL_INT_PLUS_MICRO; 769 case IIO_CHAN_INFO_SAMP_FREQ: 770 mutex_lock(&st->lock); 771 ret = sca3000_read_raw_samp_freq(st, val); 772 mutex_unlock(&st->lock); 773 return ret ? ret : IIO_VAL_INT; 774 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 775 mutex_lock(&st->lock); 776 ret = sca3000_read_3db_freq(st, val); 777 mutex_unlock(&st->lock); 778 return ret; 779 default: 780 return -EINVAL; 781 } 782 } 783 784 static int sca3000_write_raw(struct iio_dev *indio_dev, 785 struct iio_chan_spec const *chan, 786 int val, int val2, long mask) 787 { 788 struct sca3000_state *st = iio_priv(indio_dev); 789 int ret; 790 791 switch (mask) { 792 case IIO_CHAN_INFO_SAMP_FREQ: 793 if (val2) 794 return -EINVAL; 795 mutex_lock(&st->lock); 796 ret = sca3000_write_raw_samp_freq(st, val); 797 mutex_unlock(&st->lock); 798 return ret; 799 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 800 if (val2) 801 return -EINVAL; 802 mutex_lock(&st->lock); 803 ret = sca3000_write_3db_freq(st, val); 804 mutex_unlock(&st->lock); 805 return ret; 806 default: 807 return -EINVAL; 808 } 809 810 return ret; 811 } 812 813 /** 814 * sca3000_read_av_freq() - sysfs function to get available frequencies 815 * @dev: Device structure for this device. 816 * @attr: Description of the attribute. 817 * @buf: Incoming string 818 * 819 * The later modes are only relevant to the ring buffer - and depend on current 820 * mode. Note that data sheet gives rather wide tolerances for these so integer 821 * division will give good enough answer and not all chips have them specified 822 * at all. 823 **/ 824 static ssize_t sca3000_read_av_freq(struct device *dev, 825 struct device_attribute *attr, 826 char *buf) 827 { 828 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 829 struct sca3000_state *st = iio_priv(indio_dev); 830 int len = 0, ret, val; 831 832 mutex_lock(&st->lock); 833 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 834 val = st->rx[0]; 835 mutex_unlock(&st->lock); 836 if (ret) 837 goto error_ret; 838 839 switch (val & SCA3000_REG_MODE_MODE_MASK) { 840 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 841 len += sprintf(buf + len, "%d %d %d\n", 842 st->info->measurement_mode_freq, 843 st->info->measurement_mode_freq / 2, 844 st->info->measurement_mode_freq / 4); 845 break; 846 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 847 len += sprintf(buf + len, "%d %d %d\n", 848 st->info->option_mode_1_freq, 849 st->info->option_mode_1_freq / 2, 850 st->info->option_mode_1_freq / 4); 851 break; 852 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 853 len += sprintf(buf + len, "%d %d %d\n", 854 st->info->option_mode_2_freq, 855 st->info->option_mode_2_freq / 2, 856 st->info->option_mode_2_freq / 4); 857 break; 858 } 859 return len; 860 error_ret: 861 return ret; 862 } 863 864 /* 865 * Should only really be registered if ring buffer support is compiled in. 866 * Does no harm however and doing it right would add a fair bit of complexity 867 */ 868 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq); 869 870 /* 871 * sca3000_read_event_value() - query of a threshold or period 872 */ 873 static int sca3000_read_event_value(struct iio_dev *indio_dev, 874 const struct iio_chan_spec *chan, 875 enum iio_event_type type, 876 enum iio_event_direction dir, 877 enum iio_event_info info, 878 int *val, int *val2) 879 { 880 struct sca3000_state *st = iio_priv(indio_dev); 881 long ret; 882 int i; 883 884 switch (info) { 885 case IIO_EV_INFO_VALUE: 886 mutex_lock(&st->lock); 887 ret = sca3000_read_ctrl_reg(st, 888 sca3000_addresses[chan->address][1]); 889 mutex_unlock(&st->lock); 890 if (ret < 0) 891 return ret; 892 *val = 0; 893 if (chan->channel2 == IIO_MOD_Y) 894 for_each_set_bit(i, &ret, 895 ARRAY_SIZE(st->info->mot_det_mult_y)) 896 *val += st->info->mot_det_mult_y[i]; 897 else 898 for_each_set_bit(i, &ret, 899 ARRAY_SIZE(st->info->mot_det_mult_xz)) 900 *val += st->info->mot_det_mult_xz[i]; 901 902 return IIO_VAL_INT; 903 case IIO_EV_INFO_PERIOD: 904 *val = 0; 905 *val2 = 226000; 906 return IIO_VAL_INT_PLUS_MICRO; 907 default: 908 return -EINVAL; 909 } 910 } 911 912 /** 913 * sca3000_write_event_value() - control of threshold and period 914 * @indio_dev: Device instance specific IIO information. 915 * @chan: Description of the channel for which the event is being 916 * configured. 917 * @type: The type of event being configured, here magnitude rising 918 * as everything else is read only. 919 * @dir: Direction of the event (here rising) 920 * @info: What information about the event are we configuring. 921 * Here the threshold only. 922 * @val: Integer part of the value being written.. 923 * @val2: Non integer part of the value being written. Here always 0. 924 */ 925 static int sca3000_write_event_value(struct iio_dev *indio_dev, 926 const struct iio_chan_spec *chan, 927 enum iio_event_type type, 928 enum iio_event_direction dir, 929 enum iio_event_info info, 930 int val, int val2) 931 { 932 struct sca3000_state *st = iio_priv(indio_dev); 933 int ret; 934 int i; 935 u8 nonlinear = 0; 936 937 if (chan->channel2 == IIO_MOD_Y) { 938 i = ARRAY_SIZE(st->info->mot_det_mult_y); 939 while (i > 0) 940 if (val >= st->info->mot_det_mult_y[--i]) { 941 nonlinear |= (1 << i); 942 val -= st->info->mot_det_mult_y[i]; 943 } 944 } else { 945 i = ARRAY_SIZE(st->info->mot_det_mult_xz); 946 while (i > 0) 947 if (val >= st->info->mot_det_mult_xz[--i]) { 948 nonlinear |= (1 << i); 949 val -= st->info->mot_det_mult_xz[i]; 950 } 951 } 952 953 mutex_lock(&st->lock); 954 ret = sca3000_write_ctrl_reg(st, 955 sca3000_addresses[chan->address][1], 956 nonlinear); 957 mutex_unlock(&st->lock); 958 959 return ret; 960 } 961 962 static struct attribute *sca3000_attributes[] = { 963 &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, 964 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 965 NULL, 966 }; 967 968 static const struct attribute_group sca3000_attribute_group = { 969 .attrs = sca3000_attributes, 970 }; 971 972 static int sca3000_read_data(struct sca3000_state *st, 973 u8 reg_address_high, 974 u8 *rx, 975 int len) 976 { 977 int ret; 978 struct spi_transfer xfer[2] = { 979 { 980 .len = 1, 981 .tx_buf = st->tx, 982 }, { 983 .len = len, 984 .rx_buf = rx, 985 } 986 }; 987 988 st->tx[0] = SCA3000_READ_REG(reg_address_high); 989 ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 990 if (ret) { 991 dev_err(&st->us->dev, "problem reading register\n"); 992 return ret; 993 } 994 995 return 0; 996 } 997 998 /** 999 * sca3000_ring_int_process() - ring specific interrupt handling. 1000 * @val: Value of the interrupt status register. 1001 * @indio_dev: Device instance specific IIO device structure. 1002 */ 1003 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev) 1004 { 1005 struct sca3000_state *st = iio_priv(indio_dev); 1006 int ret, i, num_available; 1007 1008 mutex_lock(&st->lock); 1009 1010 if (val & SCA3000_REG_INT_STATUS_HALF) { 1011 ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR, 1012 1); 1013 if (ret) 1014 goto error_ret; 1015 num_available = st->rx[0]; 1016 /* 1017 * num_available is the total number of samples available 1018 * i.e. number of time points * number of channels. 1019 */ 1020 ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx, 1021 num_available * 2); 1022 if (ret) 1023 goto error_ret; 1024 for (i = 0; i < num_available / 3; i++) { 1025 /* 1026 * Dirty hack to cover for 11 bit in fifo, 13 bit 1027 * direct reading. 1028 * 1029 * In theory the bottom two bits are undefined. 1030 * In reality they appear to always be 0. 1031 */ 1032 iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2); 1033 } 1034 } 1035 error_ret: 1036 mutex_unlock(&st->lock); 1037 } 1038 1039 /** 1040 * sca3000_event_handler() - handling ring and non ring events 1041 * @irq: The irq being handled. 1042 * @private: struct iio_device pointer for the device. 1043 * 1044 * Ring related interrupt handler. Depending on event, push to 1045 * the ring buffer event chrdev or the event one. 1046 * 1047 * This function is complicated by the fact that the devices can signify ring 1048 * and non ring events via the same interrupt line and they can only 1049 * be distinguished via a read of the relevant status register. 1050 */ 1051 static irqreturn_t sca3000_event_handler(int irq, void *private) 1052 { 1053 struct iio_dev *indio_dev = private; 1054 struct sca3000_state *st = iio_priv(indio_dev); 1055 int ret, val; 1056 s64 last_timestamp = iio_get_time_ns(indio_dev); 1057 1058 /* 1059 * Could lead if badly timed to an extra read of status reg, 1060 * but ensures no interrupt is missed. 1061 */ 1062 mutex_lock(&st->lock); 1063 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); 1064 val = st->rx[0]; 1065 mutex_unlock(&st->lock); 1066 if (ret) 1067 goto done; 1068 1069 sca3000_ring_int_process(val, indio_dev); 1070 1071 if (val & SCA3000_INT_STATUS_FREE_FALL) 1072 iio_push_event(indio_dev, 1073 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1074 0, 1075 IIO_MOD_X_AND_Y_AND_Z, 1076 IIO_EV_TYPE_MAG, 1077 IIO_EV_DIR_FALLING), 1078 last_timestamp); 1079 1080 if (val & SCA3000_INT_STATUS_Y_TRIGGER) 1081 iio_push_event(indio_dev, 1082 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1083 0, 1084 IIO_MOD_Y, 1085 IIO_EV_TYPE_MAG, 1086 IIO_EV_DIR_RISING), 1087 last_timestamp); 1088 1089 if (val & SCA3000_INT_STATUS_X_TRIGGER) 1090 iio_push_event(indio_dev, 1091 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1092 0, 1093 IIO_MOD_X, 1094 IIO_EV_TYPE_MAG, 1095 IIO_EV_DIR_RISING), 1096 last_timestamp); 1097 1098 if (val & SCA3000_INT_STATUS_Z_TRIGGER) 1099 iio_push_event(indio_dev, 1100 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1101 0, 1102 IIO_MOD_Z, 1103 IIO_EV_TYPE_MAG, 1104 IIO_EV_DIR_RISING), 1105 last_timestamp); 1106 1107 done: 1108 return IRQ_HANDLED; 1109 } 1110 1111 /* 1112 * sca3000_read_event_config() what events are enabled 1113 */ 1114 static int sca3000_read_event_config(struct iio_dev *indio_dev, 1115 const struct iio_chan_spec *chan, 1116 enum iio_event_type type, 1117 enum iio_event_direction dir) 1118 { 1119 struct sca3000_state *st = iio_priv(indio_dev); 1120 int ret; 1121 /* read current value of mode register */ 1122 mutex_lock(&st->lock); 1123 1124 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1125 if (ret) 1126 goto error_ret; 1127 1128 switch (chan->channel2) { 1129 case IIO_MOD_X_AND_Y_AND_Z: 1130 ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT); 1131 break; 1132 case IIO_MOD_X: 1133 case IIO_MOD_Y: 1134 case IIO_MOD_Z: 1135 /* 1136 * Motion detection mode cannot run at the same time as 1137 * acceleration data being read. 1138 */ 1139 if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1140 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) { 1141 ret = 0; 1142 } else { 1143 ret = sca3000_read_ctrl_reg(st, 1144 SCA3000_REG_CTRL_SEL_MD_CTRL); 1145 if (ret < 0) 1146 goto error_ret; 1147 /* only supporting logical or's for now */ 1148 ret = !!(ret & sca3000_addresses[chan->address][2]); 1149 } 1150 break; 1151 default: 1152 ret = -EINVAL; 1153 } 1154 1155 error_ret: 1156 mutex_unlock(&st->lock); 1157 1158 return ret; 1159 } 1160 1161 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, bool state) 1162 { 1163 struct sca3000_state *st = iio_priv(indio_dev); 1164 int ret; 1165 1166 /* read current value of mode register */ 1167 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1168 if (ret) 1169 return ret; 1170 1171 /* if off and should be on */ 1172 if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) 1173 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1174 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT); 1175 /* if on and should be off */ 1176 else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) 1177 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1178 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT); 1179 else 1180 return 0; 1181 } 1182 1183 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis, 1184 bool state) 1185 { 1186 struct sca3000_state *st = iio_priv(indio_dev); 1187 int ret, ctrlval; 1188 1189 /* 1190 * First read the motion detector config to find out if 1191 * this axis is on 1192 */ 1193 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); 1194 if (ret < 0) 1195 return ret; 1196 ctrlval = ret; 1197 /* if off and should be on */ 1198 if (state && !(ctrlval & sca3000_addresses[axis][2])) { 1199 ret = sca3000_write_ctrl_reg(st, 1200 SCA3000_REG_CTRL_SEL_MD_CTRL, 1201 ctrlval | 1202 sca3000_addresses[axis][2]); 1203 if (ret) 1204 return ret; 1205 st->mo_det_use_count++; 1206 } else if (!state && (ctrlval & sca3000_addresses[axis][2])) { 1207 ret = sca3000_write_ctrl_reg(st, 1208 SCA3000_REG_CTRL_SEL_MD_CTRL, 1209 ctrlval & 1210 ~(sca3000_addresses[axis][2])); 1211 if (ret) 1212 return ret; 1213 st->mo_det_use_count--; 1214 } 1215 1216 /* read current value of mode register */ 1217 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1218 if (ret) 1219 return ret; 1220 /* if off and should be on */ 1221 if ((st->mo_det_use_count) && 1222 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1223 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) 1224 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1225 (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK) 1226 | SCA3000_REG_MODE_MEAS_MODE_MOT_DET); 1227 /* if on and should be off */ 1228 else if (!(st->mo_det_use_count) && 1229 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1230 == SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) 1231 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1232 st->rx[0] & SCA3000_REG_MODE_MODE_MASK); 1233 else 1234 return 0; 1235 } 1236 1237 /** 1238 * sca3000_write_event_config() - simple on off control for motion detector 1239 * @indio_dev: IIO device instance specific structure. Data specific to this 1240 * particular driver may be accessed via iio_priv(indio_dev). 1241 * @chan: Description of the channel whose event we are configuring. 1242 * @type: The type of event. 1243 * @dir: The direction of the event. 1244 * @state: Desired state of event being configured. 1245 * 1246 * This is a per axis control, but enabling any will result in the 1247 * motion detector unit being enabled. 1248 * N.B. enabling motion detector stops normal data acquisition. 1249 * There is a complexity in knowing which mode to return to when 1250 * this mode is disabled. Currently normal mode is assumed. 1251 **/ 1252 static int sca3000_write_event_config(struct iio_dev *indio_dev, 1253 const struct iio_chan_spec *chan, 1254 enum iio_event_type type, 1255 enum iio_event_direction dir, 1256 bool state) 1257 { 1258 struct sca3000_state *st = iio_priv(indio_dev); 1259 int ret; 1260 1261 mutex_lock(&st->lock); 1262 switch (chan->channel2) { 1263 case IIO_MOD_X_AND_Y_AND_Z: 1264 ret = sca3000_freefall_set_state(indio_dev, state); 1265 break; 1266 1267 case IIO_MOD_X: 1268 case IIO_MOD_Y: 1269 case IIO_MOD_Z: 1270 ret = sca3000_motion_detect_set_state(indio_dev, 1271 chan->address, 1272 state); 1273 break; 1274 default: 1275 ret = -EINVAL; 1276 break; 1277 } 1278 mutex_unlock(&st->lock); 1279 1280 return ret; 1281 } 1282 1283 static inline 1284 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state) 1285 { 1286 struct sca3000_state *st = iio_priv(indio_dev); 1287 int ret; 1288 1289 mutex_lock(&st->lock); 1290 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1291 if (ret) 1292 goto error_ret; 1293 if (state) { 1294 dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n"); 1295 ret = sca3000_write_reg(st, 1296 SCA3000_REG_MODE_ADDR, 1297 (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE)); 1298 } else 1299 ret = sca3000_write_reg(st, 1300 SCA3000_REG_MODE_ADDR, 1301 (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE)); 1302 error_ret: 1303 mutex_unlock(&st->lock); 1304 1305 return ret; 1306 } 1307 1308 /** 1309 * sca3000_hw_ring_preenable() - hw ring buffer preenable function 1310 * @indio_dev: structure representing the IIO device. Device instance 1311 * specific state can be accessed via iio_priv(indio_dev). 1312 * 1313 * Very simple enable function as the chip will allows normal reads 1314 * during ring buffer operation so as long as it is indeed running 1315 * before we notify the core, the precise ordering does not matter. 1316 */ 1317 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev) 1318 { 1319 int ret; 1320 struct sca3000_state *st = iio_priv(indio_dev); 1321 1322 mutex_lock(&st->lock); 1323 1324 /* Enable the 50% full interrupt */ 1325 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1326 if (ret) 1327 goto error_unlock; 1328 ret = sca3000_write_reg(st, 1329 SCA3000_REG_INT_MASK_ADDR, 1330 st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF); 1331 if (ret) 1332 goto error_unlock; 1333 1334 mutex_unlock(&st->lock); 1335 1336 return __sca3000_hw_ring_state_set(indio_dev, 1); 1337 1338 error_unlock: 1339 mutex_unlock(&st->lock); 1340 1341 return ret; 1342 } 1343 1344 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev) 1345 { 1346 int ret; 1347 struct sca3000_state *st = iio_priv(indio_dev); 1348 1349 ret = __sca3000_hw_ring_state_set(indio_dev, 0); 1350 if (ret) 1351 return ret; 1352 1353 /* Disable the 50% full interrupt */ 1354 mutex_lock(&st->lock); 1355 1356 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1357 if (ret) 1358 goto unlock; 1359 ret = sca3000_write_reg(st, 1360 SCA3000_REG_INT_MASK_ADDR, 1361 st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF); 1362 unlock: 1363 mutex_unlock(&st->lock); 1364 return ret; 1365 } 1366 1367 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = { 1368 .preenable = &sca3000_hw_ring_preenable, 1369 .postdisable = &sca3000_hw_ring_postdisable, 1370 }; 1371 1372 /** 1373 * sca3000_clean_setup() - get the device into a predictable state 1374 * @st: Device instance specific private data structure 1375 * 1376 * Devices use flash memory to store many of the register values 1377 * and hence can come up in somewhat unpredictable states. 1378 * Hence reset everything on driver load. 1379 */ 1380 static int sca3000_clean_setup(struct sca3000_state *st) 1381 { 1382 int ret; 1383 1384 mutex_lock(&st->lock); 1385 /* Ensure all interrupts have been acknowledged */ 1386 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); 1387 if (ret) 1388 goto error_ret; 1389 1390 /* Turn off all motion detection channels */ 1391 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); 1392 if (ret < 0) 1393 goto error_ret; 1394 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, 1395 ret & SCA3000_MD_CTRL_PROT_MASK); 1396 if (ret) 1397 goto error_ret; 1398 1399 /* Disable ring buffer */ 1400 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 1401 if (ret < 0) 1402 goto error_ret; 1403 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, 1404 (ret & SCA3000_REG_OUT_CTRL_PROT_MASK) 1405 | SCA3000_REG_OUT_CTRL_BUF_X_EN 1406 | SCA3000_REG_OUT_CTRL_BUF_Y_EN 1407 | SCA3000_REG_OUT_CTRL_BUF_Z_EN 1408 | SCA3000_REG_OUT_CTRL_BUF_DIV_4); 1409 if (ret) 1410 goto error_ret; 1411 /* Enable interrupts, relevant to mode and set up as active low */ 1412 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1413 if (ret) 1414 goto error_ret; 1415 ret = sca3000_write_reg(st, 1416 SCA3000_REG_INT_MASK_ADDR, 1417 (ret & SCA3000_REG_INT_MASK_PROT_MASK) 1418 | SCA3000_REG_INT_MASK_ACTIVE_LOW); 1419 if (ret) 1420 goto error_ret; 1421 /* 1422 * Select normal measurement mode, free fall off, ring off 1423 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5 1424 * as that occurs in one of the example on the datasheet 1425 */ 1426 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1427 if (ret) 1428 goto error_ret; 1429 ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1430 (st->rx[0] & SCA3000_MODE_PROT_MASK)); 1431 1432 error_ret: 1433 mutex_unlock(&st->lock); 1434 return ret; 1435 } 1436 1437 static const struct iio_info sca3000_info = { 1438 .attrs = &sca3000_attribute_group, 1439 .read_raw = &sca3000_read_raw, 1440 .write_raw = &sca3000_write_raw, 1441 .read_event_value = &sca3000_read_event_value, 1442 .write_event_value = &sca3000_write_event_value, 1443 .read_event_config = &sca3000_read_event_config, 1444 .write_event_config = &sca3000_write_event_config, 1445 }; 1446 1447 static int sca3000_probe(struct spi_device *spi) 1448 { 1449 int ret; 1450 struct sca3000_state *st; 1451 struct iio_dev *indio_dev; 1452 1453 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 1454 if (!indio_dev) 1455 return -ENOMEM; 1456 1457 st = iio_priv(indio_dev); 1458 spi_set_drvdata(spi, indio_dev); 1459 st->us = spi; 1460 mutex_init(&st->lock); 1461 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi) 1462 ->driver_data]; 1463 1464 indio_dev->name = spi_get_device_id(spi)->name; 1465 indio_dev->info = &sca3000_info; 1466 if (st->info->temp_output) { 1467 indio_dev->channels = sca3000_channels_with_temp; 1468 indio_dev->num_channels = 1469 ARRAY_SIZE(sca3000_channels_with_temp); 1470 } else { 1471 indio_dev->channels = sca3000_channels; 1472 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels); 1473 } 1474 indio_dev->modes = INDIO_DIRECT_MODE; 1475 1476 ret = devm_iio_kfifo_buffer_setup(&spi->dev, indio_dev, 1477 &sca3000_ring_setup_ops); 1478 if (ret) 1479 return ret; 1480 1481 if (spi->irq) { 1482 ret = request_threaded_irq(spi->irq, 1483 NULL, 1484 &sca3000_event_handler, 1485 IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 1486 "sca3000", 1487 indio_dev); 1488 if (ret) 1489 return ret; 1490 } 1491 ret = sca3000_clean_setup(st); 1492 if (ret) 1493 goto error_free_irq; 1494 1495 ret = sca3000_print_rev(indio_dev); 1496 if (ret) 1497 goto error_free_irq; 1498 1499 return iio_device_register(indio_dev); 1500 1501 error_free_irq: 1502 if (spi->irq) 1503 free_irq(spi->irq, indio_dev); 1504 1505 return ret; 1506 } 1507 1508 static int sca3000_stop_all_interrupts(struct sca3000_state *st) 1509 { 1510 int ret; 1511 1512 mutex_lock(&st->lock); 1513 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1514 if (ret) 1515 goto error_ret; 1516 ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, 1517 (st->rx[0] & 1518 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER | 1519 SCA3000_REG_INT_MASK_RING_HALF | 1520 SCA3000_REG_INT_MASK_ALL_INTS))); 1521 error_ret: 1522 mutex_unlock(&st->lock); 1523 return ret; 1524 } 1525 1526 static void sca3000_remove(struct spi_device *spi) 1527 { 1528 struct iio_dev *indio_dev = spi_get_drvdata(spi); 1529 struct sca3000_state *st = iio_priv(indio_dev); 1530 1531 iio_device_unregister(indio_dev); 1532 1533 /* Must ensure no interrupts can be generated after this! */ 1534 sca3000_stop_all_interrupts(st); 1535 if (spi->irq) 1536 free_irq(spi->irq, indio_dev); 1537 } 1538 1539 static const struct spi_device_id sca3000_id[] = { 1540 {"sca3000_d01", d01}, 1541 {"sca3000_e02", e02}, 1542 {"sca3000_e04", e04}, 1543 {"sca3000_e05", e05}, 1544 {} 1545 }; 1546 MODULE_DEVICE_TABLE(spi, sca3000_id); 1547 1548 static struct spi_driver sca3000_driver = { 1549 .driver = { 1550 .name = "sca3000", 1551 }, 1552 .probe = sca3000_probe, 1553 .remove = sca3000_remove, 1554 .id_table = sca3000_id, 1555 }; 1556 module_spi_driver(sca3000_driver); 1557 1558 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>"); 1559 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver"); 1560 MODULE_LICENSE("GPL v2"); 1561