1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MEMSensing digital 3-Axis accelerometer 4 * 5 * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for 6 * sensitivity consumer applications. It has dynamic user-selectable full 7 * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements 8 * with output data rates from 1Hz to 1000Hz. 9 * 10 * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package 11 * and is guaranteed to operate over -40C to +85C. 12 * 13 * This driver supports following MSA311 features: 14 * - IIO interface 15 * - Different power modes: NORMAL, SUSPEND 16 * - ODR (Output Data Rate) selection 17 * - Scale selection 18 * - IIO triggered buffer 19 * - NEW_DATA interrupt + trigger 20 * 21 * Below features to be done: 22 * - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL 23 * - Low Power mode 24 * 25 * Copyright (c) 2022, SberDevices. All Rights Reserved. 26 * 27 * Author: Dmitry Rokosov <ddrokosov@sberdevices.ru> 28 */ 29 30 #include <linux/i2c.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/module.h> 33 #include <linux/pm.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/regmap.h> 36 #include <linux/string_choices.h> 37 #include <linux/units.h> 38 39 #include <linux/iio/buffer.h> 40 #include <linux/iio/iio.h> 41 #include <linux/iio/sysfs.h> 42 #include <linux/iio/trigger.h> 43 #include <linux/iio/trigger_consumer.h> 44 #include <linux/iio/triggered_buffer.h> 45 46 #define MSA311_SOFT_RESET_REG 0x00 47 #define MSA311_PARTID_REG 0x01 48 #define MSA311_ACC_X_REG 0x02 49 #define MSA311_ACC_Y_REG 0x04 50 #define MSA311_ACC_Z_REG 0x06 51 #define MSA311_MOTION_INT_REG 0x09 52 #define MSA311_DATA_INT_REG 0x0A 53 #define MSA311_TAP_ACTIVE_STS_REG 0x0B 54 #define MSA311_ORIENT_STS_REG 0x0C 55 #define MSA311_RANGE_REG 0x0F 56 #define MSA311_ODR_REG 0x10 57 #define MSA311_PWR_MODE_REG 0x11 58 #define MSA311_SWAP_POLARITY_REG 0x12 59 #define MSA311_INT_SET_0_REG 0x16 60 #define MSA311_INT_SET_1_REG 0x17 61 #define MSA311_INT_MAP_0_REG 0x19 62 #define MSA311_INT_MAP_1_REG 0x1A 63 #define MSA311_INT_CONFIG_REG 0x20 64 #define MSA311_INT_LATCH_REG 0x21 65 #define MSA311_FREEFALL_DUR_REG 0x22 66 #define MSA311_FREEFALL_TH_REG 0x23 67 #define MSA311_FREEFALL_HY_REG 0x24 68 #define MSA311_ACTIVE_DUR_REG 0x27 69 #define MSA311_ACTIVE_TH_REG 0x28 70 #define MSA311_TAP_DUR_REG 0x2A 71 #define MSA311_TAP_TH_REG 0x2B 72 #define MSA311_ORIENT_HY_REG 0x2C 73 #define MSA311_Z_BLOCK_REG 0x2D 74 #define MSA311_OFFSET_X_REG 0x38 75 #define MSA311_OFFSET_Y_REG 0x39 76 #define MSA311_OFFSET_Z_REG 0x3A 77 78 enum msa311_fields { 79 /* Soft_Reset */ 80 F_SOFT_RESET_I2C, F_SOFT_RESET_SPI, 81 /* Motion_Interrupt */ 82 F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT, 83 /* Data_Interrupt */ 84 F_NEW_DATA_INT, 85 /* Tap_Active_Status */ 86 F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN, 87 F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z, 88 /* Orientation_Status */ 89 F_ORIENT_Z, F_ORIENT_X_Y, 90 /* Range */ 91 F_FS, 92 /* ODR */ 93 F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR, 94 /* Power Mode/Bandwidth */ 95 F_PWR_MODE, F_LOW_POWER_BW, 96 /* Swap_Polarity */ 97 F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP, 98 /* Int_Set_0 */ 99 F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z, 100 F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X, 101 /* Int_Set_1 */ 102 F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN, 103 /* Int_Map_0 */ 104 F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE, 105 F_INT1_FREEFALL, 106 /* Int_Map_1 */ 107 F_INT1_NEW_DATA, 108 /* Int_Config */ 109 F_INT1_OD, F_INT1_LVL, 110 /* Int_Latch */ 111 F_RESET_INT, F_LATCH_INT, 112 /* Freefall_Hy */ 113 F_FREEFALL_MODE, F_FREEFALL_HY, 114 /* Active_Dur */ 115 F_ACTIVE_DUR, 116 /* Tap_Dur */ 117 F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR, 118 /* Tap_Th */ 119 F_TAP_TH, 120 /* Orient_Hy */ 121 F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE, 122 /* Z_Block */ 123 F_Z_BLOCKING, 124 /* End of register map */ 125 F_MAX_FIELDS, 126 }; 127 128 static const struct reg_field msa311_reg_fields[] = { 129 /* Soft_Reset */ 130 [F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2), 131 [F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5), 132 /* Motion_Interrupt */ 133 [F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6), 134 [F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5), 135 [F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4), 136 [F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2), 137 [F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0), 138 /* Data_Interrupt */ 139 [F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0), 140 /* Tap_Active_Status */ 141 [F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7), 142 [F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6), 143 [F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5), 144 [F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4), 145 [F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3), 146 [F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2), 147 [F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1), 148 [F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0), 149 /* Orientation_Status */ 150 [F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6), 151 [F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5), 152 /* Range */ 153 [F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1), 154 /* ODR */ 155 [F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7), 156 [F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6), 157 [F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5), 158 [F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3), 159 /* Power Mode/Bandwidth */ 160 [F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7), 161 [F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4), 162 /* Swap_Polarity */ 163 [F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3), 164 [F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2), 165 [F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1), 166 [F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0), 167 /* Int_Set_0 */ 168 [F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6), 169 [F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5), 170 [F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4), 171 [F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2), 172 [F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1), 173 [F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0), 174 /* Int_Set_1 */ 175 [F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4), 176 [F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3), 177 /* Int_Map_0 */ 178 [F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6), 179 [F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5), 180 [F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4), 181 [F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2), 182 [F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0), 183 /* Int_Map_1 */ 184 [F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0), 185 /* Int_Config */ 186 [F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1), 187 [F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0), 188 /* Int_Latch */ 189 [F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7), 190 [F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3), 191 /* Freefall_Hy */ 192 [F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2), 193 [F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1), 194 /* Active_Dur */ 195 [F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1), 196 /* Tap_Dur */ 197 [F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7), 198 [F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6), 199 [F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2), 200 /* Tap_Th */ 201 [F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4), 202 /* Orient_Hy */ 203 [F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6), 204 [F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3), 205 [F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1), 206 /* Z_Block */ 207 [F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3), 208 }; 209 210 #define MSA311_WHO_AM_I 0x13 211 212 /* 213 * Possible Full Scale ranges 214 * 215 * Axis data is 12-bit signed value, so 216 * 217 * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580 218 * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160 219 * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320 220 * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641 221 */ 222 enum { 223 MSA311_FS_2G, 224 MSA311_FS_4G, 225 MSA311_FS_8G, 226 MSA311_FS_16G, 227 }; 228 229 struct iio_decimal_fract { 230 int integral; 231 int microfract; 232 }; 233 234 static const struct iio_decimal_fract msa311_fs_table[] = { 235 {0, 9580}, {0, 19160}, {0, 38320}, {0, 76641}, 236 }; 237 238 /* Possible Output Data Rate values */ 239 enum { 240 MSA311_ODR_1_HZ, 241 MSA311_ODR_1_95_HZ, 242 MSA311_ODR_3_9_HZ, 243 MSA311_ODR_7_81_HZ, 244 MSA311_ODR_15_63_HZ, 245 MSA311_ODR_31_25_HZ, 246 MSA311_ODR_62_5_HZ, 247 MSA311_ODR_125_HZ, 248 MSA311_ODR_250_HZ, 249 MSA311_ODR_500_HZ, 250 MSA311_ODR_1000_HZ, 251 }; 252 253 static const struct iio_decimal_fract msa311_odr_table[] = { 254 {1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000}, 255 {31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0}, 256 }; 257 258 /* All supported power modes */ 259 #define MSA311_PWR_MODE_NORMAL 0b00 260 #define MSA311_PWR_MODE_LOW 0b01 261 #define MSA311_PWR_MODE_UNKNOWN 0b10 262 #define MSA311_PWR_MODE_SUSPEND 0b11 263 static const char * const msa311_pwr_modes[] = { 264 [MSA311_PWR_MODE_NORMAL] = "normal", 265 [MSA311_PWR_MODE_LOW] = "low", 266 [MSA311_PWR_MODE_UNKNOWN] = "unknown", 267 [MSA311_PWR_MODE_SUSPEND] = "suspend", 268 }; 269 270 /* Autosuspend delay */ 271 #define MSA311_PWR_SLEEP_DELAY_MS 2000 272 273 /* Possible INT1 types and levels */ 274 enum { 275 MSA311_INT1_OD_PUSH_PULL, 276 MSA311_INT1_OD_OPEN_DRAIN, 277 }; 278 279 enum { 280 MSA311_INT1_LVL_LOW, 281 MSA311_INT1_LVL_HIGH, 282 }; 283 284 /* Latch INT modes */ 285 #define MSA311_LATCH_INT_NOT_LATCHED 0b0000 286 #define MSA311_LATCH_INT_250MS 0b0001 287 #define MSA311_LATCH_INT_500MS 0b0010 288 #define MSA311_LATCH_INT_1S 0b0011 289 #define MSA311_LATCH_INT_2S 0b0100 290 #define MSA311_LATCH_INT_4S 0b0101 291 #define MSA311_LATCH_INT_8S 0b0110 292 #define MSA311_LATCH_INT_1MS 0b1010 293 #define MSA311_LATCH_INT_2MS 0b1011 294 #define MSA311_LATCH_INT_25MS 0b1100 295 #define MSA311_LATCH_INT_50MS 0b1101 296 #define MSA311_LATCH_INT_100MS 0b1110 297 #define MSA311_LATCH_INT_LATCHED 0b0111 298 299 static const struct regmap_range msa311_readonly_registers[] = { 300 regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG), 301 }; 302 303 static const struct regmap_access_table msa311_writeable_table = { 304 .no_ranges = msa311_readonly_registers, 305 .n_no_ranges = ARRAY_SIZE(msa311_readonly_registers), 306 }; 307 308 static const struct regmap_range msa311_writeonly_registers[] = { 309 regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG), 310 }; 311 312 static const struct regmap_access_table msa311_readable_table = { 313 .no_ranges = msa311_writeonly_registers, 314 .n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers), 315 }; 316 317 static const struct regmap_range msa311_volatile_registers[] = { 318 regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG), 319 }; 320 321 static const struct regmap_access_table msa311_volatile_table = { 322 .yes_ranges = msa311_volatile_registers, 323 .n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers), 324 }; 325 326 static const struct regmap_config msa311_regmap_config = { 327 .name = "msa311", 328 .reg_bits = 8, 329 .val_bits = 8, 330 .max_register = MSA311_OFFSET_Z_REG, 331 .wr_table = &msa311_writeable_table, 332 .rd_table = &msa311_readable_table, 333 .volatile_table = &msa311_volatile_table, 334 .cache_type = REGCACHE_RBTREE, 335 }; 336 337 #define MSA311_GENMASK(field) ({ \ 338 typeof(&(msa311_reg_fields)[0]) _field; \ 339 _field = &msa311_reg_fields[(field)]; \ 340 GENMASK(_field->msb, _field->lsb); \ 341 }) 342 343 /** 344 * struct msa311_priv - MSA311 internal private state 345 * @regs: Underlying I2C bus adapter used to abstract slave 346 * register accesses 347 * @fields: Abstract objects for each registers fields access 348 * @dev: Device handler associated with appropriate bus client 349 * @lock: Protects msa311 device state between setup and data access routines 350 * (power transitions, samp_freq/scale tune, retrieving axes data, etc) 351 * @chip_name: Chip name in the format "msa311-%02x" % partid 352 * @new_data_trig: Optional NEW_DATA interrupt driven trigger used 353 * to notify external consumers a new sample is ready 354 */ 355 struct msa311_priv { 356 struct regmap *regs; 357 struct regmap_field *fields[F_MAX_FIELDS]; 358 359 struct device *dev; 360 struct mutex lock; 361 char *chip_name; 362 363 struct iio_trigger *new_data_trig; 364 }; 365 366 enum msa311_si { 367 MSA311_SI_X, 368 MSA311_SI_Y, 369 MSA311_SI_Z, 370 MSA311_SI_TIMESTAMP, 371 }; 372 373 #define MSA311_ACCEL_CHANNEL(axis) { \ 374 .type = IIO_ACCEL, \ 375 .modified = 1, \ 376 .channel2 = IIO_MOD_##axis, \ 377 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 378 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 379 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 380 .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \ 381 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 382 .scan_index = MSA311_SI_##axis, \ 383 .scan_type = { \ 384 .sign = 's', \ 385 .realbits = 12, \ 386 .storagebits = 16, \ 387 .shift = 4, \ 388 .endianness = IIO_LE, \ 389 }, \ 390 .datasheet_name = "ACC_"#axis, \ 391 } 392 393 static const struct iio_chan_spec msa311_channels[] = { 394 MSA311_ACCEL_CHANNEL(X), 395 MSA311_ACCEL_CHANNEL(Y), 396 MSA311_ACCEL_CHANNEL(Z), 397 IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP), 398 }; 399 400 /** 401 * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel 402 * @msa311: MSA311 internal private state 403 * @odr: output ODR value 404 * 405 * This function should be called under msa311->lock. 406 * 407 * Return: 0 on success, -ERRNO in other failures 408 */ 409 static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr) 410 { 411 int err; 412 413 err = regmap_field_read(msa311->fields[F_ODR], odr); 414 if (err) 415 return err; 416 417 /* 418 * Filter the same 1000Hz ODR register values based on datasheet info. 419 * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010 420 * all the time. 421 */ 422 if (*odr > MSA311_ODR_1000_HZ) 423 *odr = MSA311_ODR_1000_HZ; 424 425 return 0; 426 } 427 428 /** 429 * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel 430 * @msa311: MSA311 internal private state 431 * @odr: requested ODR value 432 * 433 * This function should be called under msa311->lock. Possible ODR values: 434 * - 1Hz (not available in normal mode) 435 * - 1.95Hz (not available in normal mode) 436 * - 3.9Hz 437 * - 7.81Hz 438 * - 15.63Hz 439 * - 31.25Hz 440 * - 62.5Hz 441 * - 125Hz 442 * - 250Hz 443 * - 500Hz 444 * - 1000Hz 445 * 446 * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode, 447 * -ERRNO in other failures 448 */ 449 static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr) 450 { 451 struct device *dev = msa311->dev; 452 unsigned int pwr_mode; 453 bool good_odr; 454 int err; 455 456 err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode); 457 if (err) 458 return err; 459 460 /* Filter bad ODR values */ 461 if (pwr_mode == MSA311_PWR_MODE_NORMAL) 462 good_odr = (odr > MSA311_ODR_1_95_HZ); 463 else 464 good_odr = false; 465 466 if (!good_odr) { 467 dev_err(dev, 468 "can't set odr %u.%06uHz, not available in %s mode\n", 469 msa311_odr_table[odr].integral, 470 msa311_odr_table[odr].microfract, 471 msa311_pwr_modes[pwr_mode]); 472 return -EINVAL; 473 } 474 475 return regmap_field_write(msa311->fields[F_ODR], odr); 476 } 477 478 /** 479 * msa311_wait_for_next_data() - Wait next accel data available after resume 480 * @msa311: MSA311 internal private state 481 * 482 * Return: 0 on success, -EINTR if msleep() was interrupted, 483 * -ERRNO in other failures 484 */ 485 static int msa311_wait_for_next_data(struct msa311_priv *msa311) 486 { 487 static const unsigned int unintr_thresh_ms = 20; 488 struct device *dev = msa311->dev; 489 unsigned long freq_uhz; 490 unsigned long wait_ms; 491 unsigned int odr; 492 int err; 493 494 err = msa311_get_odr(msa311, &odr); 495 if (err) { 496 dev_err(dev, "can't get actual frequency (%pe)\n", 497 ERR_PTR(err)); 498 return err; 499 } 500 501 /* 502 * After msa311 resuming is done, we need to wait for data 503 * to be refreshed by accel logic. 504 * A certain timeout is calculated based on the current ODR value. 505 * If requested timeout isn't so long (let's assume 20ms), 506 * we can wait for next data in uninterruptible sleep. 507 */ 508 freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ + 509 msa311_odr_table[odr].microfract; 510 wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC; 511 512 if (wait_ms < unintr_thresh_ms) 513 usleep_range(wait_ms * USEC_PER_MSEC, 514 unintr_thresh_ms * USEC_PER_MSEC); 515 else if (msleep_interruptible(wait_ms)) 516 return -EINTR; 517 518 return 0; 519 } 520 521 /** 522 * msa311_set_pwr_mode() - Install certain MSA311 power mode 523 * @msa311: MSA311 internal private state 524 * @mode: Power mode can be equal to NORMAL or SUSPEND 525 * 526 * This function should be called under msa311->lock. 527 * 528 * Return: 0 on success, -ERRNO on failure 529 */ 530 static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode) 531 { 532 struct device *dev = msa311->dev; 533 unsigned int prev_mode; 534 int err; 535 536 if (mode >= ARRAY_SIZE(msa311_pwr_modes)) 537 return -EINVAL; 538 539 dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]); 540 541 err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode); 542 if (err) 543 return err; 544 545 err = regmap_field_write(msa311->fields[F_PWR_MODE], mode); 546 if (err) 547 return err; 548 549 /* Wait actual data if we wake up */ 550 if (prev_mode == MSA311_PWR_MODE_SUSPEND && 551 mode == MSA311_PWR_MODE_NORMAL) 552 return msa311_wait_for_next_data(msa311); 553 554 return 0; 555 } 556 557 /** 558 * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec 559 * @msa311: MSA311 internal private state 560 * @chan: IIO channel specification 561 * @axis: Output accel axis data for requested IIO channel spec 562 * 563 * This function should be called under msa311->lock. 564 * 565 * Return: 0 on success, -EINVAL for unknown IIO channel specification, 566 * -ERRNO in other failures 567 */ 568 static int msa311_get_axis(struct msa311_priv *msa311, 569 const struct iio_chan_spec * const chan, 570 __le16 *axis) 571 { 572 struct device *dev = msa311->dev; 573 unsigned int axis_reg; 574 575 if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) { 576 dev_err(dev, "invalid scan_index value [%d]\n", 577 chan->scan_index); 578 return -EINVAL; 579 } 580 581 /* Axes data layout has 2 byte gap for each axis starting from X axis */ 582 axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1); 583 584 return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis)); 585 } 586 587 static int msa311_read_raw_data(struct iio_dev *indio_dev, 588 struct iio_chan_spec const *chan, 589 int *val, int *val2) 590 { 591 struct msa311_priv *msa311 = iio_priv(indio_dev); 592 struct device *dev = msa311->dev; 593 __le16 axis; 594 int err; 595 596 err = pm_runtime_resume_and_get(dev); 597 if (err) 598 return err; 599 600 err = iio_device_claim_direct_mode(indio_dev); 601 if (err) 602 return err; 603 604 mutex_lock(&msa311->lock); 605 err = msa311_get_axis(msa311, chan, &axis); 606 mutex_unlock(&msa311->lock); 607 608 iio_device_release_direct_mode(indio_dev); 609 610 pm_runtime_mark_last_busy(dev); 611 pm_runtime_put_autosuspend(dev); 612 613 if (err) { 614 dev_err(dev, "can't get axis %s (%pe)\n", 615 chan->datasheet_name, ERR_PTR(err)); 616 return err; 617 } 618 619 /* 620 * Axis data format is: 621 * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4] 622 */ 623 *val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift, 624 chan->scan_type.realbits - 1); 625 626 return IIO_VAL_INT; 627 } 628 629 static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2) 630 { 631 struct msa311_priv *msa311 = iio_priv(indio_dev); 632 struct device *dev = msa311->dev; 633 unsigned int fs; 634 int err; 635 636 mutex_lock(&msa311->lock); 637 err = regmap_field_read(msa311->fields[F_FS], &fs); 638 mutex_unlock(&msa311->lock); 639 if (err) { 640 dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err)); 641 return err; 642 } 643 644 *val = msa311_fs_table[fs].integral; 645 *val2 = msa311_fs_table[fs].microfract; 646 647 return IIO_VAL_INT_PLUS_MICRO; 648 } 649 650 static int msa311_read_samp_freq(struct iio_dev *indio_dev, 651 int *val, int *val2) 652 { 653 struct msa311_priv *msa311 = iio_priv(indio_dev); 654 struct device *dev = msa311->dev; 655 unsigned int odr; 656 int err; 657 658 mutex_lock(&msa311->lock); 659 err = msa311_get_odr(msa311, &odr); 660 mutex_unlock(&msa311->lock); 661 if (err) { 662 dev_err(dev, "can't get actual frequency (%pe)\n", 663 ERR_PTR(err)); 664 return err; 665 } 666 667 *val = msa311_odr_table[odr].integral; 668 *val2 = msa311_odr_table[odr].microfract; 669 670 return IIO_VAL_INT_PLUS_MICRO; 671 } 672 673 static int msa311_read_raw(struct iio_dev *indio_dev, 674 struct iio_chan_spec const *chan, 675 int *val, int *val2, long mask) 676 { 677 switch (mask) { 678 case IIO_CHAN_INFO_RAW: 679 return msa311_read_raw_data(indio_dev, chan, val, val2); 680 681 case IIO_CHAN_INFO_SCALE: 682 return msa311_read_scale(indio_dev, val, val2); 683 684 case IIO_CHAN_INFO_SAMP_FREQ: 685 return msa311_read_samp_freq(indio_dev, val, val2); 686 687 default: 688 return -EINVAL; 689 } 690 } 691 692 static int msa311_read_avail(struct iio_dev *indio_dev, 693 struct iio_chan_spec const *chan, 694 const int **vals, int *type, 695 int *length, long mask) 696 { 697 switch (mask) { 698 case IIO_CHAN_INFO_SAMP_FREQ: 699 *vals = (int *)msa311_odr_table; 700 *type = IIO_VAL_INT_PLUS_MICRO; 701 /* ODR value has 2 ints (integer and fractional parts) */ 702 *length = ARRAY_SIZE(msa311_odr_table) * 2; 703 return IIO_AVAIL_LIST; 704 705 case IIO_CHAN_INFO_SCALE: 706 *vals = (int *)msa311_fs_table; 707 *type = IIO_VAL_INT_PLUS_MICRO; 708 /* FS value has 2 ints (integer and fractional parts) */ 709 *length = ARRAY_SIZE(msa311_fs_table) * 2; 710 return IIO_AVAIL_LIST; 711 712 default: 713 return -EINVAL; 714 } 715 } 716 717 static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2) 718 { 719 struct msa311_priv *msa311 = iio_priv(indio_dev); 720 struct device *dev = msa311->dev; 721 unsigned int fs; 722 int err; 723 724 /* We do not have fs >= 1, so skip such values */ 725 if (val) 726 return 0; 727 728 err = pm_runtime_resume_and_get(dev); 729 if (err) 730 return err; 731 732 err = -EINVAL; 733 for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++) 734 /* Do not check msa311_fs_table[fs].integral, it's always 0 */ 735 if (val2 == msa311_fs_table[fs].microfract) { 736 mutex_lock(&msa311->lock); 737 err = regmap_field_write(msa311->fields[F_FS], fs); 738 mutex_unlock(&msa311->lock); 739 break; 740 } 741 742 pm_runtime_mark_last_busy(dev); 743 pm_runtime_put_autosuspend(dev); 744 745 if (err) 746 dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err)); 747 748 return err; 749 } 750 751 static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2) 752 { 753 struct msa311_priv *msa311 = iio_priv(indio_dev); 754 struct device *dev = msa311->dev; 755 unsigned int odr; 756 int err; 757 758 err = pm_runtime_resume_and_get(dev); 759 if (err) 760 return err; 761 762 /* 763 * Sampling frequency changing is prohibited when buffer mode is 764 * enabled, because sometimes MSA311 chip returns outliers during 765 * frequency values growing up in the read operation moment. 766 */ 767 err = iio_device_claim_direct_mode(indio_dev); 768 if (err) 769 return err; 770 771 err = -EINVAL; 772 for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++) 773 if (val == msa311_odr_table[odr].integral && 774 val2 == msa311_odr_table[odr].microfract) { 775 mutex_lock(&msa311->lock); 776 err = msa311_set_odr(msa311, odr); 777 mutex_unlock(&msa311->lock); 778 break; 779 } 780 781 iio_device_release_direct_mode(indio_dev); 782 783 pm_runtime_mark_last_busy(dev); 784 pm_runtime_put_autosuspend(dev); 785 786 if (err) 787 dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err)); 788 789 return err; 790 } 791 792 static int msa311_write_raw(struct iio_dev *indio_dev, 793 struct iio_chan_spec const *chan, 794 int val, int val2, long mask) 795 { 796 switch (mask) { 797 case IIO_CHAN_INFO_SCALE: 798 return msa311_write_scale(indio_dev, val, val2); 799 800 case IIO_CHAN_INFO_SAMP_FREQ: 801 return msa311_write_samp_freq(indio_dev, val, val2); 802 803 default: 804 return -EINVAL; 805 } 806 } 807 808 static int msa311_debugfs_reg_access(struct iio_dev *indio_dev, 809 unsigned int reg, unsigned int writeval, 810 unsigned int *readval) 811 { 812 struct msa311_priv *msa311 = iio_priv(indio_dev); 813 struct device *dev = msa311->dev; 814 int err; 815 816 if (reg > regmap_get_max_register(msa311->regs)) 817 return -EINVAL; 818 819 err = pm_runtime_resume_and_get(dev); 820 if (err) 821 return err; 822 823 mutex_lock(&msa311->lock); 824 825 if (readval) 826 err = regmap_read(msa311->regs, reg, readval); 827 else 828 err = regmap_write(msa311->regs, reg, writeval); 829 830 mutex_unlock(&msa311->lock); 831 832 pm_runtime_mark_last_busy(dev); 833 pm_runtime_put_autosuspend(dev); 834 835 if (err) 836 dev_err(dev, "can't %s register %u from debugfs (%pe)\n", 837 str_read_write(readval), reg, ERR_PTR(err)); 838 839 return err; 840 } 841 842 static int msa311_buffer_preenable(struct iio_dev *indio_dev) 843 { 844 struct msa311_priv *msa311 = iio_priv(indio_dev); 845 struct device *dev = msa311->dev; 846 847 return pm_runtime_resume_and_get(dev); 848 } 849 850 static int msa311_buffer_postdisable(struct iio_dev *indio_dev) 851 { 852 struct msa311_priv *msa311 = iio_priv(indio_dev); 853 struct device *dev = msa311->dev; 854 855 pm_runtime_mark_last_busy(dev); 856 pm_runtime_put_autosuspend(dev); 857 858 return 0; 859 } 860 861 static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state) 862 { 863 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 864 struct msa311_priv *msa311 = iio_priv(indio_dev); 865 struct device *dev = msa311->dev; 866 int err; 867 868 mutex_lock(&msa311->lock); 869 err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state); 870 mutex_unlock(&msa311->lock); 871 if (err) 872 dev_err(dev, 873 "can't %s buffer due to new_data_int failure (%pe)\n", 874 str_enable_disable(state), ERR_PTR(err)); 875 876 return err; 877 } 878 879 static int msa311_validate_device(struct iio_trigger *trig, 880 struct iio_dev *indio_dev) 881 { 882 return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL; 883 } 884 885 static irqreturn_t msa311_buffer_thread(int irq, void *p) 886 { 887 struct iio_poll_func *pf = p; 888 struct msa311_priv *msa311 = iio_priv(pf->indio_dev); 889 struct iio_dev *indio_dev = pf->indio_dev; 890 const struct iio_chan_spec *chan; 891 struct device *dev = msa311->dev; 892 int bit, err, i = 0; 893 __le16 axis; 894 struct { 895 __le16 channels[MSA311_SI_Z + 1]; 896 s64 ts __aligned(8); 897 } buf; 898 899 memset(&buf, 0, sizeof(buf)); 900 901 mutex_lock(&msa311->lock); 902 903 iio_for_each_active_channel(indio_dev, bit) { 904 chan = &msa311_channels[bit]; 905 906 err = msa311_get_axis(msa311, chan, &axis); 907 if (err) { 908 mutex_unlock(&msa311->lock); 909 dev_err(dev, "can't get axis %s (%pe)\n", 910 chan->datasheet_name, ERR_PTR(err)); 911 goto notify_done; 912 } 913 914 buf.channels[i++] = axis; 915 } 916 917 mutex_unlock(&msa311->lock); 918 919 iio_push_to_buffers_with_timestamp(indio_dev, &buf, 920 iio_get_time_ns(indio_dev)); 921 922 notify_done: 923 iio_trigger_notify_done(indio_dev->trig); 924 925 return IRQ_HANDLED; 926 } 927 928 static irqreturn_t msa311_irq_thread(int irq, void *p) 929 { 930 struct msa311_priv *msa311 = iio_priv(p); 931 unsigned int new_data_int_enabled; 932 struct device *dev = msa311->dev; 933 int err; 934 935 mutex_lock(&msa311->lock); 936 937 /* 938 * We do not check NEW_DATA int status, because based on the 939 * specification it's cleared automatically after a fixed time. 940 * So just check that is enabled by driver logic. 941 */ 942 err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN], 943 &new_data_int_enabled); 944 945 mutex_unlock(&msa311->lock); 946 if (err) { 947 dev_err(dev, "can't read new_data interrupt state (%pe)\n", 948 ERR_PTR(err)); 949 return IRQ_NONE; 950 } 951 952 if (new_data_int_enabled) 953 iio_trigger_poll_nested(msa311->new_data_trig); 954 955 return IRQ_HANDLED; 956 } 957 958 static const struct iio_info msa311_info = { 959 .read_raw = msa311_read_raw, 960 .read_avail = msa311_read_avail, 961 .write_raw = msa311_write_raw, 962 .debugfs_reg_access = msa311_debugfs_reg_access, 963 }; 964 965 static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = { 966 .preenable = msa311_buffer_preenable, 967 .postdisable = msa311_buffer_postdisable, 968 }; 969 970 static const struct iio_trigger_ops msa311_new_data_trig_ops = { 971 .set_trigger_state = msa311_set_new_data_trig_state, 972 .validate_device = msa311_validate_device, 973 }; 974 975 static int msa311_check_partid(struct msa311_priv *msa311) 976 { 977 struct device *dev = msa311->dev; 978 unsigned int partid; 979 int err; 980 981 err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid); 982 if (err) 983 return dev_err_probe(dev, err, "failed to read partid\n"); 984 985 if (partid != MSA311_WHO_AM_I) 986 dev_warn(dev, "invalid partid (%#x), expected (%#x)\n", 987 partid, MSA311_WHO_AM_I); 988 989 msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL, 990 "msa311-%02x", partid); 991 if (!msa311->chip_name) 992 return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n"); 993 994 return 0; 995 } 996 997 static int msa311_soft_reset(struct msa311_priv *msa311) 998 { 999 struct device *dev = msa311->dev; 1000 int err; 1001 1002 err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG, 1003 MSA311_GENMASK(F_SOFT_RESET_I2C) | 1004 MSA311_GENMASK(F_SOFT_RESET_SPI)); 1005 if (err) 1006 return dev_err_probe(dev, err, "can't soft reset all logic\n"); 1007 1008 return 0; 1009 } 1010 1011 static int msa311_chip_init(struct msa311_priv *msa311) 1012 { 1013 struct device *dev = msa311->dev; 1014 const char zero_bulk[2] = { }; 1015 int err; 1016 1017 err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G); 1018 if (err) 1019 return dev_err_probe(dev, err, "failed to setup accel range\n"); 1020 1021 /* Disable all interrupts by default */ 1022 err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG, 1023 zero_bulk, sizeof(zero_bulk)); 1024 if (err) 1025 return dev_err_probe(dev, err, 1026 "can't disable set0/set1 interrupts\n"); 1027 1028 /* Unmap all INT1 interrupts by default */ 1029 err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG, 1030 zero_bulk, sizeof(zero_bulk)); 1031 if (err) 1032 return dev_err_probe(dev, err, 1033 "failed to unmap map0/map1 interrupts\n"); 1034 1035 /* Disable all axes by default */ 1036 err = regmap_clear_bits(msa311->regs, MSA311_ODR_REG, 1037 MSA311_GENMASK(F_X_AXIS_DIS) | 1038 MSA311_GENMASK(F_Y_AXIS_DIS) | 1039 MSA311_GENMASK(F_Z_AXIS_DIS)); 1040 if (err) 1041 return dev_err_probe(dev, err, "can't enable all axes\n"); 1042 1043 err = msa311_set_odr(msa311, MSA311_ODR_125_HZ); 1044 if (err) 1045 return dev_err_probe(dev, err, 1046 "failed to set accel frequency\n"); 1047 1048 return 0; 1049 } 1050 1051 static int msa311_setup_interrupts(struct msa311_priv *msa311) 1052 { 1053 struct device *dev = msa311->dev; 1054 struct i2c_client *i2c = to_i2c_client(dev); 1055 struct iio_dev *indio_dev = i2c_get_clientdata(i2c); 1056 struct iio_trigger *trig; 1057 int err; 1058 1059 /* Keep going without interrupts if no initialized I2C IRQ */ 1060 if (i2c->irq <= 0) 1061 return 0; 1062 1063 err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, 1064 msa311_irq_thread, IRQF_ONESHOT, 1065 msa311->chip_name, indio_dev); 1066 if (err) 1067 return dev_err_probe(dev, err, "failed to request IRQ\n"); 1068 1069 trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name); 1070 if (!trig) 1071 return dev_err_probe(dev, -ENOMEM, 1072 "can't allocate newdata trigger\n"); 1073 1074 msa311->new_data_trig = trig; 1075 msa311->new_data_trig->ops = &msa311_new_data_trig_ops; 1076 iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev); 1077 1078 err = devm_iio_trigger_register(dev, msa311->new_data_trig); 1079 if (err) 1080 return dev_err_probe(dev, err, 1081 "can't register newdata trigger\n"); 1082 1083 err = regmap_field_write(msa311->fields[F_INT1_OD], 1084 MSA311_INT1_OD_PUSH_PULL); 1085 if (err) 1086 return dev_err_probe(dev, err, 1087 "can't enable push-pull interrupt\n"); 1088 1089 err = regmap_field_write(msa311->fields[F_INT1_LVL], 1090 MSA311_INT1_LVL_HIGH); 1091 if (err) 1092 return dev_err_probe(dev, err, 1093 "can't set active interrupt level\n"); 1094 1095 err = regmap_field_write(msa311->fields[F_LATCH_INT], 1096 MSA311_LATCH_INT_LATCHED); 1097 if (err) 1098 return dev_err_probe(dev, err, 1099 "can't latch interrupt\n"); 1100 1101 err = regmap_field_write(msa311->fields[F_RESET_INT], 1); 1102 if (err) 1103 return dev_err_probe(dev, err, 1104 "can't reset interrupt\n"); 1105 1106 err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1); 1107 if (err) 1108 return dev_err_probe(dev, err, 1109 "can't map new data interrupt\n"); 1110 1111 return 0; 1112 } 1113 1114 static int msa311_regmap_init(struct msa311_priv *msa311) 1115 { 1116 struct regmap_field **fields = msa311->fields; 1117 struct device *dev = msa311->dev; 1118 struct i2c_client *i2c = to_i2c_client(dev); 1119 struct regmap *regmap; 1120 int i; 1121 1122 regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config); 1123 if (IS_ERR(regmap)) 1124 return dev_err_probe(dev, PTR_ERR(regmap), 1125 "failed to register i2c regmap\n"); 1126 1127 msa311->regs = regmap; 1128 1129 for (i = 0; i < F_MAX_FIELDS; i++) { 1130 fields[i] = devm_regmap_field_alloc(dev, 1131 msa311->regs, 1132 msa311_reg_fields[i]); 1133 if (IS_ERR(msa311->fields[i])) 1134 return dev_err_probe(dev, PTR_ERR(msa311->fields[i]), 1135 "can't alloc field[%d]\n", i); 1136 } 1137 1138 return 0; 1139 } 1140 1141 static void msa311_powerdown(void *msa311) 1142 { 1143 msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); 1144 } 1145 1146 static int msa311_probe(struct i2c_client *i2c) 1147 { 1148 struct device *dev = &i2c->dev; 1149 struct msa311_priv *msa311; 1150 struct iio_dev *indio_dev; 1151 int err; 1152 1153 indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311)); 1154 if (!indio_dev) 1155 return dev_err_probe(dev, -ENOMEM, 1156 "IIO device allocation failed\n"); 1157 1158 msa311 = iio_priv(indio_dev); 1159 msa311->dev = dev; 1160 i2c_set_clientdata(i2c, indio_dev); 1161 1162 err = msa311_regmap_init(msa311); 1163 if (err) 1164 return err; 1165 1166 mutex_init(&msa311->lock); 1167 1168 err = devm_regulator_get_enable(dev, "vdd"); 1169 if (err) 1170 return dev_err_probe(dev, err, "can't get vdd supply\n"); 1171 1172 err = msa311_check_partid(msa311); 1173 if (err) 1174 return err; 1175 1176 err = msa311_soft_reset(msa311); 1177 if (err) 1178 return err; 1179 1180 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); 1181 if (err) 1182 return dev_err_probe(dev, err, "failed to power on device\n"); 1183 1184 /* 1185 * Register powerdown deferred callback which suspends the chip 1186 * after module unloaded. 1187 * 1188 * MSA311 should be in SUSPEND mode in the two cases: 1189 * 1) When driver is loaded, but we do not have any data or 1190 * configuration requests to it (we are solving it using 1191 * autosuspend feature). 1192 * 2) When driver is unloaded and device is not used (devm action is 1193 * used in this case). 1194 */ 1195 err = devm_add_action_or_reset(dev, msa311_powerdown, msa311); 1196 if (err) 1197 return dev_err_probe(dev, err, "can't add powerdown action\n"); 1198 1199 err = pm_runtime_set_active(dev); 1200 if (err) 1201 return err; 1202 1203 err = devm_pm_runtime_enable(dev); 1204 if (err) 1205 return err; 1206 1207 pm_runtime_get_noresume(dev); 1208 pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS); 1209 pm_runtime_use_autosuspend(dev); 1210 1211 err = msa311_chip_init(msa311); 1212 if (err) 1213 return err; 1214 1215 indio_dev->modes = INDIO_DIRECT_MODE; 1216 indio_dev->channels = msa311_channels; 1217 indio_dev->num_channels = ARRAY_SIZE(msa311_channels); 1218 indio_dev->name = msa311->chip_name; 1219 indio_dev->info = &msa311_info; 1220 1221 err = devm_iio_triggered_buffer_setup(dev, indio_dev, 1222 iio_pollfunc_store_time, 1223 msa311_buffer_thread, 1224 &msa311_buffer_setup_ops); 1225 if (err) 1226 return dev_err_probe(dev, err, 1227 "can't setup IIO trigger buffer\n"); 1228 1229 err = msa311_setup_interrupts(msa311); 1230 if (err) 1231 return err; 1232 1233 pm_runtime_mark_last_busy(dev); 1234 pm_runtime_put_autosuspend(dev); 1235 1236 err = devm_iio_device_register(dev, indio_dev); 1237 if (err) 1238 return dev_err_probe(dev, err, "IIO device register failed\n"); 1239 1240 return 0; 1241 } 1242 1243 static int msa311_runtime_suspend(struct device *dev) 1244 { 1245 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1246 struct msa311_priv *msa311 = iio_priv(indio_dev); 1247 int err; 1248 1249 mutex_lock(&msa311->lock); 1250 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); 1251 mutex_unlock(&msa311->lock); 1252 if (err) 1253 dev_err(dev, "failed to power off device (%pe)\n", 1254 ERR_PTR(err)); 1255 1256 return err; 1257 } 1258 1259 static int msa311_runtime_resume(struct device *dev) 1260 { 1261 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1262 struct msa311_priv *msa311 = iio_priv(indio_dev); 1263 int err; 1264 1265 mutex_lock(&msa311->lock); 1266 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); 1267 mutex_unlock(&msa311->lock); 1268 if (err) 1269 dev_err(dev, "failed to power on device (%pe)\n", 1270 ERR_PTR(err)); 1271 1272 return err; 1273 } 1274 1275 static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend, 1276 msa311_runtime_resume, NULL); 1277 1278 static const struct i2c_device_id msa311_i2c_id[] = { 1279 { .name = "msa311" }, 1280 { } 1281 }; 1282 MODULE_DEVICE_TABLE(i2c, msa311_i2c_id); 1283 1284 static const struct of_device_id msa311_of_match[] = { 1285 { .compatible = "memsensing,msa311" }, 1286 { } 1287 }; 1288 MODULE_DEVICE_TABLE(of, msa311_of_match); 1289 1290 static struct i2c_driver msa311_driver = { 1291 .driver = { 1292 .name = "msa311", 1293 .of_match_table = msa311_of_match, 1294 .pm = pm_ptr(&msa311_pm_ops), 1295 }, 1296 .probe = msa311_probe, 1297 .id_table = msa311_i2c_id, 1298 }; 1299 module_i2c_driver(msa311_driver); 1300 1301 MODULE_AUTHOR("Dmitry Rokosov <ddrokosov@sberdevices.ru>"); 1302 MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver"); 1303 MODULE_LICENSE("GPL"); 1304