xref: /linux/drivers/iio/accel/kionix-kx022a.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2022 ROHM Semiconductors
4  *
5  * ROHM/KIONIX accelerometer driver
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/mutex.h>
14 #include <linux/property.h>
15 #include <linux/regmap.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/types.h>
20 #include <linux/units.h>
21 
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/triggered_buffer.h>
27 
28 #include "kionix-kx022a.h"
29 
30 /*
31  * The KX022A has FIFO which can store 43 samples of HiRes data from 2
32  * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to
33  * 258 bytes of sample data. The quirk to know is that the amount of bytes in
34  * the FIFO is advertised via 8 bit register (max value 255). The thing to note
35  * is that full 258 bytes of data is indicated using the max value 255.
36  */
37 #define KX022A_FIFO_LENGTH			43
38 #define KX022A_FIFO_FULL_VALUE			255
39 #define KX022A_SOFT_RESET_WAIT_TIME_US		(5 * USEC_PER_MSEC)
40 #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US	(500 * USEC_PER_MSEC)
41 
42 /* 3 axis, 2 bytes of data for each of the axis */
43 #define KX022A_FIFO_SAMPLES_SIZE_BYTES		6
44 #define KX022A_FIFO_MAX_BYTES					\
45 	(KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES)
46 
47 enum {
48 	KX022A_STATE_SAMPLE,
49 	KX022A_STATE_FIFO,
50 };
51 
52 /* kx022a Regmap configs */
53 static const struct regmap_range kx022a_volatile_ranges[] = {
54 	{
55 		.range_min = KX022A_REG_XHP_L,
56 		.range_max = KX022A_REG_COTR,
57 	}, {
58 		.range_min = KX022A_REG_TSCP,
59 		.range_max = KX022A_REG_INT_REL,
60 	}, {
61 		/* The reset bit will be cleared by sensor */
62 		.range_min = KX022A_REG_CNTL2,
63 		.range_max = KX022A_REG_CNTL2,
64 	}, {
65 		.range_min = KX022A_REG_BUF_STATUS_1,
66 		.range_max = KX022A_REG_BUF_READ,
67 	},
68 };
69 
70 static const struct regmap_access_table kx022a_volatile_regs = {
71 	.yes_ranges = &kx022a_volatile_ranges[0],
72 	.n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges),
73 };
74 
75 static const struct regmap_range kx022a_precious_ranges[] = {
76 	{
77 		.range_min = KX022A_REG_INT_REL,
78 		.range_max = KX022A_REG_INT_REL,
79 	},
80 };
81 
82 static const struct regmap_access_table kx022a_precious_regs = {
83 	.yes_ranges = &kx022a_precious_ranges[0],
84 	.n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges),
85 };
86 
87 /*
88  * The HW does not set WHO_AM_I reg as read-only but we don't want to write it
89  * so we still include it in the read-only ranges.
90  */
91 static const struct regmap_range kx022a_read_only_ranges[] = {
92 	{
93 		.range_min = KX022A_REG_XHP_L,
94 		.range_max = KX022A_REG_INT_REL,
95 	}, {
96 		.range_min = KX022A_REG_BUF_STATUS_1,
97 		.range_max = KX022A_REG_BUF_STATUS_2,
98 	}, {
99 		.range_min = KX022A_REG_BUF_READ,
100 		.range_max = KX022A_REG_BUF_READ,
101 	},
102 };
103 
104 static const struct regmap_access_table kx022a_ro_regs = {
105 	.no_ranges = &kx022a_read_only_ranges[0],
106 	.n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges),
107 };
108 
109 static const struct regmap_range kx022a_write_only_ranges[] = {
110 	{
111 		.range_min = KX022A_REG_BTS_WUF_TH,
112 		.range_max = KX022A_REG_BTS_WUF_TH,
113 	}, {
114 		.range_min = KX022A_REG_MAN_WAKE,
115 		.range_max = KX022A_REG_MAN_WAKE,
116 	}, {
117 		.range_min = KX022A_REG_SELF_TEST,
118 		.range_max = KX022A_REG_SELF_TEST,
119 	}, {
120 		.range_min = KX022A_REG_BUF_CLEAR,
121 		.range_max = KX022A_REG_BUF_CLEAR,
122 	},
123 };
124 
125 static const struct regmap_access_table kx022a_wo_regs = {
126 	.no_ranges = &kx022a_write_only_ranges[0],
127 	.n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges),
128 };
129 
130 static const struct regmap_range kx022a_noinc_read_ranges[] = {
131 	{
132 		.range_min = KX022A_REG_BUF_READ,
133 		.range_max = KX022A_REG_BUF_READ,
134 	},
135 };
136 
137 static const struct regmap_access_table kx022a_nir_regs = {
138 	.yes_ranges = &kx022a_noinc_read_ranges[0],
139 	.n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges),
140 };
141 
142 static const struct regmap_config kx022a_regmap_config = {
143 	.reg_bits = 8,
144 	.val_bits = 8,
145 	.volatile_table = &kx022a_volatile_regs,
146 	.rd_table = &kx022a_wo_regs,
147 	.wr_table = &kx022a_ro_regs,
148 	.rd_noinc_table = &kx022a_nir_regs,
149 	.precious_table = &kx022a_precious_regs,
150 	.max_register = KX022A_MAX_REGISTER,
151 	.cache_type = REGCACHE_RBTREE,
152 };
153 
154 /* Regmap configs kx132 */
155 static const struct regmap_range kx132_volatile_ranges[] = {
156 	{
157 		.range_min = KX132_REG_XADP_L,
158 		.range_max = KX132_REG_COTR,
159 	}, {
160 		.range_min = KX132_REG_TSCP,
161 		.range_max = KX132_REG_INT_REL,
162 	}, {
163 		/* The reset bit will be cleared by sensor */
164 		.range_min = KX132_REG_CNTL2,
165 		.range_max = KX132_REG_CNTL2,
166 	}, {
167 		.range_min = KX132_REG_CNTL5,
168 		.range_max = KX132_REG_CNTL5,
169 	}, {
170 		.range_min = KX132_REG_BUF_STATUS_1,
171 		.range_max = KX132_REG_BUF_READ,
172 	},
173 };
174 
175 static const struct regmap_access_table kx132_volatile_regs = {
176 	.yes_ranges = &kx132_volatile_ranges[0],
177 	.n_yes_ranges = ARRAY_SIZE(kx132_volatile_ranges),
178 };
179 
180 static const struct regmap_range kx132_precious_ranges[] = {
181 	{
182 		.range_min = KX132_REG_INT_REL,
183 		.range_max = KX132_REG_INT_REL,
184 	},
185 };
186 
187 static const struct regmap_access_table kx132_precious_regs = {
188 	.yes_ranges = &kx132_precious_ranges[0],
189 	.n_yes_ranges = ARRAY_SIZE(kx132_precious_ranges),
190 };
191 
192 static const struct regmap_range kx132_read_only_ranges[] = {
193 	{
194 		.range_min = KX132_REG_XADP_L,
195 		.range_max = KX132_REG_INT_REL,
196 	}, {
197 		.range_min = KX132_REG_BUF_STATUS_1,
198 		.range_max = KX132_REG_BUF_STATUS_2,
199 	}, {
200 		.range_min = KX132_REG_BUF_READ,
201 		.range_max = KX132_REG_BUF_READ,
202 	}, {
203 		/* Kionix reserved registers: should not be written */
204 		.range_min = 0x28,
205 		.range_max = 0x28,
206 	}, {
207 		.range_min = 0x35,
208 		.range_max = 0x36,
209 	}, {
210 		.range_min = 0x3c,
211 		.range_max = 0x48,
212 	}, {
213 		.range_min = 0x4e,
214 		.range_max = 0x5c,
215 	}, {
216 		.range_min = 0x77,
217 		.range_max = 0x7f,
218 	},
219 };
220 
221 static const struct regmap_access_table kx132_ro_regs = {
222 	.no_ranges = &kx132_read_only_ranges[0],
223 	.n_no_ranges = ARRAY_SIZE(kx132_read_only_ranges),
224 };
225 
226 static const struct regmap_range kx132_write_only_ranges[] = {
227 	{
228 		.range_min = KX132_REG_SELF_TEST,
229 		.range_max = KX132_REG_SELF_TEST,
230 	}, {
231 		.range_min = KX132_REG_BUF_CLEAR,
232 		.range_max = KX132_REG_BUF_CLEAR,
233 	},
234 };
235 
236 static const struct regmap_access_table kx132_wo_regs = {
237 	.no_ranges = &kx132_write_only_ranges[0],
238 	.n_no_ranges = ARRAY_SIZE(kx132_write_only_ranges),
239 };
240 
241 static const struct regmap_range kx132_noinc_read_ranges[] = {
242 	{
243 		.range_min = KX132_REG_BUF_READ,
244 		.range_max = KX132_REG_BUF_READ,
245 	},
246 };
247 
248 static const struct regmap_access_table kx132_nir_regs = {
249 	.yes_ranges = &kx132_noinc_read_ranges[0],
250 	.n_yes_ranges = ARRAY_SIZE(kx132_noinc_read_ranges),
251 };
252 
253 static const struct regmap_config kx132_regmap_config = {
254 	.reg_bits = 8,
255 	.val_bits = 8,
256 	.volatile_table = &kx132_volatile_regs,
257 	.rd_table = &kx132_wo_regs,
258 	.wr_table = &kx132_ro_regs,
259 	.rd_noinc_table = &kx132_nir_regs,
260 	.precious_table = &kx132_precious_regs,
261 	.max_register = KX132_MAX_REGISTER,
262 	.cache_type = REGCACHE_RBTREE,
263 };
264 
265 struct kx022a_data {
266 	struct regmap *regmap;
267 	const struct kx022a_chip_info *chip_info;
268 	struct iio_trigger *trig;
269 	struct device *dev;
270 	struct iio_mount_matrix orientation;
271 	int64_t timestamp, old_timestamp;
272 
273 	int irq;
274 	int inc_reg;
275 	int ien_reg;
276 
277 	unsigned int state;
278 	unsigned int odr_ns;
279 
280 	bool trigger_enabled;
281 	/*
282 	 * Prevent toggling the sensor stby/active state (PC1 bit) in the
283 	 * middle of a configuration, or when the fifo is enabled. Also,
284 	 * protect the data stored/retrieved from this structure from
285 	 * concurrent accesses.
286 	 */
287 	struct mutex mutex;
288 	u8 watermark;
289 
290 	__le16 *fifo_buffer;
291 
292 	/* 3 x 16bit accel data + timestamp */
293 	__le16 buffer[8] __aligned(IIO_DMA_MINALIGN);
294 	struct {
295 		__le16 channels[3];
296 		aligned_s64 ts;
297 	} scan;
298 };
299 
300 static const struct iio_mount_matrix *
301 kx022a_get_mount_matrix(const struct iio_dev *idev,
302 			const struct iio_chan_spec *chan)
303 {
304 	struct kx022a_data *data = iio_priv(idev);
305 
306 	return &data->orientation;
307 }
308 
309 enum {
310 	AXIS_X,
311 	AXIS_Y,
312 	AXIS_Z,
313 	AXIS_MAX
314 };
315 
316 static const unsigned long kx022a_scan_masks[] = {
317 	BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0
318 };
319 
320 static const struct iio_chan_spec_ext_info kx022a_ext_info[] = {
321 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix),
322 	{ }
323 };
324 
325 #define KX022A_ACCEL_CHAN(axis, reg, index)			\
326 {								\
327 	.type = IIO_ACCEL,					\
328 	.modified = 1,						\
329 	.channel2 = IIO_MOD_##axis,				\
330 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
331 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
332 				BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
333 	.info_mask_shared_by_type_available =			\
334 				BIT(IIO_CHAN_INFO_SCALE) |	\
335 				BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
336 	.ext_info = kx022a_ext_info,				\
337 	.address = reg,						\
338 	.scan_index = index,					\
339 	.scan_type = {                                          \
340 		.sign = 's',					\
341 		.realbits = 16,					\
342 		.storagebits = 16,				\
343 		.endianness = IIO_LE,				\
344 	},							\
345 }
346 
347 static const struct iio_chan_spec kx022a_channels[] = {
348 	KX022A_ACCEL_CHAN(X, KX022A_REG_XOUT_L, 0),
349 	KX022A_ACCEL_CHAN(Y, KX022A_REG_YOUT_L, 1),
350 	KX022A_ACCEL_CHAN(Z, KX022A_REG_ZOUT_L, 2),
351 	IIO_CHAN_SOFT_TIMESTAMP(3),
352 };
353 
354 static const struct iio_chan_spec kx132_channels[] = {
355 	KX022A_ACCEL_CHAN(X, KX132_REG_XOUT_L, 0),
356 	KX022A_ACCEL_CHAN(Y, KX132_REG_YOUT_L, 1),
357 	KX022A_ACCEL_CHAN(Z, KX132_REG_ZOUT_L, 2),
358 	IIO_CHAN_SOFT_TIMESTAMP(3),
359 };
360 
361 /*
362  * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the
363  * Linux CPUs can handle without dropping samples. Also, the low power mode is
364  * not available for higher sample rates. Thus, the driver only supports 200 Hz
365  * and slower ODRs. The slowest is 0.78 Hz.
366  */
367 static const int kx022a_accel_samp_freq_table[][2] = {
368 	{ 0, 780000 },
369 	{ 1, 563000 },
370 	{ 3, 125000 },
371 	{ 6, 250000 },
372 	{ 12, 500000 },
373 	{ 25, 0 },
374 	{ 50, 0 },
375 	{ 100, 0 },
376 	{ 200, 0 },
377 };
378 
379 static const unsigned int kx022a_odrs[] = {
380 	1282051282,
381 	639795266,
382 	320 * MEGA,
383 	160 * MEGA,
384 	80 * MEGA,
385 	40 * MEGA,
386 	20 * MEGA,
387 	10 * MEGA,
388 	5 * MEGA,
389 };
390 
391 /*
392  * range is typically +-2G/4G/8G/16G, distributed over the amount of bits.
393  * The scale table can be calculated using
394  *	(range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
395  *	=> KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed
396  *	in low-power mode(?) )
397  *	=> +/-2G  => 4 / 2^16 * 9,80665
398  *	=> +/-2G  - 0.000598550415
399  *	   +/-4G  - 0.00119710083
400  *	   +/-8G  - 0.00239420166
401  *	   +/-16G - 0.00478840332
402  */
403 static const int kx022a_scale_table[][2] = {
404 	{ 0, 598550 },
405 	{ 0, 1197101 },
406 	{ 0, 2394202 },
407 	{ 0, 4788403 },
408 };
409 
410 static int kx022a_read_avail(struct iio_dev *indio_dev,
411 			     struct iio_chan_spec const *chan,
412 			     const int **vals, int *type, int *length,
413 			     long mask)
414 {
415 	switch (mask) {
416 	case IIO_CHAN_INFO_SAMP_FREQ:
417 		*vals = (const int *)kx022a_accel_samp_freq_table;
418 		*length = ARRAY_SIZE(kx022a_accel_samp_freq_table) *
419 			  ARRAY_SIZE(kx022a_accel_samp_freq_table[0]);
420 		*type = IIO_VAL_INT_PLUS_MICRO;
421 		return IIO_AVAIL_LIST;
422 	case IIO_CHAN_INFO_SCALE:
423 		*vals = (const int *)kx022a_scale_table;
424 		*length = ARRAY_SIZE(kx022a_scale_table) *
425 			  ARRAY_SIZE(kx022a_scale_table[0]);
426 		*type = IIO_VAL_INT_PLUS_NANO;
427 		return IIO_AVAIL_LIST;
428 	default:
429 		return -EINVAL;
430 	}
431 }
432 
433 #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC)
434 
435 static void kx022a_reg2freq(unsigned int val,  int *val1, int *val2)
436 {
437 	*val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0];
438 	*val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1];
439 }
440 
441 static void kx022a_reg2scale(unsigned int val, unsigned int *val1,
442 			     unsigned int *val2)
443 {
444 	val &= KX022A_MASK_GSEL;
445 	val >>= KX022A_GSEL_SHIFT;
446 
447 	*val1 = kx022a_scale_table[val][0];
448 	*val2 = kx022a_scale_table[val][1];
449 }
450 
451 static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on)
452 {
453 	int ret;
454 
455 	if (on)
456 		ret = regmap_set_bits(data->regmap, data->chip_info->cntl,
457 				      KX022A_MASK_PC1);
458 	else
459 		ret = regmap_clear_bits(data->regmap, data->chip_info->cntl,
460 					KX022A_MASK_PC1);
461 	if (ret)
462 		dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret);
463 
464 	return ret;
465 }
466 
467 static int kx022a_turn_off_lock(struct kx022a_data *data)
468 {
469 	int ret;
470 
471 	mutex_lock(&data->mutex);
472 	ret = kx022a_turn_on_off_unlocked(data, false);
473 	if (ret)
474 		mutex_unlock(&data->mutex);
475 
476 	return ret;
477 }
478 
479 static int kx022a_turn_on_unlock(struct kx022a_data *data)
480 {
481 	int ret;
482 
483 	ret = kx022a_turn_on_off_unlocked(data, true);
484 	mutex_unlock(&data->mutex);
485 
486 	return ret;
487 }
488 
489 static int kx022a_write_raw_get_fmt(struct iio_dev *idev,
490 				    struct iio_chan_spec const *chan,
491 				    long mask)
492 {
493 	switch (mask) {
494 	case IIO_CHAN_INFO_SCALE:
495 		return IIO_VAL_INT_PLUS_NANO;
496 	case IIO_CHAN_INFO_SAMP_FREQ:
497 		return IIO_VAL_INT_PLUS_MICRO;
498 	default:
499 		return -EINVAL;
500 	}
501 }
502 
503 static int kx022a_write_raw(struct iio_dev *idev,
504 			    struct iio_chan_spec const *chan,
505 			    int val, int val2, long mask)
506 {
507 	struct kx022a_data *data = iio_priv(idev);
508 	int ret, n;
509 
510 	/*
511 	 * We should not allow changing scale or frequency when FIFO is running
512 	 * as it will mess the timestamp/scale for samples existing in the
513 	 * buffer. If this turns out to be an issue we can later change logic
514 	 * to internally flush the fifo before reconfiguring so the samples in
515 	 * fifo keep matching the freq/scale settings. (Such setup could cause
516 	 * issues if users trust the watermark to be reached within known
517 	 * time-limit).
518 	 */
519 	ret = iio_device_claim_direct_mode(idev);
520 	if (ret)
521 		return ret;
522 
523 	switch (mask) {
524 	case IIO_CHAN_INFO_SAMP_FREQ:
525 		n = ARRAY_SIZE(kx022a_accel_samp_freq_table);
526 
527 		while (n--)
528 			if (val == kx022a_accel_samp_freq_table[n][0] &&
529 			    val2 == kx022a_accel_samp_freq_table[n][1])
530 				break;
531 		if (n < 0) {
532 			ret = -EINVAL;
533 			goto unlock_out;
534 		}
535 		ret = kx022a_turn_off_lock(data);
536 		if (ret)
537 			break;
538 
539 		ret = regmap_update_bits(data->regmap,
540 					 data->chip_info->odcntl,
541 					 KX022A_MASK_ODR, n);
542 		data->odr_ns = kx022a_odrs[n];
543 		kx022a_turn_on_unlock(data);
544 		break;
545 	case IIO_CHAN_INFO_SCALE:
546 		n = ARRAY_SIZE(kx022a_scale_table);
547 
548 		while (n-- > 0)
549 			if (val == kx022a_scale_table[n][0] &&
550 			    val2 == kx022a_scale_table[n][1])
551 				break;
552 		if (n < 0) {
553 			ret = -EINVAL;
554 			goto unlock_out;
555 		}
556 
557 		ret = kx022a_turn_off_lock(data);
558 		if (ret)
559 			break;
560 
561 		ret = regmap_update_bits(data->regmap, data->chip_info->cntl,
562 					 KX022A_MASK_GSEL,
563 					 n << KX022A_GSEL_SHIFT);
564 		kx022a_turn_on_unlock(data);
565 		break;
566 	default:
567 		ret = -EINVAL;
568 		break;
569 	}
570 
571 unlock_out:
572 	iio_device_release_direct_mode(idev);
573 
574 	return ret;
575 }
576 
577 static int kx022a_fifo_set_wmi(struct kx022a_data *data)
578 {
579 	u8 threshold;
580 
581 	threshold = data->watermark;
582 
583 	return regmap_update_bits(data->regmap, data->chip_info->buf_cntl1,
584 				  KX022A_MASK_WM_TH, threshold);
585 }
586 
587 static int kx022a_get_axis(struct kx022a_data *data,
588 			   struct iio_chan_spec const *chan,
589 			   int *val)
590 {
591 	int ret;
592 
593 	ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0],
594 			       sizeof(__le16));
595 	if (ret)
596 		return ret;
597 
598 	*val = (s16)le16_to_cpu(data->buffer[0]);
599 
600 	return IIO_VAL_INT;
601 }
602 
603 static int kx022a_read_raw(struct iio_dev *idev,
604 			   struct iio_chan_spec const *chan,
605 			   int *val, int *val2, long mask)
606 {
607 	struct kx022a_data *data = iio_priv(idev);
608 	unsigned int regval;
609 	int ret;
610 
611 	switch (mask) {
612 	case IIO_CHAN_INFO_RAW:
613 		ret = iio_device_claim_direct_mode(idev);
614 		if (ret)
615 			return ret;
616 
617 		mutex_lock(&data->mutex);
618 		ret = kx022a_get_axis(data, chan, val);
619 		mutex_unlock(&data->mutex);
620 
621 		iio_device_release_direct_mode(idev);
622 
623 		return ret;
624 
625 	case IIO_CHAN_INFO_SAMP_FREQ:
626 		ret = regmap_read(data->regmap, data->chip_info->odcntl, &regval);
627 		if (ret)
628 			return ret;
629 
630 		if ((regval & KX022A_MASK_ODR) >
631 		    ARRAY_SIZE(kx022a_accel_samp_freq_table)) {
632 			dev_err(data->dev, "Invalid ODR\n");
633 			return -EINVAL;
634 		}
635 
636 		kx022a_reg2freq(regval, val, val2);
637 
638 		return IIO_VAL_INT_PLUS_MICRO;
639 
640 	case IIO_CHAN_INFO_SCALE:
641 		ret = regmap_read(data->regmap, data->chip_info->cntl, &regval);
642 		if (ret < 0)
643 			return ret;
644 
645 		kx022a_reg2scale(regval, val, val2);
646 
647 		return IIO_VAL_INT_PLUS_NANO;
648 	}
649 
650 	return -EINVAL;
651 };
652 
653 static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val)
654 {
655 	struct kx022a_data *data = iio_priv(idev);
656 
657 	val = min(data->chip_info->fifo_length, val);
658 
659 	mutex_lock(&data->mutex);
660 	data->watermark = val;
661 	mutex_unlock(&data->mutex);
662 
663 	return 0;
664 }
665 
666 static ssize_t hwfifo_enabled_show(struct device *dev,
667 				   struct device_attribute *attr,
668 				   char *buf)
669 {
670 	struct iio_dev *idev = dev_to_iio_dev(dev);
671 	struct kx022a_data *data = iio_priv(idev);
672 	bool state;
673 
674 	mutex_lock(&data->mutex);
675 	state = data->state;
676 	mutex_unlock(&data->mutex);
677 
678 	return sysfs_emit(buf, "%d\n", state);
679 }
680 
681 static ssize_t hwfifo_watermark_show(struct device *dev,
682 				     struct device_attribute *attr,
683 				     char *buf)
684 {
685 	struct iio_dev *idev = dev_to_iio_dev(dev);
686 	struct kx022a_data *data = iio_priv(idev);
687 	int wm;
688 
689 	mutex_lock(&data->mutex);
690 	wm = data->watermark;
691 	mutex_unlock(&data->mutex);
692 
693 	return sysfs_emit(buf, "%d\n", wm);
694 }
695 
696 static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
697 static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
698 
699 static const struct iio_dev_attr *kx022a_fifo_attributes[] = {
700 	&iio_dev_attr_hwfifo_watermark,
701 	&iio_dev_attr_hwfifo_enabled,
702 	NULL
703 };
704 
705 static int kx022a_drop_fifo_contents(struct kx022a_data *data)
706 {
707 	/*
708 	 * We must clear the old time-stamp to avoid computing the timestamps
709 	 * based on samples acquired when buffer was last enabled.
710 	 *
711 	 * We don't need to protect the timestamp as long as we are only
712 	 * called from fifo-disable where we can guarantee the sensor is not
713 	 * triggering interrupts and where the mutex is locked to prevent the
714 	 * user-space access.
715 	 */
716 	data->timestamp = 0;
717 
718 	return regmap_write(data->regmap, data->chip_info->buf_clear, 0x0);
719 }
720 
721 static int kx022a_get_fifo_bytes_available(struct kx022a_data *data)
722 {
723 	int ret, fifo_bytes;
724 
725 	ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes);
726 	if (ret) {
727 		dev_err(data->dev, "Error reading buffer status\n");
728 		return ret;
729 	}
730 
731 	if (fifo_bytes == KX022A_FIFO_FULL_VALUE)
732 		return KX022A_FIFO_MAX_BYTES;
733 
734 	return fifo_bytes;
735 }
736 
737 static int kx132_get_fifo_bytes_available(struct kx022a_data *data)
738 {
739 	__le16 buf_status;
740 	int ret, fifo_bytes;
741 
742 	ret = regmap_bulk_read(data->regmap, data->chip_info->buf_status1,
743 			       &buf_status, sizeof(buf_status));
744 	if (ret) {
745 		dev_err(data->dev, "Error reading buffer status\n");
746 		return ret;
747 	}
748 
749 	fifo_bytes = le16_to_cpu(buf_status);
750 	fifo_bytes &= data->chip_info->buf_smp_lvl_mask;
751 	fifo_bytes = min((unsigned int)fifo_bytes, data->chip_info->fifo_length *
752 			 KX022A_FIFO_SAMPLES_SIZE_BYTES);
753 
754 	return fifo_bytes;
755 }
756 
757 static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples,
758 			       bool irq)
759 {
760 	struct kx022a_data *data = iio_priv(idev);
761 	uint64_t sample_period;
762 	int count, fifo_bytes;
763 	bool renable = false;
764 	int64_t tstamp;
765 	int ret, i;
766 
767 	fifo_bytes = data->chip_info->get_fifo_bytes_available(data);
768 
769 	if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES)
770 		dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n");
771 
772 	count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES;
773 	if (!count)
774 		return 0;
775 
776 	/*
777 	 * If we are being called from IRQ handler we know the stored timestamp
778 	 * is fairly accurate for the last stored sample. Otherwise, if we are
779 	 * called as a result of a read operation from userspace and hence
780 	 * before the watermark interrupt was triggered, take a timestamp
781 	 * now. We can fall anywhere in between two samples so the error in this
782 	 * case is at most one sample period.
783 	 */
784 	if (!irq) {
785 		/*
786 		 * We need to have the IRQ disabled or we risk of messing-up
787 		 * the timestamps. If we are ran from IRQ, then the
788 		 * IRQF_ONESHOT has us covered - but if we are ran by the
789 		 * user-space read we need to disable the IRQ to be on a safe
790 		 * side. We do this usng synchronous disable so that if the
791 		 * IRQ thread is being ran on other CPU we wait for it to be
792 		 * finished.
793 		 */
794 		disable_irq(data->irq);
795 		renable = true;
796 
797 		data->old_timestamp = data->timestamp;
798 		data->timestamp = iio_get_time_ns(idev);
799 	}
800 
801 	/*
802 	 * Approximate timestamps for each of the sample based on the sampling
803 	 * frequency, timestamp for last sample and number of samples.
804 	 *
805 	 * We'd better not use the current bandwidth settings to compute the
806 	 * sample period. The real sample rate varies with the device and
807 	 * small variation adds when we store a large number of samples.
808 	 *
809 	 * To avoid this issue we compute the actual sample period ourselves
810 	 * based on the timestamp delta between the last two flush operations.
811 	 */
812 	if (data->old_timestamp) {
813 		sample_period = data->timestamp - data->old_timestamp;
814 		do_div(sample_period, count);
815 	} else {
816 		sample_period = data->odr_ns;
817 	}
818 	tstamp = data->timestamp - (count - 1) * sample_period;
819 
820 	if (samples && count > samples) {
821 		/*
822 		 * Here we leave some old samples to the buffer. We need to
823 		 * adjust the timestamp to match the first sample in the buffer
824 		 * or we will miscalculate the sample_period at next round.
825 		 */
826 		data->timestamp -= (count - samples) * sample_period;
827 		count = samples;
828 	}
829 
830 	fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES;
831 	ret = regmap_noinc_read(data->regmap, data->chip_info->buf_read,
832 				data->fifo_buffer, fifo_bytes);
833 	if (ret)
834 		goto renable_out;
835 
836 	for (i = 0; i < count; i++) {
837 		__le16 *sam = &data->fifo_buffer[i * 3];
838 		__le16 *chs;
839 		int bit;
840 
841 		chs = &data->scan.channels[0];
842 		for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX)
843 			chs[bit] = sam[bit];
844 
845 		iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
846 
847 		tstamp += sample_period;
848 	}
849 
850 	ret = count;
851 
852 renable_out:
853 	if (renable)
854 		enable_irq(data->irq);
855 
856 	return ret;
857 }
858 
859 static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples)
860 {
861 	struct kx022a_data *data = iio_priv(idev);
862 	int ret;
863 
864 	mutex_lock(&data->mutex);
865 	ret = __kx022a_fifo_flush(idev, samples, false);
866 	mutex_unlock(&data->mutex);
867 
868 	return ret;
869 }
870 
871 static const struct iio_info kx022a_info = {
872 	.read_raw = &kx022a_read_raw,
873 	.write_raw = &kx022a_write_raw,
874 	.write_raw_get_fmt = &kx022a_write_raw_get_fmt,
875 	.read_avail = &kx022a_read_avail,
876 
877 	.validate_trigger	= iio_validate_own_trigger,
878 	.hwfifo_set_watermark	= kx022a_set_watermark,
879 	.hwfifo_flush_to_buffer	= kx022a_fifo_flush,
880 };
881 
882 static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en)
883 {
884 	if (en)
885 		return regmap_set_bits(data->regmap, data->chip_info->cntl,
886 				       KX022A_MASK_DRDY);
887 
888 	return regmap_clear_bits(data->regmap, data->chip_info->cntl,
889 				 KX022A_MASK_DRDY);
890 }
891 
892 static int kx022a_prepare_irq_pin(struct kx022a_data *data)
893 {
894 	/* Enable IRQ1 pin. Set polarity to active low */
895 	int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL |
896 		   KX022A_MASK_ITYP;
897 	int val = KX022A_MASK_IEN | KX022A_IPOL_LOW |
898 		  KX022A_ITYP_LEVEL;
899 	int ret;
900 
901 	ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val);
902 	if (ret)
903 		return ret;
904 
905 	/* We enable WMI to IRQ pin only at buffer_enable */
906 	mask = KX022A_MASK_INS2_DRDY;
907 
908 	return regmap_set_bits(data->regmap, data->ien_reg, mask);
909 }
910 
911 static int kx022a_fifo_disable(struct kx022a_data *data)
912 {
913 	int ret = 0;
914 
915 	ret = kx022a_turn_off_lock(data);
916 	if (ret)
917 		return ret;
918 
919 	ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI);
920 	if (ret)
921 		goto unlock_out;
922 
923 	ret = regmap_clear_bits(data->regmap, data->chip_info->buf_cntl2,
924 				KX022A_MASK_BUF_EN);
925 	if (ret)
926 		goto unlock_out;
927 
928 	data->state &= ~KX022A_STATE_FIFO;
929 
930 	kx022a_drop_fifo_contents(data);
931 
932 	kfree(data->fifo_buffer);
933 
934 	return kx022a_turn_on_unlock(data);
935 
936 unlock_out:
937 	mutex_unlock(&data->mutex);
938 
939 	return ret;
940 }
941 
942 static int kx022a_buffer_predisable(struct iio_dev *idev)
943 {
944 	struct kx022a_data *data = iio_priv(idev);
945 
946 	if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
947 		return 0;
948 
949 	return kx022a_fifo_disable(data);
950 }
951 
952 static int kx022a_fifo_enable(struct kx022a_data *data)
953 {
954 	int ret;
955 
956 	data->fifo_buffer = kmalloc_array(data->chip_info->fifo_length,
957 					  KX022A_FIFO_SAMPLES_SIZE_BYTES,
958 					  GFP_KERNEL);
959 	if (!data->fifo_buffer)
960 		return -ENOMEM;
961 
962 	ret = kx022a_turn_off_lock(data);
963 	if (ret)
964 		return ret;
965 
966 	/* Update watermark to HW */
967 	ret = kx022a_fifo_set_wmi(data);
968 	if (ret)
969 		goto unlock_out;
970 
971 	/* Enable buffer */
972 	ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
973 			      KX022A_MASK_BUF_EN);
974 	if (ret)
975 		goto unlock_out;
976 
977 	data->state |= KX022A_STATE_FIFO;
978 	ret = regmap_set_bits(data->regmap, data->ien_reg,
979 			      KX022A_MASK_WMI);
980 	if (ret)
981 		goto unlock_out;
982 
983 	return kx022a_turn_on_unlock(data);
984 
985 unlock_out:
986 	mutex_unlock(&data->mutex);
987 
988 	return ret;
989 }
990 
991 static int kx022a_buffer_postenable(struct iio_dev *idev)
992 {
993 	struct kx022a_data *data = iio_priv(idev);
994 
995 	/*
996 	 * If we use data-ready trigger, then the IRQ masks should be handled by
997 	 * trigger enable and the hardware buffer is not used but we just update
998 	 * results to the IIO fifo when data-ready triggers.
999 	 */
1000 	if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
1001 		return 0;
1002 
1003 	return kx022a_fifo_enable(data);
1004 }
1005 
1006 static const struct iio_buffer_setup_ops kx022a_buffer_ops = {
1007 	.postenable = kx022a_buffer_postenable,
1008 	.predisable = kx022a_buffer_predisable,
1009 };
1010 
1011 static irqreturn_t kx022a_trigger_handler(int irq, void *p)
1012 {
1013 	struct iio_poll_func *pf = p;
1014 	struct iio_dev *idev = pf->indio_dev;
1015 	struct kx022a_data *data = iio_priv(idev);
1016 	int ret;
1017 
1018 	ret = regmap_bulk_read(data->regmap, data->chip_info->xout_l, data->buffer,
1019 			       KX022A_FIFO_SAMPLES_SIZE_BYTES);
1020 	if (ret < 0)
1021 		goto err_read;
1022 
1023 	iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp);
1024 err_read:
1025 	iio_trigger_notify_done(idev->trig);
1026 
1027 	return IRQ_HANDLED;
1028 }
1029 
1030 /* Get timestamps and wake the thread if we need to read data */
1031 static irqreturn_t kx022a_irq_handler(int irq, void *private)
1032 {
1033 	struct iio_dev *idev = private;
1034 	struct kx022a_data *data = iio_priv(idev);
1035 
1036 	data->old_timestamp = data->timestamp;
1037 	data->timestamp = iio_get_time_ns(idev);
1038 
1039 	if (data->state & KX022A_STATE_FIFO || data->trigger_enabled)
1040 		return IRQ_WAKE_THREAD;
1041 
1042 	return IRQ_NONE;
1043 }
1044 
1045 /*
1046  * WMI and data-ready IRQs are acked when results are read. If we add
1047  * TILT/WAKE or other IRQs - then we may need to implement the acking
1048  * (which is racy).
1049  */
1050 static irqreturn_t kx022a_irq_thread_handler(int irq, void *private)
1051 {
1052 	struct iio_dev *idev = private;
1053 	struct kx022a_data *data = iio_priv(idev);
1054 	irqreturn_t ret = IRQ_NONE;
1055 
1056 	mutex_lock(&data->mutex);
1057 
1058 	if (data->trigger_enabled) {
1059 		iio_trigger_poll_nested(data->trig);
1060 		ret = IRQ_HANDLED;
1061 	}
1062 
1063 	if (data->state & KX022A_STATE_FIFO) {
1064 		int ok;
1065 
1066 		ok = __kx022a_fifo_flush(idev, data->chip_info->fifo_length, true);
1067 		if (ok > 0)
1068 			ret = IRQ_HANDLED;
1069 	}
1070 
1071 	mutex_unlock(&data->mutex);
1072 
1073 	return ret;
1074 }
1075 
1076 static int kx022a_trigger_set_state(struct iio_trigger *trig,
1077 				    bool state)
1078 {
1079 	struct kx022a_data *data = iio_trigger_get_drvdata(trig);
1080 	int ret = 0;
1081 
1082 	mutex_lock(&data->mutex);
1083 
1084 	if (data->trigger_enabled == state)
1085 		goto unlock_out;
1086 
1087 	if (data->state & KX022A_STATE_FIFO) {
1088 		dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
1089 		ret = -EBUSY;
1090 		goto unlock_out;
1091 	}
1092 
1093 	ret = kx022a_turn_on_off_unlocked(data, false);
1094 	if (ret)
1095 		goto unlock_out;
1096 
1097 	data->trigger_enabled = state;
1098 	ret = kx022a_set_drdy_irq(data, state);
1099 	if (ret)
1100 		goto unlock_out;
1101 
1102 	ret = kx022a_turn_on_off_unlocked(data, true);
1103 
1104 unlock_out:
1105 	mutex_unlock(&data->mutex);
1106 
1107 	return ret;
1108 }
1109 
1110 static const struct iio_trigger_ops kx022a_trigger_ops = {
1111 	.set_trigger_state = kx022a_trigger_set_state,
1112 };
1113 
1114 static int kx022a_chip_init(struct kx022a_data *data)
1115 {
1116 	int ret, val;
1117 
1118 	/* Reset the senor */
1119 	ret = regmap_write(data->regmap, data->chip_info->cntl2, KX022A_MASK_SRST);
1120 	if (ret)
1121 		return ret;
1122 
1123 	/*
1124 	 * I've seen I2C read failures if we poll too fast after the sensor
1125 	 * reset. Slight delay gives I2C block the time to recover.
1126 	 */
1127 	msleep(1);
1128 
1129 	ret = regmap_read_poll_timeout(data->regmap, data->chip_info->cntl2, val,
1130 				       !(val & KX022A_MASK_SRST),
1131 				       KX022A_SOFT_RESET_WAIT_TIME_US,
1132 				       KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US);
1133 	if (ret) {
1134 		dev_err(data->dev, "Sensor reset %s\n",
1135 			val & KX022A_MASK_SRST ? "timeout" : "fail#");
1136 		return ret;
1137 	}
1138 
1139 	ret = regmap_reinit_cache(data->regmap, data->chip_info->regmap_config);
1140 	if (ret) {
1141 		dev_err(data->dev, "Failed to reinit reg cache\n");
1142 		return ret;
1143 	}
1144 
1145 	/* set data res 16bit */
1146 	ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
1147 			      KX022A_MASK_BRES16);
1148 	if (ret) {
1149 		dev_err(data->dev, "Failed to set data resolution\n");
1150 		return ret;
1151 	}
1152 
1153 	return kx022a_prepare_irq_pin(data);
1154 }
1155 
1156 const struct kx022a_chip_info kx022a_chip_info = {
1157 	.name				= "kx022-accel",
1158 	.regmap_config			= &kx022a_regmap_config,
1159 	.channels			= kx022a_channels,
1160 	.num_channels			= ARRAY_SIZE(kx022a_channels),
1161 	.fifo_length			= KX022A_FIFO_LENGTH,
1162 	.who				= KX022A_REG_WHO,
1163 	.id				= KX022A_ID,
1164 	.cntl				= KX022A_REG_CNTL,
1165 	.cntl2				= KX022A_REG_CNTL2,
1166 	.odcntl				= KX022A_REG_ODCNTL,
1167 	.buf_cntl1			= KX022A_REG_BUF_CNTL1,
1168 	.buf_cntl2			= KX022A_REG_BUF_CNTL2,
1169 	.buf_clear			= KX022A_REG_BUF_CLEAR,
1170 	.buf_status1			= KX022A_REG_BUF_STATUS_1,
1171 	.buf_read			= KX022A_REG_BUF_READ,
1172 	.inc1				= KX022A_REG_INC1,
1173 	.inc4				= KX022A_REG_INC4,
1174 	.inc5				= KX022A_REG_INC5,
1175 	.inc6				= KX022A_REG_INC6,
1176 	.xout_l				= KX022A_REG_XOUT_L,
1177 	.get_fifo_bytes_available	= kx022a_get_fifo_bytes_available,
1178 };
1179 EXPORT_SYMBOL_NS_GPL(kx022a_chip_info, "IIO_KX022A");
1180 
1181 const struct kx022a_chip_info kx132_chip_info = {
1182 	.name			  = "kx132-1211",
1183 	.regmap_config		  = &kx132_regmap_config,
1184 	.channels		  = kx132_channels,
1185 	.num_channels		  = ARRAY_SIZE(kx132_channels),
1186 	.fifo_length		  = KX132_FIFO_LENGTH,
1187 	.who			  = KX132_REG_WHO,
1188 	.id			  = KX132_ID,
1189 	.cntl			  = KX132_REG_CNTL,
1190 	.cntl2			  = KX132_REG_CNTL2,
1191 	.odcntl			  = KX132_REG_ODCNTL,
1192 	.buf_cntl1		  = KX132_REG_BUF_CNTL1,
1193 	.buf_cntl2		  = KX132_REG_BUF_CNTL2,
1194 	.buf_clear		  = KX132_REG_BUF_CLEAR,
1195 	.buf_status1		  = KX132_REG_BUF_STATUS_1,
1196 	.buf_smp_lvl_mask	  = KX132_MASK_BUF_SMP_LVL,
1197 	.buf_read		  = KX132_REG_BUF_READ,
1198 	.inc1			  = KX132_REG_INC1,
1199 	.inc4			  = KX132_REG_INC4,
1200 	.inc5			  = KX132_REG_INC5,
1201 	.inc6			  = KX132_REG_INC6,
1202 	.xout_l			  = KX132_REG_XOUT_L,
1203 	.get_fifo_bytes_available = kx132_get_fifo_bytes_available,
1204 };
1205 EXPORT_SYMBOL_NS_GPL(kx132_chip_info, "IIO_KX022A");
1206 
1207 /*
1208  * Despite the naming, KX132ACR-LBZ is not similar to KX132-1211 but it is
1209  * exact subset of KX022A. KX132ACR-LBZ is meant to be used for industrial
1210  * applications and the tap/double tap, free fall and tilt engines were
1211  * removed. Rest of the registers and functionalities (excluding the ID
1212  * register) are exact match to what is found in KX022.
1213  */
1214 const struct kx022a_chip_info kx132acr_chip_info = {
1215 	.name				= "kx132acr-lbz",
1216 	.regmap_config			= &kx022a_regmap_config,
1217 	.channels			= kx022a_channels,
1218 	.num_channels			= ARRAY_SIZE(kx022a_channels),
1219 	.fifo_length			= KX022A_FIFO_LENGTH,
1220 	.who				= KX022A_REG_WHO,
1221 	.id				= KX132ACR_LBZ_ID,
1222 	.cntl				= KX022A_REG_CNTL,
1223 	.cntl2				= KX022A_REG_CNTL2,
1224 	.odcntl				= KX022A_REG_ODCNTL,
1225 	.buf_cntl1			= KX022A_REG_BUF_CNTL1,
1226 	.buf_cntl2			= KX022A_REG_BUF_CNTL2,
1227 	.buf_clear			= KX022A_REG_BUF_CLEAR,
1228 	.buf_status1			= KX022A_REG_BUF_STATUS_1,
1229 	.buf_read			= KX022A_REG_BUF_READ,
1230 	.inc1				= KX022A_REG_INC1,
1231 	.inc4				= KX022A_REG_INC4,
1232 	.inc5				= KX022A_REG_INC5,
1233 	.inc6				= KX022A_REG_INC6,
1234 	.xout_l				= KX022A_REG_XOUT_L,
1235 	.get_fifo_bytes_available	= kx022a_get_fifo_bytes_available,
1236 };
1237 EXPORT_SYMBOL_NS_GPL(kx132acr_chip_info, "IIO_KX022A");
1238 
1239 int kx022a_probe_internal(struct device *dev, const struct kx022a_chip_info *chip_info)
1240 {
1241 	static const char * const regulator_names[] = {"io-vdd", "vdd"};
1242 	struct iio_trigger *indio_trig;
1243 	struct fwnode_handle *fwnode;
1244 	struct kx022a_data *data;
1245 	struct regmap *regmap;
1246 	unsigned int chip_id;
1247 	struct iio_dev *idev;
1248 	int ret, irq;
1249 	char *name;
1250 
1251 	regmap = dev_get_regmap(dev, NULL);
1252 	if (!regmap) {
1253 		dev_err(dev, "no regmap\n");
1254 		return -EINVAL;
1255 	}
1256 
1257 	fwnode = dev_fwnode(dev);
1258 	if (!fwnode)
1259 		return -ENODEV;
1260 
1261 	idev = devm_iio_device_alloc(dev, sizeof(*data));
1262 	if (!idev)
1263 		return -ENOMEM;
1264 
1265 	data = iio_priv(idev);
1266 	data->chip_info = chip_info;
1267 
1268 	/*
1269 	 * VDD is the analog and digital domain voltage supply and
1270 	 * IO_VDD is the digital I/O voltage supply.
1271 	 */
1272 	ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names),
1273 					     regulator_names);
1274 	if (ret && ret != -ENODEV)
1275 		return dev_err_probe(dev, ret, "failed to enable regulator\n");
1276 
1277 	ret = regmap_read(regmap, chip_info->who, &chip_id);
1278 	if (ret)
1279 		return dev_err_probe(dev, ret, "Failed to access sensor\n");
1280 
1281 	if (chip_id != chip_info->id)
1282 		dev_warn(dev, "unknown device 0x%x\n", chip_id);
1283 
1284 	irq = fwnode_irq_get_byname(fwnode, "INT1");
1285 	if (irq > 0) {
1286 		data->inc_reg = chip_info->inc1;
1287 		data->ien_reg = chip_info->inc4;
1288 	} else {
1289 		irq = fwnode_irq_get_byname(fwnode, "INT2");
1290 		if (irq < 0)
1291 			return dev_err_probe(dev, irq, "No suitable IRQ\n");
1292 
1293 		data->inc_reg = chip_info->inc5;
1294 		data->ien_reg = chip_info->inc6;
1295 	}
1296 
1297 	data->regmap = regmap;
1298 	data->dev = dev;
1299 	data->irq = irq;
1300 	data->odr_ns = KX022A_DEFAULT_PERIOD_NS;
1301 	mutex_init(&data->mutex);
1302 
1303 	idev->channels = chip_info->channels;
1304 	idev->num_channels = chip_info->num_channels;
1305 	idev->name = chip_info->name;
1306 	idev->info = &kx022a_info;
1307 	idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1308 	idev->available_scan_masks = kx022a_scan_masks;
1309 
1310 	/* Read the mounting matrix, if present */
1311 	ret = iio_read_mount_matrix(dev, &data->orientation);
1312 	if (ret)
1313 		return ret;
1314 
1315 	/* The sensor must be turned off for configuration */
1316 	ret = kx022a_turn_off_lock(data);
1317 	if (ret)
1318 		return ret;
1319 
1320 	ret = kx022a_chip_init(data);
1321 	if (ret) {
1322 		mutex_unlock(&data->mutex);
1323 		return ret;
1324 	}
1325 
1326 	ret = kx022a_turn_on_unlock(data);
1327 	if (ret)
1328 		return ret;
1329 
1330 	ret = devm_iio_triggered_buffer_setup_ext(dev, idev,
1331 						  &iio_pollfunc_store_time,
1332 						  kx022a_trigger_handler,
1333 						  IIO_BUFFER_DIRECTION_IN,
1334 						  &kx022a_buffer_ops,
1335 						  kx022a_fifo_attributes);
1336 
1337 	if (ret)
1338 		return dev_err_probe(data->dev, ret,
1339 				     "iio_triggered_buffer_setup_ext FAIL\n");
1340 	indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name,
1341 					    iio_device_id(idev));
1342 	if (!indio_trig)
1343 		return -ENOMEM;
1344 
1345 	data->trig = indio_trig;
1346 
1347 	indio_trig->ops = &kx022a_trigger_ops;
1348 	iio_trigger_set_drvdata(indio_trig, data);
1349 
1350 	/*
1351 	 * No need to check for NULL. request_threaded_irq() defaults to
1352 	 * dev_name() should the alloc fail.
1353 	 */
1354 	name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a",
1355 			      dev_name(data->dev));
1356 
1357 	ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler,
1358 					&kx022a_irq_thread_handler,
1359 					IRQF_ONESHOT, name, idev);
1360 	if (ret)
1361 		return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
1362 
1363 	ret = devm_iio_trigger_register(dev, indio_trig);
1364 	if (ret)
1365 		return dev_err_probe(data->dev, ret,
1366 				     "Trigger registration failed\n");
1367 
1368 	ret = devm_iio_device_register(data->dev, idev);
1369 	if (ret < 0)
1370 		return dev_err_probe(dev, ret,
1371 				     "Unable to register iio device\n");
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, "IIO_KX022A");
1376 
1377 MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver");
1378 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
1379 MODULE_LICENSE("GPL");
1380