xref: /linux/drivers/iio/accel/bmc150-accel-core.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38 
39 #include "bmc150-accel.h"
40 
41 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
43 
44 #define BMC150_ACCEL_REG_CHIP_ID		0x00
45 
46 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
52 
53 #define BMC150_ACCEL_REG_PMU_LPW		0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
58 
59 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
60 
61 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
65 
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW		0x10
68 #define BMC150_ACCEL_DEF_BW			125
69 
70 #define BMC150_ACCEL_REG_RESET			0x14
71 #define BMC150_ACCEL_RESET_VAL			0xB6
72 
73 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
75 
76 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
85 
86 #define BMC150_ACCEL_REG_INT_EN_0		0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
90 
91 #define BMC150_ACCEL_REG_INT_EN_1		0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
98 
99 #define BMC150_ACCEL_REG_INT_5			0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
101 
102 #define BMC150_ACCEL_REG_INT_6			0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
104 
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 
110 #define BMC150_ACCEL_REG_XOUT_L		0x02
111 
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
113 
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
116 #define BMC150_ACCEL_SLEEP_1_MS		0x06
117 #define BMC150_ACCEL_SLEEP_2_MS		0x07
118 #define BMC150_ACCEL_SLEEP_4_MS		0x08
119 #define BMC150_ACCEL_SLEEP_6_MS		0x09
120 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
126 
127 #define BMC150_ACCEL_REG_TEMP			0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL		24
129 
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
132 
133 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH		32
138 
139 enum bmc150_accel_axis {
140 	AXIS_X,
141 	AXIS_Y,
142 	AXIS_Z,
143 	AXIS_MAX,
144 };
145 
146 enum bmc150_power_modes {
147 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 	BMC150_ACCEL_SLEEP_MODE_LPM,
150 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152 
153 struct bmc150_scale_info {
154 	int scale;
155 	u8 reg_range;
156 };
157 
158 struct bmc150_accel_chip_info {
159 	const char *name;
160 	u8 chip_id;
161 	const struct iio_chan_spec *channels;
162 	int num_channels;
163 	const struct bmc150_scale_info scale_table[4];
164 };
165 
166 struct bmc150_accel_interrupt {
167 	const struct bmc150_accel_interrupt_info *info;
168 	atomic_t users;
169 };
170 
171 struct bmc150_accel_trigger {
172 	struct bmc150_accel_data *data;
173 	struct iio_trigger *indio_trig;
174 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 	int intr;
176 	bool enabled;
177 };
178 
179 enum bmc150_accel_interrupt_id {
180 	BMC150_ACCEL_INT_DATA_READY,
181 	BMC150_ACCEL_INT_ANY_MOTION,
182 	BMC150_ACCEL_INT_WATERMARK,
183 	BMC150_ACCEL_INTERRUPTS,
184 };
185 
186 enum bmc150_accel_trigger_id {
187 	BMC150_ACCEL_TRIGGER_DATA_READY,
188 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 	BMC150_ACCEL_TRIGGERS,
190 };
191 
192 struct bmc150_accel_data {
193 	struct regmap *regmap;
194 	int irq;
195 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197 	struct mutex mutex;
198 	u8 fifo_mode, watermark;
199 	s16 buffer[8];
200 	u8 bw_bits;
201 	u32 slope_dur;
202 	u32 slope_thres;
203 	u32 range;
204 	int ev_enable_state;
205 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206 	const struct bmc150_accel_chip_info *chip_info;
207 };
208 
209 static const struct {
210 	int val;
211 	int val2;
212 	u8 bw_bits;
213 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
214 				     {31, 260000, 0x09},
215 				     {62, 500000, 0x0A},
216 				     {125, 0, 0x0B},
217 				     {250, 0, 0x0C},
218 				     {500, 0, 0x0D},
219 				     {1000, 0, 0x0E},
220 				     {2000, 0, 0x0F} };
221 
222 static const struct {
223 	int bw_bits;
224 	int msec;
225 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
226 				     {0x09, 32},
227 				     {0x0A, 16},
228 				     {0x0B, 8},
229 				     {0x0C, 4},
230 				     {0x0D, 2},
231 				     {0x0E, 1},
232 				     {0x0F, 1} };
233 
234 static const struct {
235 	int sleep_dur;
236 	u8 reg_value;
237 } bmc150_accel_sleep_value_table[] = { {0, 0},
238 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
239 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
240 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
241 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
242 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
243 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
244 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
245 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
246 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
247 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
248 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
249 
250 const struct regmap_config bmc150_regmap_conf = {
251 	.reg_bits = 8,
252 	.val_bits = 8,
253 	.max_register = 0x3f,
254 };
255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
256 
257 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
258 				 enum bmc150_power_modes mode,
259 				 int dur_us)
260 {
261 	struct device *dev = regmap_get_device(data->regmap);
262 	int i;
263 	int ret;
264 	u8 lpw_bits;
265 	int dur_val = -1;
266 
267 	if (dur_us > 0) {
268 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
269 									 ++i) {
270 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
271 									dur_us)
272 				dur_val =
273 				bmc150_accel_sleep_value_table[i].reg_value;
274 		}
275 	} else {
276 		dur_val = 0;
277 	}
278 
279 	if (dur_val < 0)
280 		return -EINVAL;
281 
282 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
283 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
284 
285 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286 
287 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288 	if (ret < 0) {
289 		dev_err(dev, "Error writing reg_pmu_lpw\n");
290 		return ret;
291 	}
292 
293 	return 0;
294 }
295 
296 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
297 			       int val2)
298 {
299 	int i;
300 	int ret;
301 
302 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
303 		if (bmc150_accel_samp_freq_table[i].val == val &&
304 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
305 			ret = regmap_write(data->regmap,
306 				BMC150_ACCEL_REG_PMU_BW,
307 				bmc150_accel_samp_freq_table[i].bw_bits);
308 			if (ret < 0)
309 				return ret;
310 
311 			data->bw_bits =
312 				bmc150_accel_samp_freq_table[i].bw_bits;
313 			return 0;
314 		}
315 	}
316 
317 	return -EINVAL;
318 }
319 
320 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
321 {
322 	struct device *dev = regmap_get_device(data->regmap);
323 	int ret;
324 
325 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326 					data->slope_thres);
327 	if (ret < 0) {
328 		dev_err(dev, "Error writing reg_int_6\n");
329 		return ret;
330 	}
331 
332 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
333 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334 	if (ret < 0) {
335 		dev_err(dev, "Error updating reg_int_5\n");
336 		return ret;
337 	}
338 
339 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
340 
341 	return ret;
342 }
343 
344 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
345 					 bool state)
346 {
347 	if (state)
348 		return bmc150_accel_update_slope(t->data);
349 
350 	return 0;
351 }
352 
353 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
354 			       int *val2)
355 {
356 	int i;
357 
358 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
359 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
360 			*val = bmc150_accel_samp_freq_table[i].val;
361 			*val2 = bmc150_accel_samp_freq_table[i].val2;
362 			return IIO_VAL_INT_PLUS_MICRO;
363 		}
364 	}
365 
366 	return -EINVAL;
367 }
368 
369 #ifdef CONFIG_PM
370 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
371 {
372 	int i;
373 
374 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
375 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
376 			return bmc150_accel_sample_upd_time[i].msec;
377 	}
378 
379 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
380 }
381 
382 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
383 {
384 	struct device *dev = regmap_get_device(data->regmap);
385 	int ret;
386 
387 	if (on) {
388 		ret = pm_runtime_get_sync(dev);
389 	} else {
390 		pm_runtime_mark_last_busy(dev);
391 		ret = pm_runtime_put_autosuspend(dev);
392 	}
393 
394 	if (ret < 0) {
395 		dev_err(dev,
396 			"Failed: bmc150_accel_set_power_state for %d\n", on);
397 		if (on)
398 			pm_runtime_put_noidle(dev);
399 
400 		return ret;
401 	}
402 
403 	return 0;
404 }
405 #else
406 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
407 {
408 	return 0;
409 }
410 #endif
411 
412 static const struct bmc150_accel_interrupt_info {
413 	u8 map_reg;
414 	u8 map_bitmask;
415 	u8 en_reg;
416 	u8 en_bitmask;
417 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
418 	{ /* data ready interrupt */
419 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
420 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
421 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
422 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
423 	},
424 	{  /* motion interrupt */
425 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
426 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
427 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
428 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
429 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
430 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
431 	},
432 	{ /* fifo watermark interrupt */
433 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
434 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
435 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
436 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
437 	},
438 };
439 
440 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
441 					  struct bmc150_accel_data *data)
442 {
443 	int i;
444 
445 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
446 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
447 }
448 
449 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
450 				      bool state)
451 {
452 	struct device *dev = regmap_get_device(data->regmap);
453 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
454 	const struct bmc150_accel_interrupt_info *info = intr->info;
455 	int ret;
456 
457 	if (state) {
458 		if (atomic_inc_return(&intr->users) > 1)
459 			return 0;
460 	} else {
461 		if (atomic_dec_return(&intr->users) > 0)
462 			return 0;
463 	}
464 
465 	/*
466 	 * We will expect the enable and disable to do operation in reverse
467 	 * order. This will happen here anyway, as our resume operation uses
468 	 * sync mode runtime pm calls. The suspend operation will be delayed
469 	 * by autosuspend delay.
470 	 * So the disable operation will still happen in reverse order of
471 	 * enable operation. When runtime pm is disabled the mode is always on,
472 	 * so sequence doesn't matter.
473 	 */
474 	ret = bmc150_accel_set_power_state(data, state);
475 	if (ret < 0)
476 		return ret;
477 
478 	/* map the interrupt to the appropriate pins */
479 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
480 				 (state ? info->map_bitmask : 0));
481 	if (ret < 0) {
482 		dev_err(dev, "Error updating reg_int_map\n");
483 		goto out_fix_power_state;
484 	}
485 
486 	/* enable/disable the interrupt */
487 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
488 				 (state ? info->en_bitmask : 0));
489 	if (ret < 0) {
490 		dev_err(dev, "Error updating reg_int_en\n");
491 		goto out_fix_power_state;
492 	}
493 
494 	return 0;
495 
496 out_fix_power_state:
497 	bmc150_accel_set_power_state(data, false);
498 	return ret;
499 }
500 
501 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
502 {
503 	struct device *dev = regmap_get_device(data->regmap);
504 	int ret, i;
505 
506 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
507 		if (data->chip_info->scale_table[i].scale == val) {
508 			ret = regmap_write(data->regmap,
509 				     BMC150_ACCEL_REG_PMU_RANGE,
510 				     data->chip_info->scale_table[i].reg_range);
511 			if (ret < 0) {
512 				dev_err(dev, "Error writing pmu_range\n");
513 				return ret;
514 			}
515 
516 			data->range = data->chip_info->scale_table[i].reg_range;
517 			return 0;
518 		}
519 	}
520 
521 	return -EINVAL;
522 }
523 
524 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
525 {
526 	struct device *dev = regmap_get_device(data->regmap);
527 	int ret;
528 	unsigned int value;
529 
530 	mutex_lock(&data->mutex);
531 
532 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
533 	if (ret < 0) {
534 		dev_err(dev, "Error reading reg_temp\n");
535 		mutex_unlock(&data->mutex);
536 		return ret;
537 	}
538 	*val = sign_extend32(value, 7);
539 
540 	mutex_unlock(&data->mutex);
541 
542 	return IIO_VAL_INT;
543 }
544 
545 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
546 				 struct iio_chan_spec const *chan,
547 				 int *val)
548 {
549 	struct device *dev = regmap_get_device(data->regmap);
550 	int ret;
551 	int axis = chan->scan_index;
552 	__le16 raw_val;
553 
554 	mutex_lock(&data->mutex);
555 	ret = bmc150_accel_set_power_state(data, true);
556 	if (ret < 0) {
557 		mutex_unlock(&data->mutex);
558 		return ret;
559 	}
560 
561 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
562 			       &raw_val, sizeof(raw_val));
563 	if (ret < 0) {
564 		dev_err(dev, "Error reading axis %d\n", axis);
565 		bmc150_accel_set_power_state(data, false);
566 		mutex_unlock(&data->mutex);
567 		return ret;
568 	}
569 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
570 			     chan->scan_type.realbits - 1);
571 	ret = bmc150_accel_set_power_state(data, false);
572 	mutex_unlock(&data->mutex);
573 	if (ret < 0)
574 		return ret;
575 
576 	return IIO_VAL_INT;
577 }
578 
579 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
580 				 struct iio_chan_spec const *chan,
581 				 int *val, int *val2, long mask)
582 {
583 	struct bmc150_accel_data *data = iio_priv(indio_dev);
584 	int ret;
585 
586 	switch (mask) {
587 	case IIO_CHAN_INFO_RAW:
588 		switch (chan->type) {
589 		case IIO_TEMP:
590 			return bmc150_accel_get_temp(data, val);
591 		case IIO_ACCEL:
592 			if (iio_buffer_enabled(indio_dev))
593 				return -EBUSY;
594 			else
595 				return bmc150_accel_get_axis(data, chan, val);
596 		default:
597 			return -EINVAL;
598 		}
599 	case IIO_CHAN_INFO_OFFSET:
600 		if (chan->type == IIO_TEMP) {
601 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
602 			return IIO_VAL_INT;
603 		} else {
604 			return -EINVAL;
605 		}
606 	case IIO_CHAN_INFO_SCALE:
607 		*val = 0;
608 		switch (chan->type) {
609 		case IIO_TEMP:
610 			*val2 = 500000;
611 			return IIO_VAL_INT_PLUS_MICRO;
612 		case IIO_ACCEL:
613 		{
614 			int i;
615 			const struct bmc150_scale_info *si;
616 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
617 
618 			for (i = 0; i < st_size; ++i) {
619 				si = &data->chip_info->scale_table[i];
620 				if (si->reg_range == data->range) {
621 					*val2 = si->scale;
622 					return IIO_VAL_INT_PLUS_MICRO;
623 				}
624 			}
625 			return -EINVAL;
626 		}
627 		default:
628 			return -EINVAL;
629 		}
630 	case IIO_CHAN_INFO_SAMP_FREQ:
631 		mutex_lock(&data->mutex);
632 		ret = bmc150_accel_get_bw(data, val, val2);
633 		mutex_unlock(&data->mutex);
634 		return ret;
635 	default:
636 		return -EINVAL;
637 	}
638 }
639 
640 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
641 				  struct iio_chan_spec const *chan,
642 				  int val, int val2, long mask)
643 {
644 	struct bmc150_accel_data *data = iio_priv(indio_dev);
645 	int ret;
646 
647 	switch (mask) {
648 	case IIO_CHAN_INFO_SAMP_FREQ:
649 		mutex_lock(&data->mutex);
650 		ret = bmc150_accel_set_bw(data, val, val2);
651 		mutex_unlock(&data->mutex);
652 		break;
653 	case IIO_CHAN_INFO_SCALE:
654 		if (val)
655 			return -EINVAL;
656 
657 		mutex_lock(&data->mutex);
658 		ret = bmc150_accel_set_scale(data, val2);
659 		mutex_unlock(&data->mutex);
660 		return ret;
661 	default:
662 		ret = -EINVAL;
663 	}
664 
665 	return ret;
666 }
667 
668 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
669 				   const struct iio_chan_spec *chan,
670 				   enum iio_event_type type,
671 				   enum iio_event_direction dir,
672 				   enum iio_event_info info,
673 				   int *val, int *val2)
674 {
675 	struct bmc150_accel_data *data = iio_priv(indio_dev);
676 
677 	*val2 = 0;
678 	switch (info) {
679 	case IIO_EV_INFO_VALUE:
680 		*val = data->slope_thres;
681 		break;
682 	case IIO_EV_INFO_PERIOD:
683 		*val = data->slope_dur;
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 
689 	return IIO_VAL_INT;
690 }
691 
692 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
693 				    const struct iio_chan_spec *chan,
694 				    enum iio_event_type type,
695 				    enum iio_event_direction dir,
696 				    enum iio_event_info info,
697 				    int val, int val2)
698 {
699 	struct bmc150_accel_data *data = iio_priv(indio_dev);
700 
701 	if (data->ev_enable_state)
702 		return -EBUSY;
703 
704 	switch (info) {
705 	case IIO_EV_INFO_VALUE:
706 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
707 		break;
708 	case IIO_EV_INFO_PERIOD:
709 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
710 		break;
711 	default:
712 		return -EINVAL;
713 	}
714 
715 	return 0;
716 }
717 
718 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
719 					  const struct iio_chan_spec *chan,
720 					  enum iio_event_type type,
721 					  enum iio_event_direction dir)
722 {
723 	struct bmc150_accel_data *data = iio_priv(indio_dev);
724 
725 	return data->ev_enable_state;
726 }
727 
728 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
729 					   const struct iio_chan_spec *chan,
730 					   enum iio_event_type type,
731 					   enum iio_event_direction dir,
732 					   int state)
733 {
734 	struct bmc150_accel_data *data = iio_priv(indio_dev);
735 	int ret;
736 
737 	if (state == data->ev_enable_state)
738 		return 0;
739 
740 	mutex_lock(&data->mutex);
741 
742 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
743 					 state);
744 	if (ret < 0) {
745 		mutex_unlock(&data->mutex);
746 		return ret;
747 	}
748 
749 	data->ev_enable_state = state;
750 	mutex_unlock(&data->mutex);
751 
752 	return 0;
753 }
754 
755 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
756 					 struct iio_trigger *trig)
757 {
758 	struct bmc150_accel_data *data = iio_priv(indio_dev);
759 	int i;
760 
761 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
762 		if (data->triggers[i].indio_trig == trig)
763 			return 0;
764 	}
765 
766 	return -EINVAL;
767 }
768 
769 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
770 					       struct device_attribute *attr,
771 					       char *buf)
772 {
773 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
774 	struct bmc150_accel_data *data = iio_priv(indio_dev);
775 	int wm;
776 
777 	mutex_lock(&data->mutex);
778 	wm = data->watermark;
779 	mutex_unlock(&data->mutex);
780 
781 	return sprintf(buf, "%d\n", wm);
782 }
783 
784 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
785 					   struct device_attribute *attr,
786 					   char *buf)
787 {
788 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
789 	struct bmc150_accel_data *data = iio_priv(indio_dev);
790 	bool state;
791 
792 	mutex_lock(&data->mutex);
793 	state = data->fifo_mode;
794 	mutex_unlock(&data->mutex);
795 
796 	return sprintf(buf, "%d\n", state);
797 }
798 
799 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
800 static IIO_CONST_ATTR(hwfifo_watermark_max,
801 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
802 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
803 		       bmc150_accel_get_fifo_state, NULL, 0);
804 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
805 		       bmc150_accel_get_fifo_watermark, NULL, 0);
806 
807 static const struct attribute *bmc150_accel_fifo_attributes[] = {
808 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
809 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
810 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
811 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
812 	NULL,
813 };
814 
815 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
816 {
817 	struct bmc150_accel_data *data = iio_priv(indio_dev);
818 
819 	if (val > BMC150_ACCEL_FIFO_LENGTH)
820 		val = BMC150_ACCEL_FIFO_LENGTH;
821 
822 	mutex_lock(&data->mutex);
823 	data->watermark = val;
824 	mutex_unlock(&data->mutex);
825 
826 	return 0;
827 }
828 
829 /*
830  * We must read at least one full frame in one burst, otherwise the rest of the
831  * frame data is discarded.
832  */
833 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
834 				      char *buffer, int samples)
835 {
836 	struct device *dev = regmap_get_device(data->regmap);
837 	int sample_length = 3 * 2;
838 	int ret;
839 	int total_length = samples * sample_length;
840 
841 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
842 			      buffer, total_length);
843 	if (ret)
844 		dev_err(dev,
845 			"Error transferring data from fifo: %d\n", ret);
846 
847 	return ret;
848 }
849 
850 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
851 				     unsigned samples, bool irq)
852 {
853 	struct bmc150_accel_data *data = iio_priv(indio_dev);
854 	struct device *dev = regmap_get_device(data->regmap);
855 	int ret, i;
856 	u8 count;
857 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
858 	int64_t tstamp;
859 	uint64_t sample_period;
860 	unsigned int val;
861 
862 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
863 	if (ret < 0) {
864 		dev_err(dev, "Error reading reg_fifo_status\n");
865 		return ret;
866 	}
867 
868 	count = val & 0x7F;
869 
870 	if (!count)
871 		return 0;
872 
873 	/*
874 	 * If we getting called from IRQ handler we know the stored timestamp is
875 	 * fairly accurate for the last stored sample. Otherwise, if we are
876 	 * called as a result of a read operation from userspace and hence
877 	 * before the watermark interrupt was triggered, take a timestamp
878 	 * now. We can fall anywhere in between two samples so the error in this
879 	 * case is at most one sample period.
880 	 */
881 	if (!irq) {
882 		data->old_timestamp = data->timestamp;
883 		data->timestamp = iio_get_time_ns(indio_dev);
884 	}
885 
886 	/*
887 	 * Approximate timestamps for each of the sample based on the sampling
888 	 * frequency, timestamp for last sample and number of samples.
889 	 *
890 	 * Note that we can't use the current bandwidth settings to compute the
891 	 * sample period because the sample rate varies with the device
892 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
893 	 * small variation adds when we store a large number of samples and
894 	 * creates significant jitter between the last and first samples in
895 	 * different batches (e.g. 32ms vs 21ms).
896 	 *
897 	 * To avoid this issue we compute the actual sample period ourselves
898 	 * based on the timestamp delta between the last two flush operations.
899 	 */
900 	sample_period = (data->timestamp - data->old_timestamp);
901 	do_div(sample_period, count);
902 	tstamp = data->timestamp - (count - 1) * sample_period;
903 
904 	if (samples && count > samples)
905 		count = samples;
906 
907 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
908 	if (ret)
909 		return ret;
910 
911 	/*
912 	 * Ideally we want the IIO core to handle the demux when running in fifo
913 	 * mode but not when running in triggered buffer mode. Unfortunately
914 	 * this does not seem to be possible, so stick with driver demux for
915 	 * now.
916 	 */
917 	for (i = 0; i < count; i++) {
918 		u16 sample[8];
919 		int j, bit;
920 
921 		j = 0;
922 		for_each_set_bit(bit, indio_dev->active_scan_mask,
923 				 indio_dev->masklength)
924 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
925 
926 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
927 
928 		tstamp += sample_period;
929 	}
930 
931 	return count;
932 }
933 
934 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
935 {
936 	struct bmc150_accel_data *data = iio_priv(indio_dev);
937 	int ret;
938 
939 	mutex_lock(&data->mutex);
940 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
941 	mutex_unlock(&data->mutex);
942 
943 	return ret;
944 }
945 
946 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
947 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
948 
949 static struct attribute *bmc150_accel_attributes[] = {
950 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
951 	NULL,
952 };
953 
954 static const struct attribute_group bmc150_accel_attrs_group = {
955 	.attrs = bmc150_accel_attributes,
956 };
957 
958 static const struct iio_event_spec bmc150_accel_event = {
959 		.type = IIO_EV_TYPE_ROC,
960 		.dir = IIO_EV_DIR_EITHER,
961 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
962 				 BIT(IIO_EV_INFO_ENABLE) |
963 				 BIT(IIO_EV_INFO_PERIOD)
964 };
965 
966 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
967 	.type = IIO_ACCEL,						\
968 	.modified = 1,							\
969 	.channel2 = IIO_MOD_##_axis,					\
970 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
971 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
972 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
973 	.scan_index = AXIS_##_axis,					\
974 	.scan_type = {							\
975 		.sign = 's',						\
976 		.realbits = (bits),					\
977 		.storagebits = 16,					\
978 		.shift = 16 - (bits),					\
979 		.endianness = IIO_LE,					\
980 	},								\
981 	.event_spec = &bmc150_accel_event,				\
982 	.num_event_specs = 1						\
983 }
984 
985 #define BMC150_ACCEL_CHANNELS(bits) {					\
986 	{								\
987 		.type = IIO_TEMP,					\
988 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
989 				      BIT(IIO_CHAN_INFO_SCALE) |	\
990 				      BIT(IIO_CHAN_INFO_OFFSET),	\
991 		.scan_index = -1,					\
992 	},								\
993 	BMC150_ACCEL_CHANNEL(X, bits),					\
994 	BMC150_ACCEL_CHANNEL(Y, bits),					\
995 	BMC150_ACCEL_CHANNEL(Z, bits),					\
996 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
997 }
998 
999 static const struct iio_chan_spec bma222e_accel_channels[] =
1000 	BMC150_ACCEL_CHANNELS(8);
1001 static const struct iio_chan_spec bma250e_accel_channels[] =
1002 	BMC150_ACCEL_CHANNELS(10);
1003 static const struct iio_chan_spec bmc150_accel_channels[] =
1004 	BMC150_ACCEL_CHANNELS(12);
1005 static const struct iio_chan_spec bma280_accel_channels[] =
1006 	BMC150_ACCEL_CHANNELS(14);
1007 
1008 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1009 	[bmc150] = {
1010 		.name = "BMC150A",
1011 		.chip_id = 0xFA,
1012 		.channels = bmc150_accel_channels,
1013 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1014 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1015 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1016 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1017 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1018 	},
1019 	[bmi055] = {
1020 		.name = "BMI055A",
1021 		.chip_id = 0xFA,
1022 		.channels = bmc150_accel_channels,
1023 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1024 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1025 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1026 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1027 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1028 	},
1029 	[bma255] = {
1030 		.name = "BMA0255",
1031 		.chip_id = 0xFA,
1032 		.channels = bmc150_accel_channels,
1033 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1034 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1035 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1036 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1037 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1038 	},
1039 	[bma250e] = {
1040 		.name = "BMA250E",
1041 		.chip_id = 0xF9,
1042 		.channels = bma250e_accel_channels,
1043 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1044 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1045 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1046 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1047 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1048 	},
1049 	[bma222e] = {
1050 		.name = "BMA222E",
1051 		.chip_id = 0xF8,
1052 		.channels = bma222e_accel_channels,
1053 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1054 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1055 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1056 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1057 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1058 	},
1059 	[bma280] = {
1060 		.name = "BMA0280",
1061 		.chip_id = 0xFB,
1062 		.channels = bma280_accel_channels,
1063 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1064 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1065 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1066 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1067 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1068 	},
1069 };
1070 
1071 static const struct iio_info bmc150_accel_info = {
1072 	.attrs			= &bmc150_accel_attrs_group,
1073 	.read_raw		= bmc150_accel_read_raw,
1074 	.write_raw		= bmc150_accel_write_raw,
1075 	.read_event_value	= bmc150_accel_read_event,
1076 	.write_event_value	= bmc150_accel_write_event,
1077 	.write_event_config	= bmc150_accel_write_event_config,
1078 	.read_event_config	= bmc150_accel_read_event_config,
1079 };
1080 
1081 static const struct iio_info bmc150_accel_info_fifo = {
1082 	.attrs			= &bmc150_accel_attrs_group,
1083 	.read_raw		= bmc150_accel_read_raw,
1084 	.write_raw		= bmc150_accel_write_raw,
1085 	.read_event_value	= bmc150_accel_read_event,
1086 	.write_event_value	= bmc150_accel_write_event,
1087 	.write_event_config	= bmc150_accel_write_event_config,
1088 	.read_event_config	= bmc150_accel_read_event_config,
1089 	.validate_trigger	= bmc150_accel_validate_trigger,
1090 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1091 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1092 };
1093 
1094 static const unsigned long bmc150_accel_scan_masks[] = {
1095 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1096 					0};
1097 
1098 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1099 {
1100 	struct iio_poll_func *pf = p;
1101 	struct iio_dev *indio_dev = pf->indio_dev;
1102 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1103 	int ret;
1104 
1105 	mutex_lock(&data->mutex);
1106 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1107 			       data->buffer, AXIS_MAX * 2);
1108 	mutex_unlock(&data->mutex);
1109 	if (ret < 0)
1110 		goto err_read;
1111 
1112 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1113 					   pf->timestamp);
1114 err_read:
1115 	iio_trigger_notify_done(indio_dev->trig);
1116 
1117 	return IRQ_HANDLED;
1118 }
1119 
1120 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1121 {
1122 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1123 	struct bmc150_accel_data *data = t->data;
1124 	struct device *dev = regmap_get_device(data->regmap);
1125 	int ret;
1126 
1127 	/* new data interrupts don't need ack */
1128 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1129 		return 0;
1130 
1131 	mutex_lock(&data->mutex);
1132 	/* clear any latched interrupt */
1133 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1134 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1135 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1136 	mutex_unlock(&data->mutex);
1137 	if (ret < 0) {
1138 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1139 		return ret;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1146 					  bool state)
1147 {
1148 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149 	struct bmc150_accel_data *data = t->data;
1150 	int ret;
1151 
1152 	mutex_lock(&data->mutex);
1153 
1154 	if (t->enabled == state) {
1155 		mutex_unlock(&data->mutex);
1156 		return 0;
1157 	}
1158 
1159 	if (t->setup) {
1160 		ret = t->setup(t, state);
1161 		if (ret < 0) {
1162 			mutex_unlock(&data->mutex);
1163 			return ret;
1164 		}
1165 	}
1166 
1167 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1168 	if (ret < 0) {
1169 		mutex_unlock(&data->mutex);
1170 		return ret;
1171 	}
1172 
1173 	t->enabled = state;
1174 
1175 	mutex_unlock(&data->mutex);
1176 
1177 	return ret;
1178 }
1179 
1180 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1181 	.set_trigger_state = bmc150_accel_trigger_set_state,
1182 	.try_reenable = bmc150_accel_trig_try_reen,
1183 };
1184 
1185 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1186 {
1187 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1188 	struct device *dev = regmap_get_device(data->regmap);
1189 	int dir;
1190 	int ret;
1191 	unsigned int val;
1192 
1193 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1194 	if (ret < 0) {
1195 		dev_err(dev, "Error reading reg_int_status_2\n");
1196 		return ret;
1197 	}
1198 
1199 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1200 		dir = IIO_EV_DIR_FALLING;
1201 	else
1202 		dir = IIO_EV_DIR_RISING;
1203 
1204 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1205 		iio_push_event(indio_dev,
1206 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1207 						  0,
1208 						  IIO_MOD_X,
1209 						  IIO_EV_TYPE_ROC,
1210 						  dir),
1211 			       data->timestamp);
1212 
1213 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1214 		iio_push_event(indio_dev,
1215 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1216 						  0,
1217 						  IIO_MOD_Y,
1218 						  IIO_EV_TYPE_ROC,
1219 						  dir),
1220 			       data->timestamp);
1221 
1222 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1223 		iio_push_event(indio_dev,
1224 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225 						  0,
1226 						  IIO_MOD_Z,
1227 						  IIO_EV_TYPE_ROC,
1228 						  dir),
1229 			       data->timestamp);
1230 
1231 	return ret;
1232 }
1233 
1234 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1235 {
1236 	struct iio_dev *indio_dev = private;
1237 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1238 	struct device *dev = regmap_get_device(data->regmap);
1239 	bool ack = false;
1240 	int ret;
1241 
1242 	mutex_lock(&data->mutex);
1243 
1244 	if (data->fifo_mode) {
1245 		ret = __bmc150_accel_fifo_flush(indio_dev,
1246 						BMC150_ACCEL_FIFO_LENGTH, true);
1247 		if (ret > 0)
1248 			ack = true;
1249 	}
1250 
1251 	if (data->ev_enable_state) {
1252 		ret = bmc150_accel_handle_roc_event(indio_dev);
1253 		if (ret > 0)
1254 			ack = true;
1255 	}
1256 
1257 	if (ack) {
1258 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1259 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1260 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1261 		if (ret)
1262 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1263 
1264 		ret = IRQ_HANDLED;
1265 	} else {
1266 		ret = IRQ_NONE;
1267 	}
1268 
1269 	mutex_unlock(&data->mutex);
1270 
1271 	return ret;
1272 }
1273 
1274 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1275 {
1276 	struct iio_dev *indio_dev = private;
1277 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1278 	bool ack = false;
1279 	int i;
1280 
1281 	data->old_timestamp = data->timestamp;
1282 	data->timestamp = iio_get_time_ns(indio_dev);
1283 
1284 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1285 		if (data->triggers[i].enabled) {
1286 			iio_trigger_poll(data->triggers[i].indio_trig);
1287 			ack = true;
1288 			break;
1289 		}
1290 	}
1291 
1292 	if (data->ev_enable_state || data->fifo_mode)
1293 		return IRQ_WAKE_THREAD;
1294 
1295 	if (ack)
1296 		return IRQ_HANDLED;
1297 
1298 	return IRQ_NONE;
1299 }
1300 
1301 static const struct {
1302 	int intr;
1303 	const char *name;
1304 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1305 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1306 	{
1307 		.intr = 0,
1308 		.name = "%s-dev%d",
1309 	},
1310 	{
1311 		.intr = 1,
1312 		.name = "%s-any-motion-dev%d",
1313 		.setup = bmc150_accel_any_motion_setup,
1314 	},
1315 };
1316 
1317 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1318 					     int from)
1319 {
1320 	int i;
1321 
1322 	for (i = from; i >= 0; i--) {
1323 		if (data->triggers[i].indio_trig) {
1324 			iio_trigger_unregister(data->triggers[i].indio_trig);
1325 			data->triggers[i].indio_trig = NULL;
1326 		}
1327 	}
1328 }
1329 
1330 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1331 				       struct bmc150_accel_data *data)
1332 {
1333 	struct device *dev = regmap_get_device(data->regmap);
1334 	int i, ret;
1335 
1336 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1337 		struct bmc150_accel_trigger *t = &data->triggers[i];
1338 
1339 		t->indio_trig = devm_iio_trigger_alloc(dev,
1340 					bmc150_accel_triggers[i].name,
1341 						       indio_dev->name,
1342 						       indio_dev->id);
1343 		if (!t->indio_trig) {
1344 			ret = -ENOMEM;
1345 			break;
1346 		}
1347 
1348 		t->indio_trig->dev.parent = dev;
1349 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1350 		t->intr = bmc150_accel_triggers[i].intr;
1351 		t->data = data;
1352 		t->setup = bmc150_accel_triggers[i].setup;
1353 		iio_trigger_set_drvdata(t->indio_trig, t);
1354 
1355 		ret = iio_trigger_register(t->indio_trig);
1356 		if (ret)
1357 			break;
1358 	}
1359 
1360 	if (ret)
1361 		bmc150_accel_unregister_triggers(data, i - 1);
1362 
1363 	return ret;
1364 }
1365 
1366 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1367 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1368 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1369 
1370 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1371 {
1372 	struct device *dev = regmap_get_device(data->regmap);
1373 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1374 	int ret;
1375 
1376 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1377 	if (ret < 0) {
1378 		dev_err(dev, "Error writing reg_fifo_config1\n");
1379 		return ret;
1380 	}
1381 
1382 	if (!data->fifo_mode)
1383 		return 0;
1384 
1385 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1386 			   data->watermark);
1387 	if (ret < 0)
1388 		dev_err(dev, "Error writing reg_fifo_config0\n");
1389 
1390 	return ret;
1391 }
1392 
1393 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1394 {
1395 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1396 
1397 	return bmc150_accel_set_power_state(data, true);
1398 }
1399 
1400 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1401 {
1402 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1403 	int ret = 0;
1404 
1405 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1406 		return iio_triggered_buffer_postenable(indio_dev);
1407 
1408 	mutex_lock(&data->mutex);
1409 
1410 	if (!data->watermark)
1411 		goto out;
1412 
1413 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1414 					 true);
1415 	if (ret)
1416 		goto out;
1417 
1418 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1419 
1420 	ret = bmc150_accel_fifo_set_mode(data);
1421 	if (ret) {
1422 		data->fifo_mode = 0;
1423 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1424 					   false);
1425 	}
1426 
1427 out:
1428 	mutex_unlock(&data->mutex);
1429 
1430 	return ret;
1431 }
1432 
1433 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1434 {
1435 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1436 
1437 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1438 		return iio_triggered_buffer_predisable(indio_dev);
1439 
1440 	mutex_lock(&data->mutex);
1441 
1442 	if (!data->fifo_mode)
1443 		goto out;
1444 
1445 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1446 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1447 	data->fifo_mode = 0;
1448 	bmc150_accel_fifo_set_mode(data);
1449 
1450 out:
1451 	mutex_unlock(&data->mutex);
1452 
1453 	return 0;
1454 }
1455 
1456 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1457 {
1458 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1459 
1460 	return bmc150_accel_set_power_state(data, false);
1461 }
1462 
1463 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1464 	.preenable = bmc150_accel_buffer_preenable,
1465 	.postenable = bmc150_accel_buffer_postenable,
1466 	.predisable = bmc150_accel_buffer_predisable,
1467 	.postdisable = bmc150_accel_buffer_postdisable,
1468 };
1469 
1470 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1471 {
1472 	struct device *dev = regmap_get_device(data->regmap);
1473 	int ret, i;
1474 	unsigned int val;
1475 
1476 	/*
1477 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1478 	 * reset is required according to the data sheets of supported chips.
1479 	 */
1480 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1481 		     BMC150_ACCEL_RESET_VAL);
1482 	usleep_range(1800, 2500);
1483 
1484 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1485 	if (ret < 0) {
1486 		dev_err(dev, "Error: Reading chip id\n");
1487 		return ret;
1488 	}
1489 
1490 	dev_dbg(dev, "Chip Id %x\n", val);
1491 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1492 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1493 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1494 			break;
1495 		}
1496 	}
1497 
1498 	if (!data->chip_info) {
1499 		dev_err(dev, "Invalid chip %x\n", val);
1500 		return -ENODEV;
1501 	}
1502 
1503 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1504 	if (ret < 0)
1505 		return ret;
1506 
1507 	/* Set Bandwidth */
1508 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1509 	if (ret < 0)
1510 		return ret;
1511 
1512 	/* Set Default Range */
1513 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1514 			   BMC150_ACCEL_DEF_RANGE_4G);
1515 	if (ret < 0) {
1516 		dev_err(dev, "Error writing reg_pmu_range\n");
1517 		return ret;
1518 	}
1519 
1520 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1521 
1522 	/* Set default slope duration and thresholds */
1523 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1524 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1525 	ret = bmc150_accel_update_slope(data);
1526 	if (ret < 0)
1527 		return ret;
1528 
1529 	/* Set default as latched interrupts */
1530 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1531 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1532 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1533 	if (ret < 0) {
1534 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1535 		return ret;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1542 			    const char *name, bool block_supported)
1543 {
1544 	struct bmc150_accel_data *data;
1545 	struct iio_dev *indio_dev;
1546 	int ret;
1547 
1548 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1549 	if (!indio_dev)
1550 		return -ENOMEM;
1551 
1552 	data = iio_priv(indio_dev);
1553 	dev_set_drvdata(dev, indio_dev);
1554 	data->irq = irq;
1555 
1556 	data->regmap = regmap;
1557 
1558 	ret = bmc150_accel_chip_init(data);
1559 	if (ret < 0)
1560 		return ret;
1561 
1562 	mutex_init(&data->mutex);
1563 
1564 	indio_dev->dev.parent = dev;
1565 	indio_dev->channels = data->chip_info->channels;
1566 	indio_dev->num_channels = data->chip_info->num_channels;
1567 	indio_dev->name = name ? name : data->chip_info->name;
1568 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1569 	indio_dev->modes = INDIO_DIRECT_MODE;
1570 	indio_dev->info = &bmc150_accel_info;
1571 
1572 	ret = iio_triggered_buffer_setup(indio_dev,
1573 					 &iio_pollfunc_store_time,
1574 					 bmc150_accel_trigger_handler,
1575 					 &bmc150_accel_buffer_ops);
1576 	if (ret < 0) {
1577 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1578 		return ret;
1579 	}
1580 
1581 	if (data->irq > 0) {
1582 		ret = devm_request_threaded_irq(
1583 						dev, data->irq,
1584 						bmc150_accel_irq_handler,
1585 						bmc150_accel_irq_thread_handler,
1586 						IRQF_TRIGGER_RISING,
1587 						BMC150_ACCEL_IRQ_NAME,
1588 						indio_dev);
1589 		if (ret)
1590 			goto err_buffer_cleanup;
1591 
1592 		/*
1593 		 * Set latched mode interrupt. While certain interrupts are
1594 		 * non-latched regardless of this settings (e.g. new data) we
1595 		 * want to use latch mode when we can to prevent interrupt
1596 		 * flooding.
1597 		 */
1598 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1599 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1600 		if (ret < 0) {
1601 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1602 			goto err_buffer_cleanup;
1603 		}
1604 
1605 		bmc150_accel_interrupts_setup(indio_dev, data);
1606 
1607 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1608 		if (ret)
1609 			goto err_buffer_cleanup;
1610 
1611 		if (block_supported) {
1612 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1613 			indio_dev->info = &bmc150_accel_info_fifo;
1614 			iio_buffer_set_attrs(indio_dev->buffer,
1615 					     bmc150_accel_fifo_attributes);
1616 		}
1617 	}
1618 
1619 	ret = pm_runtime_set_active(dev);
1620 	if (ret)
1621 		goto err_trigger_unregister;
1622 
1623 	pm_runtime_enable(dev);
1624 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1625 	pm_runtime_use_autosuspend(dev);
1626 
1627 	ret = iio_device_register(indio_dev);
1628 	if (ret < 0) {
1629 		dev_err(dev, "Unable to register iio device\n");
1630 		goto err_trigger_unregister;
1631 	}
1632 
1633 	return 0;
1634 
1635 err_trigger_unregister:
1636 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1637 err_buffer_cleanup:
1638 	iio_triggered_buffer_cleanup(indio_dev);
1639 
1640 	return ret;
1641 }
1642 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1643 
1644 int bmc150_accel_core_remove(struct device *dev)
1645 {
1646 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1647 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1648 
1649 	iio_device_unregister(indio_dev);
1650 
1651 	pm_runtime_disable(dev);
1652 	pm_runtime_set_suspended(dev);
1653 	pm_runtime_put_noidle(dev);
1654 
1655 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1656 
1657 	iio_triggered_buffer_cleanup(indio_dev);
1658 
1659 	mutex_lock(&data->mutex);
1660 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1661 	mutex_unlock(&data->mutex);
1662 
1663 	return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1666 
1667 #ifdef CONFIG_PM_SLEEP
1668 static int bmc150_accel_suspend(struct device *dev)
1669 {
1670 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1672 
1673 	mutex_lock(&data->mutex);
1674 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1675 	mutex_unlock(&data->mutex);
1676 
1677 	return 0;
1678 }
1679 
1680 static int bmc150_accel_resume(struct device *dev)
1681 {
1682 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1683 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1684 
1685 	mutex_lock(&data->mutex);
1686 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1687 	bmc150_accel_fifo_set_mode(data);
1688 	mutex_unlock(&data->mutex);
1689 
1690 	return 0;
1691 }
1692 #endif
1693 
1694 #ifdef CONFIG_PM
1695 static int bmc150_accel_runtime_suspend(struct device *dev)
1696 {
1697 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1699 	int ret;
1700 
1701 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1702 	if (ret < 0)
1703 		return -EAGAIN;
1704 
1705 	return 0;
1706 }
1707 
1708 static int bmc150_accel_runtime_resume(struct device *dev)
1709 {
1710 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1712 	int ret;
1713 	int sleep_val;
1714 
1715 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1716 	if (ret < 0)
1717 		return ret;
1718 	ret = bmc150_accel_fifo_set_mode(data);
1719 	if (ret < 0)
1720 		return ret;
1721 
1722 	sleep_val = bmc150_accel_get_startup_times(data);
1723 	if (sleep_val < 20)
1724 		usleep_range(sleep_val * 1000, 20000);
1725 	else
1726 		msleep_interruptible(sleep_val);
1727 
1728 	return 0;
1729 }
1730 #endif
1731 
1732 const struct dev_pm_ops bmc150_accel_pm_ops = {
1733 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1734 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1735 			   bmc150_accel_runtime_resume, NULL)
1736 };
1737 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1738 
1739 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1740 MODULE_LICENSE("GPL v2");
1741 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1742