xref: /linux/drivers/iio/accel/bmc150-accel-core.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4  *  - BMC150
5  *  - BMI055
6  *  - BMA255
7  *  - BMA250E
8  *  - BMA222E
9  *  - BMA280
10  *
11  * Copyright (c) 2014, Intel Corporation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/pm.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/events.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/regmap.h>
30 
31 #include "bmc150-accel.h"
32 
33 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
34 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
35 
36 #define BMC150_ACCEL_REG_CHIP_ID		0x00
37 
38 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
39 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
40 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
44 
45 #define BMC150_ACCEL_REG_PMU_LPW		0x11
46 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
47 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
50 
51 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
52 
53 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
54 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
55 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
56 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
57 
58 /* Default BW: 125Hz */
59 #define BMC150_ACCEL_REG_PMU_BW		0x10
60 #define BMC150_ACCEL_DEF_BW			125
61 
62 #define BMC150_ACCEL_REG_RESET			0x14
63 #define BMC150_ACCEL_RESET_VAL			0xB6
64 
65 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
67 
68 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
72 
73 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
75 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
77 
78 #define BMC150_ACCEL_REG_INT_EN_0		0x16
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
82 
83 #define BMC150_ACCEL_REG_INT_EN_1		0x17
84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
87 
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
90 
91 #define BMC150_ACCEL_REG_INT_5			0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
93 
94 #define BMC150_ACCEL_REG_INT_6			0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
96 
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
101 
102 #define BMC150_ACCEL_REG_XOUT_L		0x02
103 
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
105 
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
108 #define BMC150_ACCEL_SLEEP_1_MS		0x06
109 #define BMC150_ACCEL_SLEEP_2_MS		0x07
110 #define BMC150_ACCEL_SLEEP_4_MS		0x08
111 #define BMC150_ACCEL_SLEEP_6_MS		0x09
112 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
118 
119 #define BMC150_ACCEL_REG_TEMP			0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
121 
122 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
124 
125 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
126 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
127 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
128 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
129 #define BMC150_ACCEL_FIFO_LENGTH		32
130 
131 enum bmc150_accel_axis {
132 	AXIS_X,
133 	AXIS_Y,
134 	AXIS_Z,
135 	AXIS_MAX,
136 };
137 
138 enum bmc150_power_modes {
139 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
140 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141 	BMC150_ACCEL_SLEEP_MODE_LPM,
142 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
143 };
144 
145 struct bmc150_scale_info {
146 	int scale;
147 	u8 reg_range;
148 };
149 
150 struct bmc150_accel_chip_info {
151 	const char *name;
152 	u8 chip_id;
153 	const struct iio_chan_spec *channels;
154 	int num_channels;
155 	const struct bmc150_scale_info scale_table[4];
156 };
157 
158 struct bmc150_accel_interrupt {
159 	const struct bmc150_accel_interrupt_info *info;
160 	atomic_t users;
161 };
162 
163 struct bmc150_accel_trigger {
164 	struct bmc150_accel_data *data;
165 	struct iio_trigger *indio_trig;
166 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
167 	int intr;
168 	bool enabled;
169 };
170 
171 enum bmc150_accel_interrupt_id {
172 	BMC150_ACCEL_INT_DATA_READY,
173 	BMC150_ACCEL_INT_ANY_MOTION,
174 	BMC150_ACCEL_INT_WATERMARK,
175 	BMC150_ACCEL_INTERRUPTS,
176 };
177 
178 enum bmc150_accel_trigger_id {
179 	BMC150_ACCEL_TRIGGER_DATA_READY,
180 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
181 	BMC150_ACCEL_TRIGGERS,
182 };
183 
184 struct bmc150_accel_data {
185 	struct regmap *regmap;
186 	int irq;
187 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189 	struct mutex mutex;
190 	u8 fifo_mode, watermark;
191 	s16 buffer[8];
192 	u8 bw_bits;
193 	u32 slope_dur;
194 	u32 slope_thres;
195 	u32 range;
196 	int ev_enable_state;
197 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
198 	const struct bmc150_accel_chip_info *chip_info;
199 	struct iio_mount_matrix orientation;
200 };
201 
202 static const struct {
203 	int val;
204 	int val2;
205 	u8 bw_bits;
206 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
207 				     {31, 260000, 0x09},
208 				     {62, 500000, 0x0A},
209 				     {125, 0, 0x0B},
210 				     {250, 0, 0x0C},
211 				     {500, 0, 0x0D},
212 				     {1000, 0, 0x0E},
213 				     {2000, 0, 0x0F} };
214 
215 static const struct {
216 	int bw_bits;
217 	int msec;
218 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
219 				     {0x09, 32},
220 				     {0x0A, 16},
221 				     {0x0B, 8},
222 				     {0x0C, 4},
223 				     {0x0D, 2},
224 				     {0x0E, 1},
225 				     {0x0F, 1} };
226 
227 static const struct {
228 	int sleep_dur;
229 	u8 reg_value;
230 } bmc150_accel_sleep_value_table[] = { {0, 0},
231 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
232 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
233 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
234 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
235 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
236 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
237 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
238 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
239 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
240 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
241 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
242 
243 const struct regmap_config bmc150_regmap_conf = {
244 	.reg_bits = 8,
245 	.val_bits = 8,
246 	.max_register = 0x3f,
247 };
248 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
249 
250 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
251 				 enum bmc150_power_modes mode,
252 				 int dur_us)
253 {
254 	struct device *dev = regmap_get_device(data->regmap);
255 	int i;
256 	int ret;
257 	u8 lpw_bits;
258 	int dur_val = -1;
259 
260 	if (dur_us > 0) {
261 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
262 									 ++i) {
263 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
264 									dur_us)
265 				dur_val =
266 				bmc150_accel_sleep_value_table[i].reg_value;
267 		}
268 	} else {
269 		dur_val = 0;
270 	}
271 
272 	if (dur_val < 0)
273 		return -EINVAL;
274 
275 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
276 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
277 
278 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
279 
280 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
281 	if (ret < 0) {
282 		dev_err(dev, "Error writing reg_pmu_lpw\n");
283 		return ret;
284 	}
285 
286 	return 0;
287 }
288 
289 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
290 			       int val2)
291 {
292 	int i;
293 	int ret;
294 
295 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
296 		if (bmc150_accel_samp_freq_table[i].val == val &&
297 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
298 			ret = regmap_write(data->regmap,
299 				BMC150_ACCEL_REG_PMU_BW,
300 				bmc150_accel_samp_freq_table[i].bw_bits);
301 			if (ret < 0)
302 				return ret;
303 
304 			data->bw_bits =
305 				bmc150_accel_samp_freq_table[i].bw_bits;
306 			return 0;
307 		}
308 	}
309 
310 	return -EINVAL;
311 }
312 
313 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
314 {
315 	struct device *dev = regmap_get_device(data->regmap);
316 	int ret;
317 
318 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
319 					data->slope_thres);
320 	if (ret < 0) {
321 		dev_err(dev, "Error writing reg_int_6\n");
322 		return ret;
323 	}
324 
325 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
326 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
327 	if (ret < 0) {
328 		dev_err(dev, "Error updating reg_int_5\n");
329 		return ret;
330 	}
331 
332 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
333 
334 	return ret;
335 }
336 
337 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
338 					 bool state)
339 {
340 	if (state)
341 		return bmc150_accel_update_slope(t->data);
342 
343 	return 0;
344 }
345 
346 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
347 			       int *val2)
348 {
349 	int i;
350 
351 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
352 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
353 			*val = bmc150_accel_samp_freq_table[i].val;
354 			*val2 = bmc150_accel_samp_freq_table[i].val2;
355 			return IIO_VAL_INT_PLUS_MICRO;
356 		}
357 	}
358 
359 	return -EINVAL;
360 }
361 
362 #ifdef CONFIG_PM
363 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
364 {
365 	int i;
366 
367 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
368 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
369 			return bmc150_accel_sample_upd_time[i].msec;
370 	}
371 
372 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
373 }
374 
375 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
376 {
377 	struct device *dev = regmap_get_device(data->regmap);
378 	int ret;
379 
380 	if (on) {
381 		ret = pm_runtime_get_sync(dev);
382 	} else {
383 		pm_runtime_mark_last_busy(dev);
384 		ret = pm_runtime_put_autosuspend(dev);
385 	}
386 
387 	if (ret < 0) {
388 		dev_err(dev,
389 			"Failed: %s for %d\n", __func__, on);
390 		if (on)
391 			pm_runtime_put_noidle(dev);
392 
393 		return ret;
394 	}
395 
396 	return 0;
397 }
398 #else
399 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
400 {
401 	return 0;
402 }
403 #endif
404 
405 static const struct bmc150_accel_interrupt_info {
406 	u8 map_reg;
407 	u8 map_bitmask;
408 	u8 en_reg;
409 	u8 en_bitmask;
410 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
411 	{ /* data ready interrupt */
412 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
413 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
414 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
415 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
416 	},
417 	{  /* motion interrupt */
418 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
419 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
420 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
421 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
422 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
423 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
424 	},
425 	{ /* fifo watermark interrupt */
426 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
427 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
428 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
429 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
430 	},
431 };
432 
433 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
434 					  struct bmc150_accel_data *data)
435 {
436 	int i;
437 
438 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
439 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
440 }
441 
442 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
443 				      bool state)
444 {
445 	struct device *dev = regmap_get_device(data->regmap);
446 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
447 	const struct bmc150_accel_interrupt_info *info = intr->info;
448 	int ret;
449 
450 	if (state) {
451 		if (atomic_inc_return(&intr->users) > 1)
452 			return 0;
453 	} else {
454 		if (atomic_dec_return(&intr->users) > 0)
455 			return 0;
456 	}
457 
458 	/*
459 	 * We will expect the enable and disable to do operation in reverse
460 	 * order. This will happen here anyway, as our resume operation uses
461 	 * sync mode runtime pm calls. The suspend operation will be delayed
462 	 * by autosuspend delay.
463 	 * So the disable operation will still happen in reverse order of
464 	 * enable operation. When runtime pm is disabled the mode is always on,
465 	 * so sequence doesn't matter.
466 	 */
467 	ret = bmc150_accel_set_power_state(data, state);
468 	if (ret < 0)
469 		return ret;
470 
471 	/* map the interrupt to the appropriate pins */
472 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
473 				 (state ? info->map_bitmask : 0));
474 	if (ret < 0) {
475 		dev_err(dev, "Error updating reg_int_map\n");
476 		goto out_fix_power_state;
477 	}
478 
479 	/* enable/disable the interrupt */
480 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
481 				 (state ? info->en_bitmask : 0));
482 	if (ret < 0) {
483 		dev_err(dev, "Error updating reg_int_en\n");
484 		goto out_fix_power_state;
485 	}
486 
487 	return 0;
488 
489 out_fix_power_state:
490 	bmc150_accel_set_power_state(data, false);
491 	return ret;
492 }
493 
494 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
495 {
496 	struct device *dev = regmap_get_device(data->regmap);
497 	int ret, i;
498 
499 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
500 		if (data->chip_info->scale_table[i].scale == val) {
501 			ret = regmap_write(data->regmap,
502 				     BMC150_ACCEL_REG_PMU_RANGE,
503 				     data->chip_info->scale_table[i].reg_range);
504 			if (ret < 0) {
505 				dev_err(dev, "Error writing pmu_range\n");
506 				return ret;
507 			}
508 
509 			data->range = data->chip_info->scale_table[i].reg_range;
510 			return 0;
511 		}
512 	}
513 
514 	return -EINVAL;
515 }
516 
517 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
518 {
519 	struct device *dev = regmap_get_device(data->regmap);
520 	int ret;
521 	unsigned int value;
522 
523 	mutex_lock(&data->mutex);
524 
525 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
526 	if (ret < 0) {
527 		dev_err(dev, "Error reading reg_temp\n");
528 		mutex_unlock(&data->mutex);
529 		return ret;
530 	}
531 	*val = sign_extend32(value, 7);
532 
533 	mutex_unlock(&data->mutex);
534 
535 	return IIO_VAL_INT;
536 }
537 
538 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
539 				 struct iio_chan_spec const *chan,
540 				 int *val)
541 {
542 	struct device *dev = regmap_get_device(data->regmap);
543 	int ret;
544 	int axis = chan->scan_index;
545 	__le16 raw_val;
546 
547 	mutex_lock(&data->mutex);
548 	ret = bmc150_accel_set_power_state(data, true);
549 	if (ret < 0) {
550 		mutex_unlock(&data->mutex);
551 		return ret;
552 	}
553 
554 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
555 			       &raw_val, sizeof(raw_val));
556 	if (ret < 0) {
557 		dev_err(dev, "Error reading axis %d\n", axis);
558 		bmc150_accel_set_power_state(data, false);
559 		mutex_unlock(&data->mutex);
560 		return ret;
561 	}
562 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
563 			     chan->scan_type.realbits - 1);
564 	ret = bmc150_accel_set_power_state(data, false);
565 	mutex_unlock(&data->mutex);
566 	if (ret < 0)
567 		return ret;
568 
569 	return IIO_VAL_INT;
570 }
571 
572 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
573 				 struct iio_chan_spec const *chan,
574 				 int *val, int *val2, long mask)
575 {
576 	struct bmc150_accel_data *data = iio_priv(indio_dev);
577 	int ret;
578 
579 	switch (mask) {
580 	case IIO_CHAN_INFO_RAW:
581 		switch (chan->type) {
582 		case IIO_TEMP:
583 			return bmc150_accel_get_temp(data, val);
584 		case IIO_ACCEL:
585 			if (iio_buffer_enabled(indio_dev))
586 				return -EBUSY;
587 			else
588 				return bmc150_accel_get_axis(data, chan, val);
589 		default:
590 			return -EINVAL;
591 		}
592 	case IIO_CHAN_INFO_OFFSET:
593 		if (chan->type == IIO_TEMP) {
594 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
595 			return IIO_VAL_INT;
596 		} else {
597 			return -EINVAL;
598 		}
599 	case IIO_CHAN_INFO_SCALE:
600 		*val = 0;
601 		switch (chan->type) {
602 		case IIO_TEMP:
603 			*val2 = 500000;
604 			return IIO_VAL_INT_PLUS_MICRO;
605 		case IIO_ACCEL:
606 		{
607 			int i;
608 			const struct bmc150_scale_info *si;
609 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
610 
611 			for (i = 0; i < st_size; ++i) {
612 				si = &data->chip_info->scale_table[i];
613 				if (si->reg_range == data->range) {
614 					*val2 = si->scale;
615 					return IIO_VAL_INT_PLUS_MICRO;
616 				}
617 			}
618 			return -EINVAL;
619 		}
620 		default:
621 			return -EINVAL;
622 		}
623 	case IIO_CHAN_INFO_SAMP_FREQ:
624 		mutex_lock(&data->mutex);
625 		ret = bmc150_accel_get_bw(data, val, val2);
626 		mutex_unlock(&data->mutex);
627 		return ret;
628 	default:
629 		return -EINVAL;
630 	}
631 }
632 
633 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
634 				  struct iio_chan_spec const *chan,
635 				  int val, int val2, long mask)
636 {
637 	struct bmc150_accel_data *data = iio_priv(indio_dev);
638 	int ret;
639 
640 	switch (mask) {
641 	case IIO_CHAN_INFO_SAMP_FREQ:
642 		mutex_lock(&data->mutex);
643 		ret = bmc150_accel_set_bw(data, val, val2);
644 		mutex_unlock(&data->mutex);
645 		break;
646 	case IIO_CHAN_INFO_SCALE:
647 		if (val)
648 			return -EINVAL;
649 
650 		mutex_lock(&data->mutex);
651 		ret = bmc150_accel_set_scale(data, val2);
652 		mutex_unlock(&data->mutex);
653 		return ret;
654 	default:
655 		ret = -EINVAL;
656 	}
657 
658 	return ret;
659 }
660 
661 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
662 				   const struct iio_chan_spec *chan,
663 				   enum iio_event_type type,
664 				   enum iio_event_direction dir,
665 				   enum iio_event_info info,
666 				   int *val, int *val2)
667 {
668 	struct bmc150_accel_data *data = iio_priv(indio_dev);
669 
670 	*val2 = 0;
671 	switch (info) {
672 	case IIO_EV_INFO_VALUE:
673 		*val = data->slope_thres;
674 		break;
675 	case IIO_EV_INFO_PERIOD:
676 		*val = data->slope_dur;
677 		break;
678 	default:
679 		return -EINVAL;
680 	}
681 
682 	return IIO_VAL_INT;
683 }
684 
685 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
686 				    const struct iio_chan_spec *chan,
687 				    enum iio_event_type type,
688 				    enum iio_event_direction dir,
689 				    enum iio_event_info info,
690 				    int val, int val2)
691 {
692 	struct bmc150_accel_data *data = iio_priv(indio_dev);
693 
694 	if (data->ev_enable_state)
695 		return -EBUSY;
696 
697 	switch (info) {
698 	case IIO_EV_INFO_VALUE:
699 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
700 		break;
701 	case IIO_EV_INFO_PERIOD:
702 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
703 		break;
704 	default:
705 		return -EINVAL;
706 	}
707 
708 	return 0;
709 }
710 
711 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
712 					  const struct iio_chan_spec *chan,
713 					  enum iio_event_type type,
714 					  enum iio_event_direction dir)
715 {
716 	struct bmc150_accel_data *data = iio_priv(indio_dev);
717 
718 	return data->ev_enable_state;
719 }
720 
721 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
722 					   const struct iio_chan_spec *chan,
723 					   enum iio_event_type type,
724 					   enum iio_event_direction dir,
725 					   int state)
726 {
727 	struct bmc150_accel_data *data = iio_priv(indio_dev);
728 	int ret;
729 
730 	if (state == data->ev_enable_state)
731 		return 0;
732 
733 	mutex_lock(&data->mutex);
734 
735 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
736 					 state);
737 	if (ret < 0) {
738 		mutex_unlock(&data->mutex);
739 		return ret;
740 	}
741 
742 	data->ev_enable_state = state;
743 	mutex_unlock(&data->mutex);
744 
745 	return 0;
746 }
747 
748 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
749 					 struct iio_trigger *trig)
750 {
751 	struct bmc150_accel_data *data = iio_priv(indio_dev);
752 	int i;
753 
754 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
755 		if (data->triggers[i].indio_trig == trig)
756 			return 0;
757 	}
758 
759 	return -EINVAL;
760 }
761 
762 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
763 					       struct device_attribute *attr,
764 					       char *buf)
765 {
766 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
767 	struct bmc150_accel_data *data = iio_priv(indio_dev);
768 	int wm;
769 
770 	mutex_lock(&data->mutex);
771 	wm = data->watermark;
772 	mutex_unlock(&data->mutex);
773 
774 	return sprintf(buf, "%d\n", wm);
775 }
776 
777 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
778 					   struct device_attribute *attr,
779 					   char *buf)
780 {
781 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
782 	struct bmc150_accel_data *data = iio_priv(indio_dev);
783 	bool state;
784 
785 	mutex_lock(&data->mutex);
786 	state = data->fifo_mode;
787 	mutex_unlock(&data->mutex);
788 
789 	return sprintf(buf, "%d\n", state);
790 }
791 
792 static const struct iio_mount_matrix *
793 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
794 				const struct iio_chan_spec *chan)
795 {
796 	struct bmc150_accel_data *data = iio_priv(indio_dev);
797 
798 	return &data->orientation;
799 }
800 
801 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
802 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
803 	{ }
804 };
805 
806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
807 static IIO_CONST_ATTR(hwfifo_watermark_max,
808 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
810 		       bmc150_accel_get_fifo_state, NULL, 0);
811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
812 		       bmc150_accel_get_fifo_watermark, NULL, 0);
813 
814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
815 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
816 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
817 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
818 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
819 	NULL,
820 };
821 
822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
823 {
824 	struct bmc150_accel_data *data = iio_priv(indio_dev);
825 
826 	if (val > BMC150_ACCEL_FIFO_LENGTH)
827 		val = BMC150_ACCEL_FIFO_LENGTH;
828 
829 	mutex_lock(&data->mutex);
830 	data->watermark = val;
831 	mutex_unlock(&data->mutex);
832 
833 	return 0;
834 }
835 
836 /*
837  * We must read at least one full frame in one burst, otherwise the rest of the
838  * frame data is discarded.
839  */
840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841 				      char *buffer, int samples)
842 {
843 	struct device *dev = regmap_get_device(data->regmap);
844 	int sample_length = 3 * 2;
845 	int ret;
846 	int total_length = samples * sample_length;
847 
848 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
849 			      buffer, total_length);
850 	if (ret)
851 		dev_err(dev,
852 			"Error transferring data from fifo: %d\n", ret);
853 
854 	return ret;
855 }
856 
857 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
858 				     unsigned samples, bool irq)
859 {
860 	struct bmc150_accel_data *data = iio_priv(indio_dev);
861 	struct device *dev = regmap_get_device(data->regmap);
862 	int ret, i;
863 	u8 count;
864 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
865 	int64_t tstamp;
866 	uint64_t sample_period;
867 	unsigned int val;
868 
869 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
870 	if (ret < 0) {
871 		dev_err(dev, "Error reading reg_fifo_status\n");
872 		return ret;
873 	}
874 
875 	count = val & 0x7F;
876 
877 	if (!count)
878 		return 0;
879 
880 	/*
881 	 * If we getting called from IRQ handler we know the stored timestamp is
882 	 * fairly accurate for the last stored sample. Otherwise, if we are
883 	 * called as a result of a read operation from userspace and hence
884 	 * before the watermark interrupt was triggered, take a timestamp
885 	 * now. We can fall anywhere in between two samples so the error in this
886 	 * case is at most one sample period.
887 	 */
888 	if (!irq) {
889 		data->old_timestamp = data->timestamp;
890 		data->timestamp = iio_get_time_ns(indio_dev);
891 	}
892 
893 	/*
894 	 * Approximate timestamps for each of the sample based on the sampling
895 	 * frequency, timestamp for last sample and number of samples.
896 	 *
897 	 * Note that we can't use the current bandwidth settings to compute the
898 	 * sample period because the sample rate varies with the device
899 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
900 	 * small variation adds when we store a large number of samples and
901 	 * creates significant jitter between the last and first samples in
902 	 * different batches (e.g. 32ms vs 21ms).
903 	 *
904 	 * To avoid this issue we compute the actual sample period ourselves
905 	 * based on the timestamp delta between the last two flush operations.
906 	 */
907 	sample_period = (data->timestamp - data->old_timestamp);
908 	do_div(sample_period, count);
909 	tstamp = data->timestamp - (count - 1) * sample_period;
910 
911 	if (samples && count > samples)
912 		count = samples;
913 
914 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
915 	if (ret)
916 		return ret;
917 
918 	/*
919 	 * Ideally we want the IIO core to handle the demux when running in fifo
920 	 * mode but not when running in triggered buffer mode. Unfortunately
921 	 * this does not seem to be possible, so stick with driver demux for
922 	 * now.
923 	 */
924 	for (i = 0; i < count; i++) {
925 		u16 sample[8];
926 		int j, bit;
927 
928 		j = 0;
929 		for_each_set_bit(bit, indio_dev->active_scan_mask,
930 				 indio_dev->masklength)
931 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
932 
933 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
934 
935 		tstamp += sample_period;
936 	}
937 
938 	return count;
939 }
940 
941 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
942 {
943 	struct bmc150_accel_data *data = iio_priv(indio_dev);
944 	int ret;
945 
946 	mutex_lock(&data->mutex);
947 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
948 	mutex_unlock(&data->mutex);
949 
950 	return ret;
951 }
952 
953 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
954 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
955 
956 static struct attribute *bmc150_accel_attributes[] = {
957 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
958 	NULL,
959 };
960 
961 static const struct attribute_group bmc150_accel_attrs_group = {
962 	.attrs = bmc150_accel_attributes,
963 };
964 
965 static const struct iio_event_spec bmc150_accel_event = {
966 		.type = IIO_EV_TYPE_ROC,
967 		.dir = IIO_EV_DIR_EITHER,
968 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
969 				 BIT(IIO_EV_INFO_ENABLE) |
970 				 BIT(IIO_EV_INFO_PERIOD)
971 };
972 
973 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
974 	.type = IIO_ACCEL,						\
975 	.modified = 1,							\
976 	.channel2 = IIO_MOD_##_axis,					\
977 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
978 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
979 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
980 	.scan_index = AXIS_##_axis,					\
981 	.scan_type = {							\
982 		.sign = 's',						\
983 		.realbits = (bits),					\
984 		.storagebits = 16,					\
985 		.shift = 16 - (bits),					\
986 		.endianness = IIO_LE,					\
987 	},								\
988 	.ext_info = bmc150_accel_ext_info,				\
989 	.event_spec = &bmc150_accel_event,				\
990 	.num_event_specs = 1						\
991 }
992 
993 #define BMC150_ACCEL_CHANNELS(bits) {					\
994 	{								\
995 		.type = IIO_TEMP,					\
996 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
997 				      BIT(IIO_CHAN_INFO_SCALE) |	\
998 				      BIT(IIO_CHAN_INFO_OFFSET),	\
999 		.scan_index = -1,					\
1000 	},								\
1001 	BMC150_ACCEL_CHANNEL(X, bits),					\
1002 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1003 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1004 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1005 }
1006 
1007 static const struct iio_chan_spec bma222e_accel_channels[] =
1008 	BMC150_ACCEL_CHANNELS(8);
1009 static const struct iio_chan_spec bma250e_accel_channels[] =
1010 	BMC150_ACCEL_CHANNELS(10);
1011 static const struct iio_chan_spec bmc150_accel_channels[] =
1012 	BMC150_ACCEL_CHANNELS(12);
1013 static const struct iio_chan_spec bma280_accel_channels[] =
1014 	BMC150_ACCEL_CHANNELS(14);
1015 
1016 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1017 	[bmc150] = {
1018 		.name = "BMC150A",
1019 		.chip_id = 0xFA,
1020 		.channels = bmc150_accel_channels,
1021 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1022 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1023 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1024 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1025 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1026 	},
1027 	[bmi055] = {
1028 		.name = "BMI055A",
1029 		.chip_id = 0xFA,
1030 		.channels = bmc150_accel_channels,
1031 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1032 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1033 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1034 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1035 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1036 	},
1037 	[bma255] = {
1038 		.name = "BMA0255",
1039 		.chip_id = 0xFA,
1040 		.channels = bmc150_accel_channels,
1041 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1042 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1043 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1044 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1045 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1046 	},
1047 	[bma250e] = {
1048 		.name = "BMA250E",
1049 		.chip_id = 0xF9,
1050 		.channels = bma250e_accel_channels,
1051 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1052 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1053 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1054 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1055 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1056 	},
1057 	[bma222e] = {
1058 		.name = "BMA222E",
1059 		.chip_id = 0xF8,
1060 		.channels = bma222e_accel_channels,
1061 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1062 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1063 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1064 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1065 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1066 	},
1067 	[bma280] = {
1068 		.name = "BMA0280",
1069 		.chip_id = 0xFB,
1070 		.channels = bma280_accel_channels,
1071 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1072 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1073 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1074 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1075 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1076 	},
1077 };
1078 
1079 static const struct iio_info bmc150_accel_info = {
1080 	.attrs			= &bmc150_accel_attrs_group,
1081 	.read_raw		= bmc150_accel_read_raw,
1082 	.write_raw		= bmc150_accel_write_raw,
1083 	.read_event_value	= bmc150_accel_read_event,
1084 	.write_event_value	= bmc150_accel_write_event,
1085 	.write_event_config	= bmc150_accel_write_event_config,
1086 	.read_event_config	= bmc150_accel_read_event_config,
1087 };
1088 
1089 static const struct iio_info bmc150_accel_info_fifo = {
1090 	.attrs			= &bmc150_accel_attrs_group,
1091 	.read_raw		= bmc150_accel_read_raw,
1092 	.write_raw		= bmc150_accel_write_raw,
1093 	.read_event_value	= bmc150_accel_read_event,
1094 	.write_event_value	= bmc150_accel_write_event,
1095 	.write_event_config	= bmc150_accel_write_event_config,
1096 	.read_event_config	= bmc150_accel_read_event_config,
1097 	.validate_trigger	= bmc150_accel_validate_trigger,
1098 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1099 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1100 };
1101 
1102 static const unsigned long bmc150_accel_scan_masks[] = {
1103 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1104 					0};
1105 
1106 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1107 {
1108 	struct iio_poll_func *pf = p;
1109 	struct iio_dev *indio_dev = pf->indio_dev;
1110 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1111 	int ret;
1112 
1113 	mutex_lock(&data->mutex);
1114 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1115 			       data->buffer, AXIS_MAX * 2);
1116 	mutex_unlock(&data->mutex);
1117 	if (ret < 0)
1118 		goto err_read;
1119 
1120 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1121 					   pf->timestamp);
1122 err_read:
1123 	iio_trigger_notify_done(indio_dev->trig);
1124 
1125 	return IRQ_HANDLED;
1126 }
1127 
1128 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1129 {
1130 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1131 	struct bmc150_accel_data *data = t->data;
1132 	struct device *dev = regmap_get_device(data->regmap);
1133 	int ret;
1134 
1135 	/* new data interrupts don't need ack */
1136 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1137 		return 0;
1138 
1139 	mutex_lock(&data->mutex);
1140 	/* clear any latched interrupt */
1141 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1142 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1143 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1144 	mutex_unlock(&data->mutex);
1145 	if (ret < 0) {
1146 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1147 		return ret;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1154 					  bool state)
1155 {
1156 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1157 	struct bmc150_accel_data *data = t->data;
1158 	int ret;
1159 
1160 	mutex_lock(&data->mutex);
1161 
1162 	if (t->enabled == state) {
1163 		mutex_unlock(&data->mutex);
1164 		return 0;
1165 	}
1166 
1167 	if (t->setup) {
1168 		ret = t->setup(t, state);
1169 		if (ret < 0) {
1170 			mutex_unlock(&data->mutex);
1171 			return ret;
1172 		}
1173 	}
1174 
1175 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1176 	if (ret < 0) {
1177 		mutex_unlock(&data->mutex);
1178 		return ret;
1179 	}
1180 
1181 	t->enabled = state;
1182 
1183 	mutex_unlock(&data->mutex);
1184 
1185 	return ret;
1186 }
1187 
1188 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1189 	.set_trigger_state = bmc150_accel_trigger_set_state,
1190 	.try_reenable = bmc150_accel_trig_try_reen,
1191 };
1192 
1193 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1194 {
1195 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1196 	struct device *dev = regmap_get_device(data->regmap);
1197 	int dir;
1198 	int ret;
1199 	unsigned int val;
1200 
1201 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1202 	if (ret < 0) {
1203 		dev_err(dev, "Error reading reg_int_status_2\n");
1204 		return ret;
1205 	}
1206 
1207 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1208 		dir = IIO_EV_DIR_FALLING;
1209 	else
1210 		dir = IIO_EV_DIR_RISING;
1211 
1212 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1213 		iio_push_event(indio_dev,
1214 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1215 						  0,
1216 						  IIO_MOD_X,
1217 						  IIO_EV_TYPE_ROC,
1218 						  dir),
1219 			       data->timestamp);
1220 
1221 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1222 		iio_push_event(indio_dev,
1223 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224 						  0,
1225 						  IIO_MOD_Y,
1226 						  IIO_EV_TYPE_ROC,
1227 						  dir),
1228 			       data->timestamp);
1229 
1230 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1231 		iio_push_event(indio_dev,
1232 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233 						  0,
1234 						  IIO_MOD_Z,
1235 						  IIO_EV_TYPE_ROC,
1236 						  dir),
1237 			       data->timestamp);
1238 
1239 	return ret;
1240 }
1241 
1242 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1243 {
1244 	struct iio_dev *indio_dev = private;
1245 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1246 	struct device *dev = regmap_get_device(data->regmap);
1247 	bool ack = false;
1248 	int ret;
1249 
1250 	mutex_lock(&data->mutex);
1251 
1252 	if (data->fifo_mode) {
1253 		ret = __bmc150_accel_fifo_flush(indio_dev,
1254 						BMC150_ACCEL_FIFO_LENGTH, true);
1255 		if (ret > 0)
1256 			ack = true;
1257 	}
1258 
1259 	if (data->ev_enable_state) {
1260 		ret = bmc150_accel_handle_roc_event(indio_dev);
1261 		if (ret > 0)
1262 			ack = true;
1263 	}
1264 
1265 	if (ack) {
1266 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1267 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1268 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1269 		if (ret)
1270 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1271 
1272 		ret = IRQ_HANDLED;
1273 	} else {
1274 		ret = IRQ_NONE;
1275 	}
1276 
1277 	mutex_unlock(&data->mutex);
1278 
1279 	return ret;
1280 }
1281 
1282 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1283 {
1284 	struct iio_dev *indio_dev = private;
1285 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1286 	bool ack = false;
1287 	int i;
1288 
1289 	data->old_timestamp = data->timestamp;
1290 	data->timestamp = iio_get_time_ns(indio_dev);
1291 
1292 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1293 		if (data->triggers[i].enabled) {
1294 			iio_trigger_poll(data->triggers[i].indio_trig);
1295 			ack = true;
1296 			break;
1297 		}
1298 	}
1299 
1300 	if (data->ev_enable_state || data->fifo_mode)
1301 		return IRQ_WAKE_THREAD;
1302 
1303 	if (ack)
1304 		return IRQ_HANDLED;
1305 
1306 	return IRQ_NONE;
1307 }
1308 
1309 static const struct {
1310 	int intr;
1311 	const char *name;
1312 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1313 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1314 	{
1315 		.intr = 0,
1316 		.name = "%s-dev%d",
1317 	},
1318 	{
1319 		.intr = 1,
1320 		.name = "%s-any-motion-dev%d",
1321 		.setup = bmc150_accel_any_motion_setup,
1322 	},
1323 };
1324 
1325 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1326 					     int from)
1327 {
1328 	int i;
1329 
1330 	for (i = from; i >= 0; i--) {
1331 		if (data->triggers[i].indio_trig) {
1332 			iio_trigger_unregister(data->triggers[i].indio_trig);
1333 			data->triggers[i].indio_trig = NULL;
1334 		}
1335 	}
1336 }
1337 
1338 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1339 				       struct bmc150_accel_data *data)
1340 {
1341 	struct device *dev = regmap_get_device(data->regmap);
1342 	int i, ret;
1343 
1344 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1345 		struct bmc150_accel_trigger *t = &data->triggers[i];
1346 
1347 		t->indio_trig = devm_iio_trigger_alloc(dev,
1348 					bmc150_accel_triggers[i].name,
1349 						       indio_dev->name,
1350 						       indio_dev->id);
1351 		if (!t->indio_trig) {
1352 			ret = -ENOMEM;
1353 			break;
1354 		}
1355 
1356 		t->indio_trig->dev.parent = dev;
1357 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1358 		t->intr = bmc150_accel_triggers[i].intr;
1359 		t->data = data;
1360 		t->setup = bmc150_accel_triggers[i].setup;
1361 		iio_trigger_set_drvdata(t->indio_trig, t);
1362 
1363 		ret = iio_trigger_register(t->indio_trig);
1364 		if (ret)
1365 			break;
1366 	}
1367 
1368 	if (ret)
1369 		bmc150_accel_unregister_triggers(data, i - 1);
1370 
1371 	return ret;
1372 }
1373 
1374 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1375 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1376 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1377 
1378 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1379 {
1380 	struct device *dev = regmap_get_device(data->regmap);
1381 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1382 	int ret;
1383 
1384 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1385 	if (ret < 0) {
1386 		dev_err(dev, "Error writing reg_fifo_config1\n");
1387 		return ret;
1388 	}
1389 
1390 	if (!data->fifo_mode)
1391 		return 0;
1392 
1393 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1394 			   data->watermark);
1395 	if (ret < 0)
1396 		dev_err(dev, "Error writing reg_fifo_config0\n");
1397 
1398 	return ret;
1399 }
1400 
1401 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1402 {
1403 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1404 
1405 	return bmc150_accel_set_power_state(data, true);
1406 }
1407 
1408 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1409 {
1410 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1411 	int ret = 0;
1412 
1413 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1414 		return iio_triggered_buffer_postenable(indio_dev);
1415 
1416 	mutex_lock(&data->mutex);
1417 
1418 	if (!data->watermark)
1419 		goto out;
1420 
1421 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1422 					 true);
1423 	if (ret)
1424 		goto out;
1425 
1426 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1427 
1428 	ret = bmc150_accel_fifo_set_mode(data);
1429 	if (ret) {
1430 		data->fifo_mode = 0;
1431 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1432 					   false);
1433 	}
1434 
1435 out:
1436 	mutex_unlock(&data->mutex);
1437 
1438 	return ret;
1439 }
1440 
1441 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1442 {
1443 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1444 
1445 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1446 		return iio_triggered_buffer_predisable(indio_dev);
1447 
1448 	mutex_lock(&data->mutex);
1449 
1450 	if (!data->fifo_mode)
1451 		goto out;
1452 
1453 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1454 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1455 	data->fifo_mode = 0;
1456 	bmc150_accel_fifo_set_mode(data);
1457 
1458 out:
1459 	mutex_unlock(&data->mutex);
1460 
1461 	return 0;
1462 }
1463 
1464 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1465 {
1466 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1467 
1468 	return bmc150_accel_set_power_state(data, false);
1469 }
1470 
1471 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1472 	.preenable = bmc150_accel_buffer_preenable,
1473 	.postenable = bmc150_accel_buffer_postenable,
1474 	.predisable = bmc150_accel_buffer_predisable,
1475 	.postdisable = bmc150_accel_buffer_postdisable,
1476 };
1477 
1478 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1479 {
1480 	struct device *dev = regmap_get_device(data->regmap);
1481 	int ret, i;
1482 	unsigned int val;
1483 
1484 	/*
1485 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1486 	 * reset is required according to the data sheets of supported chips.
1487 	 */
1488 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1489 		     BMC150_ACCEL_RESET_VAL);
1490 	usleep_range(1800, 2500);
1491 
1492 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1493 	if (ret < 0) {
1494 		dev_err(dev, "Error: Reading chip id\n");
1495 		return ret;
1496 	}
1497 
1498 	dev_dbg(dev, "Chip Id %x\n", val);
1499 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1500 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1501 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1502 			break;
1503 		}
1504 	}
1505 
1506 	if (!data->chip_info) {
1507 		dev_err(dev, "Invalid chip %x\n", val);
1508 		return -ENODEV;
1509 	}
1510 
1511 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	/* Set Bandwidth */
1516 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1517 	if (ret < 0)
1518 		return ret;
1519 
1520 	/* Set Default Range */
1521 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1522 			   BMC150_ACCEL_DEF_RANGE_4G);
1523 	if (ret < 0) {
1524 		dev_err(dev, "Error writing reg_pmu_range\n");
1525 		return ret;
1526 	}
1527 
1528 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1529 
1530 	/* Set default slope duration and thresholds */
1531 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1532 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1533 	ret = bmc150_accel_update_slope(data);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	/* Set default as latched interrupts */
1538 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1539 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1540 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541 	if (ret < 0) {
1542 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1543 		return ret;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1550 			    const char *name, bool block_supported)
1551 {
1552 	struct bmc150_accel_data *data;
1553 	struct iio_dev *indio_dev;
1554 	int ret;
1555 
1556 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1557 	if (!indio_dev)
1558 		return -ENOMEM;
1559 
1560 	data = iio_priv(indio_dev);
1561 	dev_set_drvdata(dev, indio_dev);
1562 	data->irq = irq;
1563 
1564 	data->regmap = regmap;
1565 
1566 	ret = iio_read_mount_matrix(dev, "mount-matrix",
1567 				     &data->orientation);
1568 	if (ret)
1569 		return ret;
1570 
1571 	ret = bmc150_accel_chip_init(data);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	mutex_init(&data->mutex);
1576 
1577 	indio_dev->dev.parent = dev;
1578 	indio_dev->channels = data->chip_info->channels;
1579 	indio_dev->num_channels = data->chip_info->num_channels;
1580 	indio_dev->name = name ? name : data->chip_info->name;
1581 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1582 	indio_dev->modes = INDIO_DIRECT_MODE;
1583 	indio_dev->info = &bmc150_accel_info;
1584 
1585 	ret = iio_triggered_buffer_setup(indio_dev,
1586 					 &iio_pollfunc_store_time,
1587 					 bmc150_accel_trigger_handler,
1588 					 &bmc150_accel_buffer_ops);
1589 	if (ret < 0) {
1590 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1591 		return ret;
1592 	}
1593 
1594 	if (data->irq > 0) {
1595 		ret = devm_request_threaded_irq(
1596 						dev, data->irq,
1597 						bmc150_accel_irq_handler,
1598 						bmc150_accel_irq_thread_handler,
1599 						IRQF_TRIGGER_RISING,
1600 						BMC150_ACCEL_IRQ_NAME,
1601 						indio_dev);
1602 		if (ret)
1603 			goto err_buffer_cleanup;
1604 
1605 		/*
1606 		 * Set latched mode interrupt. While certain interrupts are
1607 		 * non-latched regardless of this settings (e.g. new data) we
1608 		 * want to use latch mode when we can to prevent interrupt
1609 		 * flooding.
1610 		 */
1611 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1612 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1613 		if (ret < 0) {
1614 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1615 			goto err_buffer_cleanup;
1616 		}
1617 
1618 		bmc150_accel_interrupts_setup(indio_dev, data);
1619 
1620 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1621 		if (ret)
1622 			goto err_buffer_cleanup;
1623 
1624 		if (block_supported) {
1625 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1626 			indio_dev->info = &bmc150_accel_info_fifo;
1627 			iio_buffer_set_attrs(indio_dev->buffer,
1628 					     bmc150_accel_fifo_attributes);
1629 		}
1630 	}
1631 
1632 	ret = pm_runtime_set_active(dev);
1633 	if (ret)
1634 		goto err_trigger_unregister;
1635 
1636 	pm_runtime_enable(dev);
1637 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1638 	pm_runtime_use_autosuspend(dev);
1639 
1640 	ret = iio_device_register(indio_dev);
1641 	if (ret < 0) {
1642 		dev_err(dev, "Unable to register iio device\n");
1643 		goto err_trigger_unregister;
1644 	}
1645 
1646 	return 0;
1647 
1648 err_trigger_unregister:
1649 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1650 err_buffer_cleanup:
1651 	iio_triggered_buffer_cleanup(indio_dev);
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1656 
1657 int bmc150_accel_core_remove(struct device *dev)
1658 {
1659 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1660 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1661 
1662 	iio_device_unregister(indio_dev);
1663 
1664 	pm_runtime_disable(dev);
1665 	pm_runtime_set_suspended(dev);
1666 	pm_runtime_put_noidle(dev);
1667 
1668 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1669 
1670 	iio_triggered_buffer_cleanup(indio_dev);
1671 
1672 	mutex_lock(&data->mutex);
1673 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1674 	mutex_unlock(&data->mutex);
1675 
1676 	return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1679 
1680 #ifdef CONFIG_PM_SLEEP
1681 static int bmc150_accel_suspend(struct device *dev)
1682 {
1683 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1684 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1685 
1686 	mutex_lock(&data->mutex);
1687 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1688 	mutex_unlock(&data->mutex);
1689 
1690 	return 0;
1691 }
1692 
1693 static int bmc150_accel_resume(struct device *dev)
1694 {
1695 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1696 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1697 
1698 	mutex_lock(&data->mutex);
1699 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1700 	bmc150_accel_fifo_set_mode(data);
1701 	mutex_unlock(&data->mutex);
1702 
1703 	return 0;
1704 }
1705 #endif
1706 
1707 #ifdef CONFIG_PM
1708 static int bmc150_accel_runtime_suspend(struct device *dev)
1709 {
1710 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1712 	int ret;
1713 
1714 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1715 	if (ret < 0)
1716 		return -EAGAIN;
1717 
1718 	return 0;
1719 }
1720 
1721 static int bmc150_accel_runtime_resume(struct device *dev)
1722 {
1723 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1724 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1725 	int ret;
1726 	int sleep_val;
1727 
1728 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1729 	if (ret < 0)
1730 		return ret;
1731 	ret = bmc150_accel_fifo_set_mode(data);
1732 	if (ret < 0)
1733 		return ret;
1734 
1735 	sleep_val = bmc150_accel_get_startup_times(data);
1736 	if (sleep_val < 20)
1737 		usleep_range(sleep_val * 1000, 20000);
1738 	else
1739 		msleep_interruptible(sleep_val);
1740 
1741 	return 0;
1742 }
1743 #endif
1744 
1745 const struct dev_pm_ops bmc150_accel_pm_ops = {
1746 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1747 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1748 			   bmc150_accel_runtime_resume, NULL)
1749 };
1750 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1751 
1752 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1753 MODULE_LICENSE("GPL v2");
1754 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1755