1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 3-axis accelerometer driver supporting many Bosch-Sensortec chips 4 * Copyright (c) 2014, Intel Corporation. 5 */ 6 7 #include <linux/module.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/delay.h> 11 #include <linux/slab.h> 12 #include <linux/acpi.h> 13 #include <linux/pm.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/property.h> 16 #include <linux/iio/iio.h> 17 #include <linux/iio/sysfs.h> 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/events.h> 20 #include <linux/iio/trigger.h> 21 #include <linux/iio/trigger_consumer.h> 22 #include <linux/iio/triggered_buffer.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/consumer.h> 25 26 #include "bmc150-accel.h" 27 28 #define BMC150_ACCEL_DRV_NAME "bmc150_accel" 29 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" 30 31 #define BMC150_ACCEL_REG_CHIP_ID 0x00 32 33 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B 34 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 35 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) 36 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) 37 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) 38 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) 39 40 #define BMC150_ACCEL_REG_PMU_LPW 0x11 41 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 42 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 43 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 44 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 45 46 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F 47 48 #define BMC150_ACCEL_DEF_RANGE_2G 0x03 49 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 50 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 51 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C 52 53 /* Default BW: 125Hz */ 54 #define BMC150_ACCEL_REG_PMU_BW 0x10 55 #define BMC150_ACCEL_DEF_BW 125 56 57 #define BMC150_ACCEL_REG_RESET 0x14 58 #define BMC150_ACCEL_RESET_VAL 0xB6 59 60 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 61 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2) 62 63 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A 64 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0) 65 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1) 66 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2) 67 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5) 68 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6) 69 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7) 70 71 #define BMC150_ACCEL_REG_INT_MAP_2 0x1B 72 #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2) 73 74 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 75 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 76 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F 77 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 78 79 #define BMC150_ACCEL_REG_INT_EN_0 0x16 80 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) 81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) 82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) 83 84 #define BMC150_ACCEL_REG_INT_EN_1 0x17 85 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) 86 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) 87 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) 88 89 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 90 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) 91 #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2) 92 93 #define BMC150_ACCEL_REG_INT_5 0x27 94 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 95 96 #define BMC150_ACCEL_REG_INT_6 0x28 97 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF 98 99 /* Slope duration in terms of number of samples */ 100 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 101 /* in terms of multiples of g's/LSB, based on range */ 102 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 103 104 #define BMC150_ACCEL_REG_XOUT_L 0x02 105 106 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 107 108 /* Sleep Duration values */ 109 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 110 #define BMC150_ACCEL_SLEEP_1_MS 0x06 111 #define BMC150_ACCEL_SLEEP_2_MS 0x07 112 #define BMC150_ACCEL_SLEEP_4_MS 0x08 113 #define BMC150_ACCEL_SLEEP_6_MS 0x09 114 #define BMC150_ACCEL_SLEEP_10_MS 0x0A 115 #define BMC150_ACCEL_SLEEP_25_MS 0x0B 116 #define BMC150_ACCEL_SLEEP_50_MS 0x0C 117 #define BMC150_ACCEL_SLEEP_100_MS 0x0D 118 #define BMC150_ACCEL_SLEEP_500_MS 0x0E 119 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F 120 121 #define BMC150_ACCEL_REG_TEMP 0x08 122 #define BMC150_ACCEL_TEMP_CENTER_VAL 23 123 124 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) 125 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 126 127 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E 128 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 129 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E 130 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F 131 #define BMC150_ACCEL_FIFO_LENGTH 32 132 133 enum bmc150_accel_axis { 134 AXIS_X, 135 AXIS_Y, 136 AXIS_Z, 137 AXIS_MAX, 138 }; 139 140 enum bmc150_power_modes { 141 BMC150_ACCEL_SLEEP_MODE_NORMAL, 142 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 143 BMC150_ACCEL_SLEEP_MODE_LPM, 144 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, 145 }; 146 147 struct bmc150_scale_info { 148 int scale; 149 u8 reg_range; 150 }; 151 152 struct bmc150_accel_chip_info { 153 const char *name; 154 u8 chip_id; 155 const struct iio_chan_spec *channels; 156 int num_channels; 157 const struct bmc150_scale_info scale_table[4]; 158 }; 159 160 static const struct { 161 int val; 162 int val2; 163 u8 bw_bits; 164 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, 165 {31, 260000, 0x09}, 166 {62, 500000, 0x0A}, 167 {125, 0, 0x0B}, 168 {250, 0, 0x0C}, 169 {500, 0, 0x0D}, 170 {1000, 0, 0x0E}, 171 {2000, 0, 0x0F} }; 172 173 static __maybe_unused const struct { 174 int bw_bits; 175 int msec; 176 } bmc150_accel_sample_upd_time[] = { {0x08, 64}, 177 {0x09, 32}, 178 {0x0A, 16}, 179 {0x0B, 8}, 180 {0x0C, 4}, 181 {0x0D, 2}, 182 {0x0E, 1}, 183 {0x0F, 1} }; 184 185 static const struct { 186 int sleep_dur; 187 u8 reg_value; 188 } bmc150_accel_sleep_value_table[] = { {0, 0}, 189 {500, BMC150_ACCEL_SLEEP_500_MICRO}, 190 {1000, BMC150_ACCEL_SLEEP_1_MS}, 191 {2000, BMC150_ACCEL_SLEEP_2_MS}, 192 {4000, BMC150_ACCEL_SLEEP_4_MS}, 193 {6000, BMC150_ACCEL_SLEEP_6_MS}, 194 {10000, BMC150_ACCEL_SLEEP_10_MS}, 195 {25000, BMC150_ACCEL_SLEEP_25_MS}, 196 {50000, BMC150_ACCEL_SLEEP_50_MS}, 197 {100000, BMC150_ACCEL_SLEEP_100_MS}, 198 {500000, BMC150_ACCEL_SLEEP_500_MS}, 199 {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; 200 201 const struct regmap_config bmc150_regmap_conf = { 202 .reg_bits = 8, 203 .val_bits = 8, 204 .max_register = 0x3f, 205 }; 206 EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, IIO_BMC150); 207 208 static int bmc150_accel_set_mode(struct bmc150_accel_data *data, 209 enum bmc150_power_modes mode, 210 int dur_us) 211 { 212 struct device *dev = regmap_get_device(data->regmap); 213 int i; 214 int ret; 215 u8 lpw_bits; 216 int dur_val = -1; 217 218 if (dur_us > 0) { 219 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); 220 ++i) { 221 if (bmc150_accel_sleep_value_table[i].sleep_dur == 222 dur_us) 223 dur_val = 224 bmc150_accel_sleep_value_table[i].reg_value; 225 } 226 } else { 227 dur_val = 0; 228 } 229 230 if (dur_val < 0) 231 return -EINVAL; 232 233 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; 234 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); 235 236 dev_dbg(dev, "Set Mode bits %x\n", lpw_bits); 237 238 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); 239 if (ret < 0) { 240 dev_err(dev, "Error writing reg_pmu_lpw\n"); 241 return ret; 242 } 243 244 return 0; 245 } 246 247 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, 248 int val2) 249 { 250 int i; 251 int ret; 252 253 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { 254 if (bmc150_accel_samp_freq_table[i].val == val && 255 bmc150_accel_samp_freq_table[i].val2 == val2) { 256 ret = regmap_write(data->regmap, 257 BMC150_ACCEL_REG_PMU_BW, 258 bmc150_accel_samp_freq_table[i].bw_bits); 259 if (ret < 0) 260 return ret; 261 262 data->bw_bits = 263 bmc150_accel_samp_freq_table[i].bw_bits; 264 return 0; 265 } 266 } 267 268 return -EINVAL; 269 } 270 271 static int bmc150_accel_update_slope(struct bmc150_accel_data *data) 272 { 273 struct device *dev = regmap_get_device(data->regmap); 274 int ret; 275 276 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6, 277 data->slope_thres); 278 if (ret < 0) { 279 dev_err(dev, "Error writing reg_int_6\n"); 280 return ret; 281 } 282 283 ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5, 284 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur); 285 if (ret < 0) { 286 dev_err(dev, "Error updating reg_int_5\n"); 287 return ret; 288 } 289 290 dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur); 291 292 return ret; 293 } 294 295 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, 296 bool state) 297 { 298 if (state) 299 return bmc150_accel_update_slope(t->data); 300 301 return 0; 302 } 303 304 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, 305 int *val2) 306 { 307 int i; 308 309 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { 310 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { 311 *val = bmc150_accel_samp_freq_table[i].val; 312 *val2 = bmc150_accel_samp_freq_table[i].val2; 313 return IIO_VAL_INT_PLUS_MICRO; 314 } 315 } 316 317 return -EINVAL; 318 } 319 320 #ifdef CONFIG_PM 321 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { 326 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) 327 return bmc150_accel_sample_upd_time[i].msec; 328 } 329 330 return BMC150_ACCEL_MAX_STARTUP_TIME_MS; 331 } 332 333 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) 334 { 335 struct device *dev = regmap_get_device(data->regmap); 336 int ret; 337 338 if (on) { 339 ret = pm_runtime_resume_and_get(dev); 340 } else { 341 pm_runtime_mark_last_busy(dev); 342 ret = pm_runtime_put_autosuspend(dev); 343 } 344 345 if (ret < 0) { 346 dev_err(dev, 347 "Failed: %s for %d\n", __func__, on); 348 return ret; 349 } 350 351 return 0; 352 } 353 #else 354 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) 355 { 356 return 0; 357 } 358 #endif 359 360 #ifdef CONFIG_ACPI 361 /* 362 * Support for getting accelerometer information from BOSC0200 ACPI nodes. 363 * 364 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree 365 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display 366 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object 367 * contains the mount-matrix for the sensor in the display and ROMK contains 368 * the mount-matrix for the sensor in the base. On devices using a single 369 * sensor there is a ROTM ACPI object which contains the mount-matrix. 370 * 371 * Here is an incomplete list of devices known to use 1 of these setups: 372 * 373 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices: 374 * Lenovo Thinkpad Yoga 11e 3th gen 375 * Lenovo Thinkpad Yoga 11e 4th gen 376 * 377 * Tablets using a single accelerometer using ROTM for the mount-matrix: 378 * Chuwi Hi8 Pro (CWI513) 379 * Chuwi Vi8 Plus (CWI519) 380 * Chuwi Hi13 381 * Irbis TW90 382 * Jumper EZpad mini 3 383 * Onda V80 plus 384 * Predia Basic Tablet 385 */ 386 static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev, 387 struct iio_mount_matrix *orientation) 388 { 389 struct iio_dev *indio_dev = dev_get_drvdata(dev); 390 acpi_handle handle = ACPI_HANDLE(dev); 391 char *name, *alt_name, *label; 392 393 if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) { 394 alt_name = "ROMK"; 395 label = "accel-base"; 396 } else { 397 alt_name = "ROMS"; 398 label = "accel-display"; 399 } 400 401 if (acpi_has_method(handle, "ROTM")) { 402 name = "ROTM"; 403 } else if (acpi_has_method(handle, alt_name)) { 404 name = alt_name; 405 indio_dev->label = label; 406 } else { 407 return false; 408 } 409 410 return iio_read_acpi_mount_matrix(dev, orientation, name); 411 } 412 413 static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev, 414 struct iio_mount_matrix *orientation) 415 { 416 struct iio_dev *indio_dev = dev_get_drvdata(dev); 417 418 if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0) 419 indio_dev->label = "accel-base"; 420 else 421 indio_dev->label = "accel-display"; 422 423 return false; /* DUAL250E fwnodes have no mount matrix info */ 424 } 425 426 static bool bmc150_apply_acpi_orientation(struct device *dev, 427 struct iio_mount_matrix *orientation) 428 { 429 struct acpi_device *adev = ACPI_COMPANION(dev); 430 431 if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL)) 432 return bmc150_apply_bosc0200_acpi_orientation(dev, orientation); 433 434 if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL)) 435 return bmc150_apply_dual250e_acpi_orientation(dev, orientation); 436 437 return false; 438 } 439 #else 440 static bool bmc150_apply_acpi_orientation(struct device *dev, 441 struct iio_mount_matrix *orientation) 442 { 443 return false; 444 } 445 #endif 446 447 struct bmc150_accel_interrupt_info { 448 u8 map_reg; 449 u8 map_bitmask; 450 u8 en_reg; 451 u8 en_bitmask; 452 }; 453 454 static const struct bmc150_accel_interrupt_info 455 bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = { 456 { /* data ready interrupt */ 457 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 458 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA, 459 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 460 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, 461 }, 462 { /* motion interrupt */ 463 .map_reg = BMC150_ACCEL_REG_INT_MAP_0, 464 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE, 465 .en_reg = BMC150_ACCEL_REG_INT_EN_0, 466 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | 467 BMC150_ACCEL_INT_EN_BIT_SLP_Y | 468 BMC150_ACCEL_INT_EN_BIT_SLP_Z 469 }, 470 { /* fifo watermark interrupt */ 471 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 472 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM, 473 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 474 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, 475 }, 476 }; 477 478 static const struct bmc150_accel_interrupt_info 479 bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = { 480 { /* data ready interrupt */ 481 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 482 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA, 483 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 484 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, 485 }, 486 { /* motion interrupt */ 487 .map_reg = BMC150_ACCEL_REG_INT_MAP_2, 488 .map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE, 489 .en_reg = BMC150_ACCEL_REG_INT_EN_0, 490 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | 491 BMC150_ACCEL_INT_EN_BIT_SLP_Y | 492 BMC150_ACCEL_INT_EN_BIT_SLP_Z 493 }, 494 { /* fifo watermark interrupt */ 495 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 496 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM, 497 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 498 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, 499 }, 500 }; 501 502 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, 503 struct bmc150_accel_data *data, int irq) 504 { 505 const struct bmc150_accel_interrupt_info *irq_info = NULL; 506 struct device *dev = regmap_get_device(data->regmap); 507 int i; 508 509 /* 510 * For now we map all interrupts to the same output pin. 511 * However, some boards may have just INT2 (and not INT1) connected, 512 * so we try to detect which IRQ it is based on the interrupt-names. 513 * Without interrupt-names, we assume the irq belongs to INT1. 514 */ 515 irq_info = bmc150_accel_interrupts_int1; 516 if (data->type == BOSCH_BMC156 || 517 irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2")) 518 irq_info = bmc150_accel_interrupts_int2; 519 520 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) 521 data->interrupts[i].info = &irq_info[i]; 522 } 523 524 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, 525 bool state) 526 { 527 struct device *dev = regmap_get_device(data->regmap); 528 struct bmc150_accel_interrupt *intr = &data->interrupts[i]; 529 const struct bmc150_accel_interrupt_info *info = intr->info; 530 int ret; 531 532 if (state) { 533 if (atomic_inc_return(&intr->users) > 1) 534 return 0; 535 } else { 536 if (atomic_dec_return(&intr->users) > 0) 537 return 0; 538 } 539 540 /* 541 * We will expect the enable and disable to do operation in reverse 542 * order. This will happen here anyway, as our resume operation uses 543 * sync mode runtime pm calls. The suspend operation will be delayed 544 * by autosuspend delay. 545 * So the disable operation will still happen in reverse order of 546 * enable operation. When runtime pm is disabled the mode is always on, 547 * so sequence doesn't matter. 548 */ 549 ret = bmc150_accel_set_power_state(data, state); 550 if (ret < 0) 551 return ret; 552 553 /* map the interrupt to the appropriate pins */ 554 ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask, 555 (state ? info->map_bitmask : 0)); 556 if (ret < 0) { 557 dev_err(dev, "Error updating reg_int_map\n"); 558 goto out_fix_power_state; 559 } 560 561 /* enable/disable the interrupt */ 562 ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask, 563 (state ? info->en_bitmask : 0)); 564 if (ret < 0) { 565 dev_err(dev, "Error updating reg_int_en\n"); 566 goto out_fix_power_state; 567 } 568 569 return 0; 570 571 out_fix_power_state: 572 bmc150_accel_set_power_state(data, false); 573 return ret; 574 } 575 576 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) 577 { 578 struct device *dev = regmap_get_device(data->regmap); 579 int ret, i; 580 581 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { 582 if (data->chip_info->scale_table[i].scale == val) { 583 ret = regmap_write(data->regmap, 584 BMC150_ACCEL_REG_PMU_RANGE, 585 data->chip_info->scale_table[i].reg_range); 586 if (ret < 0) { 587 dev_err(dev, "Error writing pmu_range\n"); 588 return ret; 589 } 590 591 data->range = data->chip_info->scale_table[i].reg_range; 592 return 0; 593 } 594 } 595 596 return -EINVAL; 597 } 598 599 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) 600 { 601 struct device *dev = regmap_get_device(data->regmap); 602 int ret; 603 unsigned int value; 604 605 mutex_lock(&data->mutex); 606 607 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value); 608 if (ret < 0) { 609 dev_err(dev, "Error reading reg_temp\n"); 610 mutex_unlock(&data->mutex); 611 return ret; 612 } 613 *val = sign_extend32(value, 7); 614 615 mutex_unlock(&data->mutex); 616 617 return IIO_VAL_INT; 618 } 619 620 static int bmc150_accel_get_axis(struct bmc150_accel_data *data, 621 struct iio_chan_spec const *chan, 622 int *val) 623 { 624 struct device *dev = regmap_get_device(data->regmap); 625 int ret; 626 int axis = chan->scan_index; 627 __le16 raw_val; 628 629 mutex_lock(&data->mutex); 630 ret = bmc150_accel_set_power_state(data, true); 631 if (ret < 0) { 632 mutex_unlock(&data->mutex); 633 return ret; 634 } 635 636 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis), 637 &raw_val, sizeof(raw_val)); 638 if (ret < 0) { 639 dev_err(dev, "Error reading axis %d\n", axis); 640 bmc150_accel_set_power_state(data, false); 641 mutex_unlock(&data->mutex); 642 return ret; 643 } 644 *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift, 645 chan->scan_type.realbits - 1); 646 ret = bmc150_accel_set_power_state(data, false); 647 mutex_unlock(&data->mutex); 648 if (ret < 0) 649 return ret; 650 651 return IIO_VAL_INT; 652 } 653 654 static int bmc150_accel_read_raw(struct iio_dev *indio_dev, 655 struct iio_chan_spec const *chan, 656 int *val, int *val2, long mask) 657 { 658 struct bmc150_accel_data *data = iio_priv(indio_dev); 659 int ret; 660 661 switch (mask) { 662 case IIO_CHAN_INFO_RAW: 663 switch (chan->type) { 664 case IIO_TEMP: 665 return bmc150_accel_get_temp(data, val); 666 case IIO_ACCEL: 667 if (iio_buffer_enabled(indio_dev)) 668 return -EBUSY; 669 else 670 return bmc150_accel_get_axis(data, chan, val); 671 default: 672 return -EINVAL; 673 } 674 case IIO_CHAN_INFO_OFFSET: 675 if (chan->type == IIO_TEMP) { 676 *val = BMC150_ACCEL_TEMP_CENTER_VAL; 677 return IIO_VAL_INT; 678 } else { 679 return -EINVAL; 680 } 681 case IIO_CHAN_INFO_SCALE: 682 *val = 0; 683 switch (chan->type) { 684 case IIO_TEMP: 685 *val2 = 500000; 686 return IIO_VAL_INT_PLUS_MICRO; 687 case IIO_ACCEL: 688 { 689 int i; 690 const struct bmc150_scale_info *si; 691 int st_size = ARRAY_SIZE(data->chip_info->scale_table); 692 693 for (i = 0; i < st_size; ++i) { 694 si = &data->chip_info->scale_table[i]; 695 if (si->reg_range == data->range) { 696 *val2 = si->scale; 697 return IIO_VAL_INT_PLUS_MICRO; 698 } 699 } 700 return -EINVAL; 701 } 702 default: 703 return -EINVAL; 704 } 705 case IIO_CHAN_INFO_SAMP_FREQ: 706 mutex_lock(&data->mutex); 707 ret = bmc150_accel_get_bw(data, val, val2); 708 mutex_unlock(&data->mutex); 709 return ret; 710 default: 711 return -EINVAL; 712 } 713 } 714 715 static int bmc150_accel_write_raw(struct iio_dev *indio_dev, 716 struct iio_chan_spec const *chan, 717 int val, int val2, long mask) 718 { 719 struct bmc150_accel_data *data = iio_priv(indio_dev); 720 int ret; 721 722 switch (mask) { 723 case IIO_CHAN_INFO_SAMP_FREQ: 724 mutex_lock(&data->mutex); 725 ret = bmc150_accel_set_bw(data, val, val2); 726 mutex_unlock(&data->mutex); 727 break; 728 case IIO_CHAN_INFO_SCALE: 729 if (val) 730 return -EINVAL; 731 732 mutex_lock(&data->mutex); 733 ret = bmc150_accel_set_scale(data, val2); 734 mutex_unlock(&data->mutex); 735 return ret; 736 default: 737 ret = -EINVAL; 738 } 739 740 return ret; 741 } 742 743 static int bmc150_accel_read_event(struct iio_dev *indio_dev, 744 const struct iio_chan_spec *chan, 745 enum iio_event_type type, 746 enum iio_event_direction dir, 747 enum iio_event_info info, 748 int *val, int *val2) 749 { 750 struct bmc150_accel_data *data = iio_priv(indio_dev); 751 752 *val2 = 0; 753 switch (info) { 754 case IIO_EV_INFO_VALUE: 755 *val = data->slope_thres; 756 break; 757 case IIO_EV_INFO_PERIOD: 758 *val = data->slope_dur; 759 break; 760 default: 761 return -EINVAL; 762 } 763 764 return IIO_VAL_INT; 765 } 766 767 static int bmc150_accel_write_event(struct iio_dev *indio_dev, 768 const struct iio_chan_spec *chan, 769 enum iio_event_type type, 770 enum iio_event_direction dir, 771 enum iio_event_info info, 772 int val, int val2) 773 { 774 struct bmc150_accel_data *data = iio_priv(indio_dev); 775 776 if (data->ev_enable_state) 777 return -EBUSY; 778 779 switch (info) { 780 case IIO_EV_INFO_VALUE: 781 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK; 782 break; 783 case IIO_EV_INFO_PERIOD: 784 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; 785 break; 786 default: 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, 794 const struct iio_chan_spec *chan, 795 enum iio_event_type type, 796 enum iio_event_direction dir) 797 { 798 struct bmc150_accel_data *data = iio_priv(indio_dev); 799 800 return data->ev_enable_state; 801 } 802 803 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, 804 const struct iio_chan_spec *chan, 805 enum iio_event_type type, 806 enum iio_event_direction dir, 807 int state) 808 { 809 struct bmc150_accel_data *data = iio_priv(indio_dev); 810 int ret; 811 812 if (state == data->ev_enable_state) 813 return 0; 814 815 mutex_lock(&data->mutex); 816 817 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, 818 state); 819 if (ret < 0) { 820 mutex_unlock(&data->mutex); 821 return ret; 822 } 823 824 data->ev_enable_state = state; 825 mutex_unlock(&data->mutex); 826 827 return 0; 828 } 829 830 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, 831 struct iio_trigger *trig) 832 { 833 struct bmc150_accel_data *data = iio_priv(indio_dev); 834 int i; 835 836 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 837 if (data->triggers[i].indio_trig == trig) 838 return 0; 839 } 840 841 return -EINVAL; 842 } 843 844 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, 845 struct device_attribute *attr, 846 char *buf) 847 { 848 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 849 struct bmc150_accel_data *data = iio_priv(indio_dev); 850 int wm; 851 852 mutex_lock(&data->mutex); 853 wm = data->watermark; 854 mutex_unlock(&data->mutex); 855 856 return sprintf(buf, "%d\n", wm); 857 } 858 859 static ssize_t bmc150_accel_get_fifo_state(struct device *dev, 860 struct device_attribute *attr, 861 char *buf) 862 { 863 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 864 struct bmc150_accel_data *data = iio_priv(indio_dev); 865 bool state; 866 867 mutex_lock(&data->mutex); 868 state = data->fifo_mode; 869 mutex_unlock(&data->mutex); 870 871 return sprintf(buf, "%d\n", state); 872 } 873 874 static const struct iio_mount_matrix * 875 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev, 876 const struct iio_chan_spec *chan) 877 { 878 struct bmc150_accel_data *data = iio_priv(indio_dev); 879 880 return &data->orientation; 881 } 882 883 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = { 884 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix), 885 { } 886 }; 887 888 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1"); 889 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, 890 __stringify(BMC150_ACCEL_FIFO_LENGTH)); 891 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, 892 bmc150_accel_get_fifo_state, NULL, 0); 893 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, 894 bmc150_accel_get_fifo_watermark, NULL, 0); 895 896 static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = { 897 &iio_dev_attr_hwfifo_watermark_min, 898 &iio_dev_attr_hwfifo_watermark_max, 899 &iio_dev_attr_hwfifo_watermark, 900 &iio_dev_attr_hwfifo_enabled, 901 NULL, 902 }; 903 904 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) 905 { 906 struct bmc150_accel_data *data = iio_priv(indio_dev); 907 908 if (val > BMC150_ACCEL_FIFO_LENGTH) 909 val = BMC150_ACCEL_FIFO_LENGTH; 910 911 mutex_lock(&data->mutex); 912 data->watermark = val; 913 mutex_unlock(&data->mutex); 914 915 return 0; 916 } 917 918 /* 919 * We must read at least one full frame in one burst, otherwise the rest of the 920 * frame data is discarded. 921 */ 922 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data, 923 char *buffer, int samples) 924 { 925 struct device *dev = regmap_get_device(data->regmap); 926 int sample_length = 3 * 2; 927 int ret; 928 int total_length = samples * sample_length; 929 930 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA, 931 buffer, total_length); 932 if (ret) 933 dev_err(dev, 934 "Error transferring data from fifo: %d\n", ret); 935 936 return ret; 937 } 938 939 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, 940 unsigned samples, bool irq) 941 { 942 struct bmc150_accel_data *data = iio_priv(indio_dev); 943 struct device *dev = regmap_get_device(data->regmap); 944 int ret, i; 945 u8 count; 946 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; 947 int64_t tstamp; 948 uint64_t sample_period; 949 unsigned int val; 950 951 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val); 952 if (ret < 0) { 953 dev_err(dev, "Error reading reg_fifo_status\n"); 954 return ret; 955 } 956 957 count = val & 0x7F; 958 959 if (!count) 960 return 0; 961 962 /* 963 * If we getting called from IRQ handler we know the stored timestamp is 964 * fairly accurate for the last stored sample. Otherwise, if we are 965 * called as a result of a read operation from userspace and hence 966 * before the watermark interrupt was triggered, take a timestamp 967 * now. We can fall anywhere in between two samples so the error in this 968 * case is at most one sample period. 969 */ 970 if (!irq) { 971 data->old_timestamp = data->timestamp; 972 data->timestamp = iio_get_time_ns(indio_dev); 973 } 974 975 /* 976 * Approximate timestamps for each of the sample based on the sampling 977 * frequency, timestamp for last sample and number of samples. 978 * 979 * Note that we can't use the current bandwidth settings to compute the 980 * sample period because the sample rate varies with the device 981 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That 982 * small variation adds when we store a large number of samples and 983 * creates significant jitter between the last and first samples in 984 * different batches (e.g. 32ms vs 21ms). 985 * 986 * To avoid this issue we compute the actual sample period ourselves 987 * based on the timestamp delta between the last two flush operations. 988 */ 989 sample_period = (data->timestamp - data->old_timestamp); 990 do_div(sample_period, count); 991 tstamp = data->timestamp - (count - 1) * sample_period; 992 993 if (samples && count > samples) 994 count = samples; 995 996 ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count); 997 if (ret) 998 return ret; 999 1000 /* 1001 * Ideally we want the IIO core to handle the demux when running in fifo 1002 * mode but not when running in triggered buffer mode. Unfortunately 1003 * this does not seem to be possible, so stick with driver demux for 1004 * now. 1005 */ 1006 for (i = 0; i < count; i++) { 1007 int j, bit; 1008 1009 j = 0; 1010 iio_for_each_active_channel(indio_dev, bit) 1011 memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit], 1012 sizeof(data->scan.channels[0])); 1013 1014 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, 1015 tstamp); 1016 1017 tstamp += sample_period; 1018 } 1019 1020 return count; 1021 } 1022 1023 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) 1024 { 1025 struct bmc150_accel_data *data = iio_priv(indio_dev); 1026 int ret; 1027 1028 mutex_lock(&data->mutex); 1029 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); 1030 mutex_unlock(&data->mutex); 1031 1032 return ret; 1033 } 1034 1035 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( 1036 "15.620000 31.260000 62.50000 125 250 500 1000 2000"); 1037 1038 static struct attribute *bmc150_accel_attributes[] = { 1039 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1040 NULL, 1041 }; 1042 1043 static const struct attribute_group bmc150_accel_attrs_group = { 1044 .attrs = bmc150_accel_attributes, 1045 }; 1046 1047 static const struct iio_event_spec bmc150_accel_event = { 1048 .type = IIO_EV_TYPE_ROC, 1049 .dir = IIO_EV_DIR_EITHER, 1050 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 1051 BIT(IIO_EV_INFO_ENABLE) | 1052 BIT(IIO_EV_INFO_PERIOD) 1053 }; 1054 1055 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ 1056 .type = IIO_ACCEL, \ 1057 .modified = 1, \ 1058 .channel2 = IIO_MOD_##_axis, \ 1059 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 1060 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 1061 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 1062 .scan_index = AXIS_##_axis, \ 1063 .scan_type = { \ 1064 .sign = 's', \ 1065 .realbits = (bits), \ 1066 .storagebits = 16, \ 1067 .shift = 16 - (bits), \ 1068 .endianness = IIO_LE, \ 1069 }, \ 1070 .ext_info = bmc150_accel_ext_info, \ 1071 .event_spec = &bmc150_accel_event, \ 1072 .num_event_specs = 1 \ 1073 } 1074 1075 #define BMC150_ACCEL_CHANNELS(bits) { \ 1076 { \ 1077 .type = IIO_TEMP, \ 1078 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1079 BIT(IIO_CHAN_INFO_SCALE) | \ 1080 BIT(IIO_CHAN_INFO_OFFSET), \ 1081 .scan_index = -1, \ 1082 }, \ 1083 BMC150_ACCEL_CHANNEL(X, bits), \ 1084 BMC150_ACCEL_CHANNEL(Y, bits), \ 1085 BMC150_ACCEL_CHANNEL(Z, bits), \ 1086 IIO_CHAN_SOFT_TIMESTAMP(3), \ 1087 } 1088 1089 static const struct iio_chan_spec bma222e_accel_channels[] = 1090 BMC150_ACCEL_CHANNELS(8); 1091 static const struct iio_chan_spec bma250e_accel_channels[] = 1092 BMC150_ACCEL_CHANNELS(10); 1093 static const struct iio_chan_spec bmc150_accel_channels[] = 1094 BMC150_ACCEL_CHANNELS(12); 1095 static const struct iio_chan_spec bma280_accel_channels[] = 1096 BMC150_ACCEL_CHANNELS(14); 1097 1098 /* 1099 * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed 1100 * over the amount of bits (see above). The scale table can be calculated using 1101 * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 1102 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2 1103 * Multiply 10^6 and round to get the values listed below. 1104 */ 1105 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { 1106 { 1107 .name = "BMA222", 1108 .chip_id = 0x03, 1109 .channels = bma222e_accel_channels, 1110 .num_channels = ARRAY_SIZE(bma222e_accel_channels), 1111 .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, 1112 {306458, BMC150_ACCEL_DEF_RANGE_4G}, 1113 {612916, BMC150_ACCEL_DEF_RANGE_8G}, 1114 {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, 1115 }, 1116 { 1117 .name = "BMA222E", 1118 .chip_id = 0xF8, 1119 .channels = bma222e_accel_channels, 1120 .num_channels = ARRAY_SIZE(bma222e_accel_channels), 1121 .scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G}, 1122 {306458, BMC150_ACCEL_DEF_RANGE_4G}, 1123 {612916, BMC150_ACCEL_DEF_RANGE_8G}, 1124 {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, 1125 }, 1126 { 1127 .name = "BMA250E", 1128 .chip_id = 0xF9, 1129 .channels = bma250e_accel_channels, 1130 .num_channels = ARRAY_SIZE(bma250e_accel_channels), 1131 .scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G}, 1132 {76614, BMC150_ACCEL_DEF_RANGE_4G}, 1133 {153229, BMC150_ACCEL_DEF_RANGE_8G}, 1134 {306458, BMC150_ACCEL_DEF_RANGE_16G} }, 1135 }, 1136 { 1137 .name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055", 1138 .chip_id = 0xFA, 1139 .channels = bmc150_accel_channels, 1140 .num_channels = ARRAY_SIZE(bmc150_accel_channels), 1141 .scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G}, 1142 {19154, BMC150_ACCEL_DEF_RANGE_4G}, 1143 {38307, BMC150_ACCEL_DEF_RANGE_8G}, 1144 {76614, BMC150_ACCEL_DEF_RANGE_16G} }, 1145 }, 1146 { 1147 .name = "BMA280", 1148 .chip_id = 0xFB, 1149 .channels = bma280_accel_channels, 1150 .num_channels = ARRAY_SIZE(bma280_accel_channels), 1151 .scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G}, 1152 {4788, BMC150_ACCEL_DEF_RANGE_4G}, 1153 {9577, BMC150_ACCEL_DEF_RANGE_8G}, 1154 {19154, BMC150_ACCEL_DEF_RANGE_16G} }, 1155 }, 1156 }; 1157 1158 static const struct iio_info bmc150_accel_info = { 1159 .attrs = &bmc150_accel_attrs_group, 1160 .read_raw = bmc150_accel_read_raw, 1161 .write_raw = bmc150_accel_write_raw, 1162 .read_event_value = bmc150_accel_read_event, 1163 .write_event_value = bmc150_accel_write_event, 1164 .write_event_config = bmc150_accel_write_event_config, 1165 .read_event_config = bmc150_accel_read_event_config, 1166 }; 1167 1168 static const struct iio_info bmc150_accel_info_fifo = { 1169 .attrs = &bmc150_accel_attrs_group, 1170 .read_raw = bmc150_accel_read_raw, 1171 .write_raw = bmc150_accel_write_raw, 1172 .read_event_value = bmc150_accel_read_event, 1173 .write_event_value = bmc150_accel_write_event, 1174 .write_event_config = bmc150_accel_write_event_config, 1175 .read_event_config = bmc150_accel_read_event_config, 1176 .validate_trigger = bmc150_accel_validate_trigger, 1177 .hwfifo_set_watermark = bmc150_accel_set_watermark, 1178 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, 1179 }; 1180 1181 static const unsigned long bmc150_accel_scan_masks[] = { 1182 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 1183 0}; 1184 1185 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) 1186 { 1187 struct iio_poll_func *pf = p; 1188 struct iio_dev *indio_dev = pf->indio_dev; 1189 struct bmc150_accel_data *data = iio_priv(indio_dev); 1190 int ret; 1191 1192 mutex_lock(&data->mutex); 1193 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L, 1194 data->buffer, AXIS_MAX * 2); 1195 mutex_unlock(&data->mutex); 1196 if (ret < 0) 1197 goto err_read; 1198 1199 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 1200 pf->timestamp); 1201 err_read: 1202 iio_trigger_notify_done(indio_dev->trig); 1203 1204 return IRQ_HANDLED; 1205 } 1206 1207 static void bmc150_accel_trig_reen(struct iio_trigger *trig) 1208 { 1209 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); 1210 struct bmc150_accel_data *data = t->data; 1211 struct device *dev = regmap_get_device(data->regmap); 1212 int ret; 1213 1214 /* new data interrupts don't need ack */ 1215 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) 1216 return; 1217 1218 mutex_lock(&data->mutex); 1219 /* clear any latched interrupt */ 1220 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1221 BMC150_ACCEL_INT_MODE_LATCH_INT | 1222 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1223 mutex_unlock(&data->mutex); 1224 if (ret < 0) 1225 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1226 } 1227 1228 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, 1229 bool state) 1230 { 1231 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); 1232 struct bmc150_accel_data *data = t->data; 1233 int ret; 1234 1235 mutex_lock(&data->mutex); 1236 1237 if (t->enabled == state) { 1238 mutex_unlock(&data->mutex); 1239 return 0; 1240 } 1241 1242 if (t->setup) { 1243 ret = t->setup(t, state); 1244 if (ret < 0) { 1245 mutex_unlock(&data->mutex); 1246 return ret; 1247 } 1248 } 1249 1250 ret = bmc150_accel_set_interrupt(data, t->intr, state); 1251 if (ret < 0) { 1252 mutex_unlock(&data->mutex); 1253 return ret; 1254 } 1255 1256 t->enabled = state; 1257 1258 mutex_unlock(&data->mutex); 1259 1260 return ret; 1261 } 1262 1263 static const struct iio_trigger_ops bmc150_accel_trigger_ops = { 1264 .set_trigger_state = bmc150_accel_trigger_set_state, 1265 .reenable = bmc150_accel_trig_reen, 1266 }; 1267 1268 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) 1269 { 1270 struct bmc150_accel_data *data = iio_priv(indio_dev); 1271 struct device *dev = regmap_get_device(data->regmap); 1272 int dir; 1273 int ret; 1274 unsigned int val; 1275 1276 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val); 1277 if (ret < 0) { 1278 dev_err(dev, "Error reading reg_int_status_2\n"); 1279 return ret; 1280 } 1281 1282 if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) 1283 dir = IIO_EV_DIR_FALLING; 1284 else 1285 dir = IIO_EV_DIR_RISING; 1286 1287 if (val & BMC150_ACCEL_ANY_MOTION_BIT_X) 1288 iio_push_event(indio_dev, 1289 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1290 0, 1291 IIO_MOD_X, 1292 IIO_EV_TYPE_ROC, 1293 dir), 1294 data->timestamp); 1295 1296 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y) 1297 iio_push_event(indio_dev, 1298 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1299 0, 1300 IIO_MOD_Y, 1301 IIO_EV_TYPE_ROC, 1302 dir), 1303 data->timestamp); 1304 1305 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z) 1306 iio_push_event(indio_dev, 1307 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1308 0, 1309 IIO_MOD_Z, 1310 IIO_EV_TYPE_ROC, 1311 dir), 1312 data->timestamp); 1313 1314 return ret; 1315 } 1316 1317 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) 1318 { 1319 struct iio_dev *indio_dev = private; 1320 struct bmc150_accel_data *data = iio_priv(indio_dev); 1321 struct device *dev = regmap_get_device(data->regmap); 1322 bool ack = false; 1323 int ret; 1324 1325 mutex_lock(&data->mutex); 1326 1327 if (data->fifo_mode) { 1328 ret = __bmc150_accel_fifo_flush(indio_dev, 1329 BMC150_ACCEL_FIFO_LENGTH, true); 1330 if (ret > 0) 1331 ack = true; 1332 } 1333 1334 if (data->ev_enable_state) { 1335 ret = bmc150_accel_handle_roc_event(indio_dev); 1336 if (ret > 0) 1337 ack = true; 1338 } 1339 1340 if (ack) { 1341 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1342 BMC150_ACCEL_INT_MODE_LATCH_INT | 1343 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1344 if (ret) 1345 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1346 1347 ret = IRQ_HANDLED; 1348 } else { 1349 ret = IRQ_NONE; 1350 } 1351 1352 mutex_unlock(&data->mutex); 1353 1354 return ret; 1355 } 1356 1357 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) 1358 { 1359 struct iio_dev *indio_dev = private; 1360 struct bmc150_accel_data *data = iio_priv(indio_dev); 1361 bool ack = false; 1362 int i; 1363 1364 data->old_timestamp = data->timestamp; 1365 data->timestamp = iio_get_time_ns(indio_dev); 1366 1367 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 1368 if (data->triggers[i].enabled) { 1369 iio_trigger_poll(data->triggers[i].indio_trig); 1370 ack = true; 1371 break; 1372 } 1373 } 1374 1375 if (data->ev_enable_state || data->fifo_mode) 1376 return IRQ_WAKE_THREAD; 1377 1378 if (ack) 1379 return IRQ_HANDLED; 1380 1381 return IRQ_NONE; 1382 } 1383 1384 static const struct { 1385 int intr; 1386 const char *name; 1387 int (*setup)(struct bmc150_accel_trigger *t, bool state); 1388 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { 1389 { 1390 .intr = 0, 1391 .name = "%s-dev%d", 1392 }, 1393 { 1394 .intr = 1, 1395 .name = "%s-any-motion-dev%d", 1396 .setup = bmc150_accel_any_motion_setup, 1397 }, 1398 }; 1399 1400 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, 1401 int from) 1402 { 1403 int i; 1404 1405 for (i = from; i >= 0; i--) { 1406 if (data->triggers[i].indio_trig) { 1407 iio_trigger_unregister(data->triggers[i].indio_trig); 1408 data->triggers[i].indio_trig = NULL; 1409 } 1410 } 1411 } 1412 1413 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, 1414 struct bmc150_accel_data *data) 1415 { 1416 struct device *dev = regmap_get_device(data->regmap); 1417 int i, ret; 1418 1419 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 1420 struct bmc150_accel_trigger *t = &data->triggers[i]; 1421 1422 t->indio_trig = devm_iio_trigger_alloc(dev, 1423 bmc150_accel_triggers[i].name, 1424 indio_dev->name, 1425 iio_device_id(indio_dev)); 1426 if (!t->indio_trig) { 1427 ret = -ENOMEM; 1428 break; 1429 } 1430 1431 t->indio_trig->ops = &bmc150_accel_trigger_ops; 1432 t->intr = bmc150_accel_triggers[i].intr; 1433 t->data = data; 1434 t->setup = bmc150_accel_triggers[i].setup; 1435 iio_trigger_set_drvdata(t->indio_trig, t); 1436 1437 ret = iio_trigger_register(t->indio_trig); 1438 if (ret) 1439 break; 1440 } 1441 1442 if (ret) 1443 bmc150_accel_unregister_triggers(data, i - 1); 1444 1445 return ret; 1446 } 1447 1448 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 1449 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 1450 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 1451 1452 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) 1453 { 1454 struct device *dev = regmap_get_device(data->regmap); 1455 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; 1456 int ret; 1457 1458 ret = regmap_write(data->regmap, reg, data->fifo_mode); 1459 if (ret < 0) { 1460 dev_err(dev, "Error writing reg_fifo_config1\n"); 1461 return ret; 1462 } 1463 1464 if (!data->fifo_mode) 1465 return 0; 1466 1467 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0, 1468 data->watermark); 1469 if (ret < 0) 1470 dev_err(dev, "Error writing reg_fifo_config0\n"); 1471 1472 return ret; 1473 } 1474 1475 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev) 1476 { 1477 struct bmc150_accel_data *data = iio_priv(indio_dev); 1478 1479 return bmc150_accel_set_power_state(data, true); 1480 } 1481 1482 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) 1483 { 1484 struct bmc150_accel_data *data = iio_priv(indio_dev); 1485 int ret = 0; 1486 1487 if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) 1488 return 0; 1489 1490 mutex_lock(&data->mutex); 1491 1492 if (!data->watermark) 1493 goto out; 1494 1495 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, 1496 true); 1497 if (ret) 1498 goto out; 1499 1500 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; 1501 1502 ret = bmc150_accel_fifo_set_mode(data); 1503 if (ret) { 1504 data->fifo_mode = 0; 1505 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, 1506 false); 1507 } 1508 1509 out: 1510 mutex_unlock(&data->mutex); 1511 1512 return ret; 1513 } 1514 1515 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) 1516 { 1517 struct bmc150_accel_data *data = iio_priv(indio_dev); 1518 1519 if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED) 1520 return 0; 1521 1522 mutex_lock(&data->mutex); 1523 1524 if (!data->fifo_mode) 1525 goto out; 1526 1527 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); 1528 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); 1529 data->fifo_mode = 0; 1530 bmc150_accel_fifo_set_mode(data); 1531 1532 out: 1533 mutex_unlock(&data->mutex); 1534 1535 return 0; 1536 } 1537 1538 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev) 1539 { 1540 struct bmc150_accel_data *data = iio_priv(indio_dev); 1541 1542 return bmc150_accel_set_power_state(data, false); 1543 } 1544 1545 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { 1546 .preenable = bmc150_accel_buffer_preenable, 1547 .postenable = bmc150_accel_buffer_postenable, 1548 .predisable = bmc150_accel_buffer_predisable, 1549 .postdisable = bmc150_accel_buffer_postdisable, 1550 }; 1551 1552 static int bmc150_accel_chip_init(struct bmc150_accel_data *data) 1553 { 1554 struct device *dev = regmap_get_device(data->regmap); 1555 int ret, i; 1556 unsigned int val; 1557 1558 /* 1559 * Reset chip to get it in a known good state. A delay of 1.8ms after 1560 * reset is required according to the data sheets of supported chips. 1561 */ 1562 regmap_write(data->regmap, BMC150_ACCEL_REG_RESET, 1563 BMC150_ACCEL_RESET_VAL); 1564 usleep_range(1800, 2500); 1565 1566 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val); 1567 if (ret < 0) { 1568 dev_err(dev, "Error: Reading chip id\n"); 1569 return ret; 1570 } 1571 1572 dev_dbg(dev, "Chip Id %x\n", val); 1573 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) { 1574 if (bmc150_accel_chip_info_tbl[i].chip_id == val) { 1575 data->chip_info = &bmc150_accel_chip_info_tbl[i]; 1576 break; 1577 } 1578 } 1579 1580 if (!data->chip_info) { 1581 dev_err(dev, "Invalid chip %x\n", val); 1582 return -ENODEV; 1583 } 1584 1585 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1586 if (ret < 0) 1587 return ret; 1588 1589 /* Set Bandwidth */ 1590 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); 1591 if (ret < 0) 1592 return ret; 1593 1594 /* Set Default Range */ 1595 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, 1596 BMC150_ACCEL_DEF_RANGE_4G); 1597 if (ret < 0) { 1598 dev_err(dev, "Error writing reg_pmu_range\n"); 1599 return ret; 1600 } 1601 1602 data->range = BMC150_ACCEL_DEF_RANGE_4G; 1603 1604 /* Set default slope duration and thresholds */ 1605 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; 1606 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; 1607 ret = bmc150_accel_update_slope(data); 1608 if (ret < 0) 1609 return ret; 1610 1611 /* Set default as latched interrupts */ 1612 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1613 BMC150_ACCEL_INT_MODE_LATCH_INT | 1614 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1615 if (ret < 0) { 1616 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1617 return ret; 1618 } 1619 1620 return 0; 1621 } 1622 1623 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, 1624 enum bmc150_type type, const char *name, 1625 bool block_supported) 1626 { 1627 const struct iio_dev_attr **fifo_attrs; 1628 struct bmc150_accel_data *data; 1629 struct iio_dev *indio_dev; 1630 int ret; 1631 1632 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 1633 if (!indio_dev) 1634 return -ENOMEM; 1635 1636 data = iio_priv(indio_dev); 1637 dev_set_drvdata(dev, indio_dev); 1638 1639 data->regmap = regmap; 1640 data->type = type; 1641 1642 if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) { 1643 ret = iio_read_mount_matrix(dev, &data->orientation); 1644 if (ret) 1645 return ret; 1646 } 1647 1648 /* 1649 * VDD is the analog and digital domain voltage supply 1650 * VDDIO is the digital I/O voltage supply 1651 */ 1652 data->regulators[0].supply = "vdd"; 1653 data->regulators[1].supply = "vddio"; 1654 ret = devm_regulator_bulk_get(dev, 1655 ARRAY_SIZE(data->regulators), 1656 data->regulators); 1657 if (ret) 1658 return dev_err_probe(dev, ret, "failed to get regulators\n"); 1659 1660 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), 1661 data->regulators); 1662 if (ret) { 1663 dev_err(dev, "failed to enable regulators: %d\n", ret); 1664 return ret; 1665 } 1666 /* 1667 * 2ms or 3ms power-on time according to datasheets, let's better 1668 * be safe than sorry and set this delay to 5ms. 1669 */ 1670 msleep(5); 1671 1672 ret = bmc150_accel_chip_init(data); 1673 if (ret < 0) 1674 goto err_disable_regulators; 1675 1676 mutex_init(&data->mutex); 1677 1678 indio_dev->channels = data->chip_info->channels; 1679 indio_dev->num_channels = data->chip_info->num_channels; 1680 indio_dev->name = name ? name : data->chip_info->name; 1681 indio_dev->available_scan_masks = bmc150_accel_scan_masks; 1682 indio_dev->modes = INDIO_DIRECT_MODE; 1683 indio_dev->info = &bmc150_accel_info; 1684 1685 if (block_supported) { 1686 indio_dev->modes |= INDIO_BUFFER_SOFTWARE; 1687 indio_dev->info = &bmc150_accel_info_fifo; 1688 fifo_attrs = bmc150_accel_fifo_attributes; 1689 } else { 1690 fifo_attrs = NULL; 1691 } 1692 1693 ret = iio_triggered_buffer_setup_ext(indio_dev, 1694 &iio_pollfunc_store_time, 1695 bmc150_accel_trigger_handler, 1696 IIO_BUFFER_DIRECTION_IN, 1697 &bmc150_accel_buffer_ops, 1698 fifo_attrs); 1699 if (ret < 0) { 1700 dev_err(dev, "Failed: iio triggered buffer setup\n"); 1701 goto err_disable_regulators; 1702 } 1703 1704 if (irq > 0) { 1705 ret = devm_request_threaded_irq(dev, irq, 1706 bmc150_accel_irq_handler, 1707 bmc150_accel_irq_thread_handler, 1708 IRQF_TRIGGER_RISING, 1709 BMC150_ACCEL_IRQ_NAME, 1710 indio_dev); 1711 if (ret) 1712 goto err_buffer_cleanup; 1713 1714 /* 1715 * Set latched mode interrupt. While certain interrupts are 1716 * non-latched regardless of this settings (e.g. new data) we 1717 * want to use latch mode when we can to prevent interrupt 1718 * flooding. 1719 */ 1720 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1721 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1722 if (ret < 0) { 1723 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1724 goto err_buffer_cleanup; 1725 } 1726 1727 bmc150_accel_interrupts_setup(indio_dev, data, irq); 1728 1729 ret = bmc150_accel_triggers_setup(indio_dev, data); 1730 if (ret) 1731 goto err_buffer_cleanup; 1732 } 1733 1734 ret = pm_runtime_set_active(dev); 1735 if (ret) 1736 goto err_trigger_unregister; 1737 1738 pm_runtime_enable(dev); 1739 pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS); 1740 pm_runtime_use_autosuspend(dev); 1741 1742 ret = iio_device_register(indio_dev); 1743 if (ret < 0) { 1744 dev_err(dev, "Unable to register iio device\n"); 1745 goto err_pm_cleanup; 1746 } 1747 1748 return 0; 1749 1750 err_pm_cleanup: 1751 pm_runtime_dont_use_autosuspend(dev); 1752 pm_runtime_disable(dev); 1753 err_trigger_unregister: 1754 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); 1755 err_buffer_cleanup: 1756 iio_triggered_buffer_cleanup(indio_dev); 1757 err_disable_regulators: 1758 regulator_bulk_disable(ARRAY_SIZE(data->regulators), 1759 data->regulators); 1760 1761 return ret; 1762 } 1763 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, IIO_BMC150); 1764 1765 void bmc150_accel_core_remove(struct device *dev) 1766 { 1767 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1768 struct bmc150_accel_data *data = iio_priv(indio_dev); 1769 1770 iio_device_unregister(indio_dev); 1771 1772 pm_runtime_disable(dev); 1773 pm_runtime_set_suspended(dev); 1774 1775 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); 1776 1777 iio_triggered_buffer_cleanup(indio_dev); 1778 1779 mutex_lock(&data->mutex); 1780 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); 1781 mutex_unlock(&data->mutex); 1782 1783 regulator_bulk_disable(ARRAY_SIZE(data->regulators), 1784 data->regulators); 1785 } 1786 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, IIO_BMC150); 1787 1788 #ifdef CONFIG_PM_SLEEP 1789 static int bmc150_accel_suspend(struct device *dev) 1790 { 1791 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1792 struct bmc150_accel_data *data = iio_priv(indio_dev); 1793 1794 mutex_lock(&data->mutex); 1795 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); 1796 mutex_unlock(&data->mutex); 1797 1798 return 0; 1799 } 1800 1801 static int bmc150_accel_resume(struct device *dev) 1802 { 1803 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1804 struct bmc150_accel_data *data = iio_priv(indio_dev); 1805 1806 mutex_lock(&data->mutex); 1807 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1808 bmc150_accel_fifo_set_mode(data); 1809 mutex_unlock(&data->mutex); 1810 1811 if (data->resume_callback) 1812 data->resume_callback(dev); 1813 1814 return 0; 1815 } 1816 #endif 1817 1818 #ifdef CONFIG_PM 1819 static int bmc150_accel_runtime_suspend(struct device *dev) 1820 { 1821 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1822 struct bmc150_accel_data *data = iio_priv(indio_dev); 1823 int ret; 1824 1825 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); 1826 if (ret < 0) 1827 return -EAGAIN; 1828 1829 return 0; 1830 } 1831 1832 static int bmc150_accel_runtime_resume(struct device *dev) 1833 { 1834 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1835 struct bmc150_accel_data *data = iio_priv(indio_dev); 1836 int ret; 1837 int sleep_val; 1838 1839 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1840 if (ret < 0) 1841 return ret; 1842 ret = bmc150_accel_fifo_set_mode(data); 1843 if (ret < 0) 1844 return ret; 1845 1846 sleep_val = bmc150_accel_get_startup_times(data); 1847 if (sleep_val < 20) 1848 usleep_range(sleep_val * 1000, 20000); 1849 else 1850 msleep_interruptible(sleep_val); 1851 1852 return 0; 1853 } 1854 #endif 1855 1856 const struct dev_pm_ops bmc150_accel_pm_ops = { 1857 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) 1858 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, 1859 bmc150_accel_runtime_resume, NULL) 1860 }; 1861 EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, IIO_BMC150); 1862 1863 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>"); 1864 MODULE_LICENSE("GPL v2"); 1865 MODULE_DESCRIPTION("BMC150 accelerometer driver"); 1866