xref: /linux/drivers/iio/accel/bmc150-accel-core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38 
39 #include "bmc150-accel.h"
40 
41 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
43 
44 #define BMC150_ACCEL_REG_CHIP_ID		0x00
45 
46 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
52 
53 #define BMC150_ACCEL_REG_PMU_LPW		0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
58 
59 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
60 
61 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
65 
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW		0x10
68 #define BMC150_ACCEL_DEF_BW			125
69 
70 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
71 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
72 
73 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
74 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
75 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
76 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
77 
78 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
79 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
80 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
81 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
82 
83 #define BMC150_ACCEL_REG_INT_EN_0		0x16
84 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
85 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
86 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
87 
88 #define BMC150_ACCEL_REG_INT_EN_1		0x17
89 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
90 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
91 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
92 
93 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
94 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
95 
96 #define BMC150_ACCEL_REG_INT_5			0x27
97 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
98 
99 #define BMC150_ACCEL_REG_INT_6			0x28
100 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
101 
102 /* Slope duration in terms of number of samples */
103 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
104 /* in terms of multiples of g's/LSB, based on range */
105 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
106 
107 #define BMC150_ACCEL_REG_XOUT_L		0x02
108 
109 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
110 
111 /* Sleep Duration values */
112 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
113 #define BMC150_ACCEL_SLEEP_1_MS		0x06
114 #define BMC150_ACCEL_SLEEP_2_MS		0x07
115 #define BMC150_ACCEL_SLEEP_4_MS		0x08
116 #define BMC150_ACCEL_SLEEP_6_MS		0x09
117 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
118 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
119 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
120 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
121 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
122 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
123 
124 #define BMC150_ACCEL_REG_TEMP			0x08
125 #define BMC150_ACCEL_TEMP_CENTER_VAL		24
126 
127 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
128 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
129 
130 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
131 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
132 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
133 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
134 #define BMC150_ACCEL_FIFO_LENGTH		32
135 
136 enum bmc150_accel_axis {
137 	AXIS_X,
138 	AXIS_Y,
139 	AXIS_Z,
140 	AXIS_MAX,
141 };
142 
143 enum bmc150_power_modes {
144 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
145 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
146 	BMC150_ACCEL_SLEEP_MODE_LPM,
147 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
148 };
149 
150 struct bmc150_scale_info {
151 	int scale;
152 	u8 reg_range;
153 };
154 
155 struct bmc150_accel_chip_info {
156 	const char *name;
157 	u8 chip_id;
158 	const struct iio_chan_spec *channels;
159 	int num_channels;
160 	const struct bmc150_scale_info scale_table[4];
161 };
162 
163 struct bmc150_accel_interrupt {
164 	const struct bmc150_accel_interrupt_info *info;
165 	atomic_t users;
166 };
167 
168 struct bmc150_accel_trigger {
169 	struct bmc150_accel_data *data;
170 	struct iio_trigger *indio_trig;
171 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
172 	int intr;
173 	bool enabled;
174 };
175 
176 enum bmc150_accel_interrupt_id {
177 	BMC150_ACCEL_INT_DATA_READY,
178 	BMC150_ACCEL_INT_ANY_MOTION,
179 	BMC150_ACCEL_INT_WATERMARK,
180 	BMC150_ACCEL_INTERRUPTS,
181 };
182 
183 enum bmc150_accel_trigger_id {
184 	BMC150_ACCEL_TRIGGER_DATA_READY,
185 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
186 	BMC150_ACCEL_TRIGGERS,
187 };
188 
189 struct bmc150_accel_data {
190 	struct regmap *regmap;
191 	int irq;
192 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
193 	atomic_t active_intr;
194 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
195 	struct mutex mutex;
196 	u8 fifo_mode, watermark;
197 	s16 buffer[8];
198 	u8 bw_bits;
199 	u32 slope_dur;
200 	u32 slope_thres;
201 	u32 range;
202 	int ev_enable_state;
203 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
204 	const struct bmc150_accel_chip_info *chip_info;
205 };
206 
207 static const struct {
208 	int val;
209 	int val2;
210 	u8 bw_bits;
211 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
212 				     {31, 260000, 0x09},
213 				     {62, 500000, 0x0A},
214 				     {125, 0, 0x0B},
215 				     {250, 0, 0x0C},
216 				     {500, 0, 0x0D},
217 				     {1000, 0, 0x0E},
218 				     {2000, 0, 0x0F} };
219 
220 static const struct {
221 	int bw_bits;
222 	int msec;
223 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
224 				     {0x09, 32},
225 				     {0x0A, 16},
226 				     {0x0B, 8},
227 				     {0x0C, 4},
228 				     {0x0D, 2},
229 				     {0x0E, 1},
230 				     {0x0F, 1} };
231 
232 static const struct {
233 	int sleep_dur;
234 	u8 reg_value;
235 } bmc150_accel_sleep_value_table[] = { {0, 0},
236 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
237 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
238 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
239 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
240 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
241 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
242 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
243 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
244 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
245 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
246 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
247 
248 const struct regmap_config bmc150_regmap_conf = {
249 	.reg_bits = 8,
250 	.val_bits = 8,
251 	.max_register = 0x3f,
252 };
253 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
254 
255 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
256 				 enum bmc150_power_modes mode,
257 				 int dur_us)
258 {
259 	struct device *dev = regmap_get_device(data->regmap);
260 	int i;
261 	int ret;
262 	u8 lpw_bits;
263 	int dur_val = -1;
264 
265 	if (dur_us > 0) {
266 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
267 									 ++i) {
268 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
269 									dur_us)
270 				dur_val =
271 				bmc150_accel_sleep_value_table[i].reg_value;
272 		}
273 	} else {
274 		dur_val = 0;
275 	}
276 
277 	if (dur_val < 0)
278 		return -EINVAL;
279 
280 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
281 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
282 
283 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
284 
285 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
286 	if (ret < 0) {
287 		dev_err(dev, "Error writing reg_pmu_lpw\n");
288 		return ret;
289 	}
290 
291 	return 0;
292 }
293 
294 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
295 			       int val2)
296 {
297 	int i;
298 	int ret;
299 
300 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
301 		if (bmc150_accel_samp_freq_table[i].val == val &&
302 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
303 			ret = regmap_write(data->regmap,
304 				BMC150_ACCEL_REG_PMU_BW,
305 				bmc150_accel_samp_freq_table[i].bw_bits);
306 			if (ret < 0)
307 				return ret;
308 
309 			data->bw_bits =
310 				bmc150_accel_samp_freq_table[i].bw_bits;
311 			return 0;
312 		}
313 	}
314 
315 	return -EINVAL;
316 }
317 
318 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
319 {
320 	struct device *dev = regmap_get_device(data->regmap);
321 	int ret;
322 
323 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
324 					data->slope_thres);
325 	if (ret < 0) {
326 		dev_err(dev, "Error writing reg_int_6\n");
327 		return ret;
328 	}
329 
330 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
331 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
332 	if (ret < 0) {
333 		dev_err(dev, "Error updating reg_int_5\n");
334 		return ret;
335 	}
336 
337 	dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
338 		data->slope_dur);
339 
340 	return ret;
341 }
342 
343 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
344 					 bool state)
345 {
346 	if (state)
347 		return bmc150_accel_update_slope(t->data);
348 
349 	return 0;
350 }
351 
352 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
353 			       int *val2)
354 {
355 	int i;
356 
357 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
358 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
359 			*val = bmc150_accel_samp_freq_table[i].val;
360 			*val2 = bmc150_accel_samp_freq_table[i].val2;
361 			return IIO_VAL_INT_PLUS_MICRO;
362 		}
363 	}
364 
365 	return -EINVAL;
366 }
367 
368 #ifdef CONFIG_PM
369 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
370 {
371 	int i;
372 
373 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
374 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
375 			return bmc150_accel_sample_upd_time[i].msec;
376 	}
377 
378 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
379 }
380 
381 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
382 {
383 	struct device *dev = regmap_get_device(data->regmap);
384 	int ret;
385 
386 	if (on) {
387 		ret = pm_runtime_get_sync(dev);
388 	} else {
389 		pm_runtime_mark_last_busy(dev);
390 		ret = pm_runtime_put_autosuspend(dev);
391 	}
392 
393 	if (ret < 0) {
394 		dev_err(dev,
395 			"Failed: bmc150_accel_set_power_state for %d\n", on);
396 		if (on)
397 			pm_runtime_put_noidle(dev);
398 
399 		return ret;
400 	}
401 
402 	return 0;
403 }
404 #else
405 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
406 {
407 	return 0;
408 }
409 #endif
410 
411 static const struct bmc150_accel_interrupt_info {
412 	u8 map_reg;
413 	u8 map_bitmask;
414 	u8 en_reg;
415 	u8 en_bitmask;
416 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
417 	{ /* data ready interrupt */
418 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
419 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
420 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
421 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
422 	},
423 	{  /* motion interrupt */
424 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
425 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
426 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
427 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
428 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
429 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
430 	},
431 	{ /* fifo watermark interrupt */
432 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
433 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
434 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
435 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
436 	},
437 };
438 
439 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
440 					  struct bmc150_accel_data *data)
441 {
442 	int i;
443 
444 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
445 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
446 }
447 
448 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
449 				      bool state)
450 {
451 	struct device *dev = regmap_get_device(data->regmap);
452 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
453 	const struct bmc150_accel_interrupt_info *info = intr->info;
454 	int ret;
455 
456 	if (state) {
457 		if (atomic_inc_return(&intr->users) > 1)
458 			return 0;
459 	} else {
460 		if (atomic_dec_return(&intr->users) > 0)
461 			return 0;
462 	}
463 
464 	/*
465 	 * We will expect the enable and disable to do operation in reverse
466 	 * order. This will happen here anyway, as our resume operation uses
467 	 * sync mode runtime pm calls. The suspend operation will be delayed
468 	 * by autosuspend delay.
469 	 * So the disable operation will still happen in reverse order of
470 	 * enable operation. When runtime pm is disabled the mode is always on,
471 	 * so sequence doesn't matter.
472 	 */
473 	ret = bmc150_accel_set_power_state(data, state);
474 	if (ret < 0)
475 		return ret;
476 
477 	/* map the interrupt to the appropriate pins */
478 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
479 				 (state ? info->map_bitmask : 0));
480 	if (ret < 0) {
481 		dev_err(dev, "Error updating reg_int_map\n");
482 		goto out_fix_power_state;
483 	}
484 
485 	/* enable/disable the interrupt */
486 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
487 				 (state ? info->en_bitmask : 0));
488 	if (ret < 0) {
489 		dev_err(dev, "Error updating reg_int_en\n");
490 		goto out_fix_power_state;
491 	}
492 
493 	if (state)
494 		atomic_inc(&data->active_intr);
495 	else
496 		atomic_dec(&data->active_intr);
497 
498 	return 0;
499 
500 out_fix_power_state:
501 	bmc150_accel_set_power_state(data, false);
502 	return ret;
503 }
504 
505 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
506 {
507 	struct device *dev = regmap_get_device(data->regmap);
508 	int ret, i;
509 
510 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
511 		if (data->chip_info->scale_table[i].scale == val) {
512 			ret = regmap_write(data->regmap,
513 				     BMC150_ACCEL_REG_PMU_RANGE,
514 				     data->chip_info->scale_table[i].reg_range);
515 			if (ret < 0) {
516 				dev_err(dev, "Error writing pmu_range\n");
517 				return ret;
518 			}
519 
520 			data->range = data->chip_info->scale_table[i].reg_range;
521 			return 0;
522 		}
523 	}
524 
525 	return -EINVAL;
526 }
527 
528 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
529 {
530 	struct device *dev = regmap_get_device(data->regmap);
531 	int ret;
532 	unsigned int value;
533 
534 	mutex_lock(&data->mutex);
535 
536 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
537 	if (ret < 0) {
538 		dev_err(dev, "Error reading reg_temp\n");
539 		mutex_unlock(&data->mutex);
540 		return ret;
541 	}
542 	*val = sign_extend32(value, 7);
543 
544 	mutex_unlock(&data->mutex);
545 
546 	return IIO_VAL_INT;
547 }
548 
549 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
550 				 struct iio_chan_spec const *chan,
551 				 int *val)
552 {
553 	struct device *dev = regmap_get_device(data->regmap);
554 	int ret;
555 	int axis = chan->scan_index;
556 	__le16 raw_val;
557 
558 	mutex_lock(&data->mutex);
559 	ret = bmc150_accel_set_power_state(data, true);
560 	if (ret < 0) {
561 		mutex_unlock(&data->mutex);
562 		return ret;
563 	}
564 
565 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
566 			       &raw_val, sizeof(raw_val));
567 	if (ret < 0) {
568 		dev_err(dev, "Error reading axis %d\n", axis);
569 		bmc150_accel_set_power_state(data, false);
570 		mutex_unlock(&data->mutex);
571 		return ret;
572 	}
573 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
574 			     chan->scan_type.realbits - 1);
575 	ret = bmc150_accel_set_power_state(data, false);
576 	mutex_unlock(&data->mutex);
577 	if (ret < 0)
578 		return ret;
579 
580 	return IIO_VAL_INT;
581 }
582 
583 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
584 				 struct iio_chan_spec const *chan,
585 				 int *val, int *val2, long mask)
586 {
587 	struct bmc150_accel_data *data = iio_priv(indio_dev);
588 	int ret;
589 
590 	switch (mask) {
591 	case IIO_CHAN_INFO_RAW:
592 		switch (chan->type) {
593 		case IIO_TEMP:
594 			return bmc150_accel_get_temp(data, val);
595 		case IIO_ACCEL:
596 			if (iio_buffer_enabled(indio_dev))
597 				return -EBUSY;
598 			else
599 				return bmc150_accel_get_axis(data, chan, val);
600 		default:
601 			return -EINVAL;
602 		}
603 	case IIO_CHAN_INFO_OFFSET:
604 		if (chan->type == IIO_TEMP) {
605 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
606 			return IIO_VAL_INT;
607 		} else {
608 			return -EINVAL;
609 		}
610 	case IIO_CHAN_INFO_SCALE:
611 		*val = 0;
612 		switch (chan->type) {
613 		case IIO_TEMP:
614 			*val2 = 500000;
615 			return IIO_VAL_INT_PLUS_MICRO;
616 		case IIO_ACCEL:
617 		{
618 			int i;
619 			const struct bmc150_scale_info *si;
620 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
621 
622 			for (i = 0; i < st_size; ++i) {
623 				si = &data->chip_info->scale_table[i];
624 				if (si->reg_range == data->range) {
625 					*val2 = si->scale;
626 					return IIO_VAL_INT_PLUS_MICRO;
627 				}
628 			}
629 			return -EINVAL;
630 		}
631 		default:
632 			return -EINVAL;
633 		}
634 	case IIO_CHAN_INFO_SAMP_FREQ:
635 		mutex_lock(&data->mutex);
636 		ret = bmc150_accel_get_bw(data, val, val2);
637 		mutex_unlock(&data->mutex);
638 		return ret;
639 	default:
640 		return -EINVAL;
641 	}
642 }
643 
644 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
645 				  struct iio_chan_spec const *chan,
646 				  int val, int val2, long mask)
647 {
648 	struct bmc150_accel_data *data = iio_priv(indio_dev);
649 	int ret;
650 
651 	switch (mask) {
652 	case IIO_CHAN_INFO_SAMP_FREQ:
653 		mutex_lock(&data->mutex);
654 		ret = bmc150_accel_set_bw(data, val, val2);
655 		mutex_unlock(&data->mutex);
656 		break;
657 	case IIO_CHAN_INFO_SCALE:
658 		if (val)
659 			return -EINVAL;
660 
661 		mutex_lock(&data->mutex);
662 		ret = bmc150_accel_set_scale(data, val2);
663 		mutex_unlock(&data->mutex);
664 		return ret;
665 	default:
666 		ret = -EINVAL;
667 	}
668 
669 	return ret;
670 }
671 
672 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
673 				   const struct iio_chan_spec *chan,
674 				   enum iio_event_type type,
675 				   enum iio_event_direction dir,
676 				   enum iio_event_info info,
677 				   int *val, int *val2)
678 {
679 	struct bmc150_accel_data *data = iio_priv(indio_dev);
680 
681 	*val2 = 0;
682 	switch (info) {
683 	case IIO_EV_INFO_VALUE:
684 		*val = data->slope_thres;
685 		break;
686 	case IIO_EV_INFO_PERIOD:
687 		*val = data->slope_dur;
688 		break;
689 	default:
690 		return -EINVAL;
691 	}
692 
693 	return IIO_VAL_INT;
694 }
695 
696 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
697 				    const struct iio_chan_spec *chan,
698 				    enum iio_event_type type,
699 				    enum iio_event_direction dir,
700 				    enum iio_event_info info,
701 				    int val, int val2)
702 {
703 	struct bmc150_accel_data *data = iio_priv(indio_dev);
704 
705 	if (data->ev_enable_state)
706 		return -EBUSY;
707 
708 	switch (info) {
709 	case IIO_EV_INFO_VALUE:
710 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
711 		break;
712 	case IIO_EV_INFO_PERIOD:
713 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
714 		break;
715 	default:
716 		return -EINVAL;
717 	}
718 
719 	return 0;
720 }
721 
722 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
723 					  const struct iio_chan_spec *chan,
724 					  enum iio_event_type type,
725 					  enum iio_event_direction dir)
726 {
727 	struct bmc150_accel_data *data = iio_priv(indio_dev);
728 
729 	return data->ev_enable_state;
730 }
731 
732 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
733 					   const struct iio_chan_spec *chan,
734 					   enum iio_event_type type,
735 					   enum iio_event_direction dir,
736 					   int state)
737 {
738 	struct bmc150_accel_data *data = iio_priv(indio_dev);
739 	int ret;
740 
741 	if (state == data->ev_enable_state)
742 		return 0;
743 
744 	mutex_lock(&data->mutex);
745 
746 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
747 					 state);
748 	if (ret < 0) {
749 		mutex_unlock(&data->mutex);
750 		return ret;
751 	}
752 
753 	data->ev_enable_state = state;
754 	mutex_unlock(&data->mutex);
755 
756 	return 0;
757 }
758 
759 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
760 					 struct iio_trigger *trig)
761 {
762 	struct bmc150_accel_data *data = iio_priv(indio_dev);
763 	int i;
764 
765 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
766 		if (data->triggers[i].indio_trig == trig)
767 			return 0;
768 	}
769 
770 	return -EINVAL;
771 }
772 
773 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
774 					       struct device_attribute *attr,
775 					       char *buf)
776 {
777 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
778 	struct bmc150_accel_data *data = iio_priv(indio_dev);
779 	int wm;
780 
781 	mutex_lock(&data->mutex);
782 	wm = data->watermark;
783 	mutex_unlock(&data->mutex);
784 
785 	return sprintf(buf, "%d\n", wm);
786 }
787 
788 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
789 					   struct device_attribute *attr,
790 					   char *buf)
791 {
792 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
793 	struct bmc150_accel_data *data = iio_priv(indio_dev);
794 	bool state;
795 
796 	mutex_lock(&data->mutex);
797 	state = data->fifo_mode;
798 	mutex_unlock(&data->mutex);
799 
800 	return sprintf(buf, "%d\n", state);
801 }
802 
803 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
804 static IIO_CONST_ATTR(hwfifo_watermark_max,
805 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
806 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
807 		       bmc150_accel_get_fifo_state, NULL, 0);
808 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
809 		       bmc150_accel_get_fifo_watermark, NULL, 0);
810 
811 static const struct attribute *bmc150_accel_fifo_attributes[] = {
812 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
813 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
814 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
815 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
816 	NULL,
817 };
818 
819 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
820 {
821 	struct bmc150_accel_data *data = iio_priv(indio_dev);
822 
823 	if (val > BMC150_ACCEL_FIFO_LENGTH)
824 		val = BMC150_ACCEL_FIFO_LENGTH;
825 
826 	mutex_lock(&data->mutex);
827 	data->watermark = val;
828 	mutex_unlock(&data->mutex);
829 
830 	return 0;
831 }
832 
833 /*
834  * We must read at least one full frame in one burst, otherwise the rest of the
835  * frame data is discarded.
836  */
837 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
838 				      char *buffer, int samples)
839 {
840 	struct device *dev = regmap_get_device(data->regmap);
841 	int sample_length = 3 * 2;
842 	int ret;
843 	int total_length = samples * sample_length;
844 	int i;
845 	size_t step = regmap_get_raw_read_max(data->regmap);
846 
847 	if (!step || step > total_length)
848 		step = total_length;
849 	else if (step < total_length)
850 		step = sample_length;
851 
852 	/*
853 	 * Seems we have a bus with size limitation so we have to execute
854 	 * multiple reads
855 	 */
856 	for (i = 0; i < total_length; i += step) {
857 		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
858 				      &buffer[i], step);
859 		if (ret)
860 			break;
861 	}
862 
863 	if (ret)
864 		dev_err(dev,
865 			"Error transferring data from fifo in single steps of %zu\n",
866 			step);
867 
868 	return ret;
869 }
870 
871 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
872 				     unsigned samples, bool irq)
873 {
874 	struct bmc150_accel_data *data = iio_priv(indio_dev);
875 	struct device *dev = regmap_get_device(data->regmap);
876 	int ret, i;
877 	u8 count;
878 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
879 	int64_t tstamp;
880 	uint64_t sample_period;
881 	unsigned int val;
882 
883 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
884 	if (ret < 0) {
885 		dev_err(dev, "Error reading reg_fifo_status\n");
886 		return ret;
887 	}
888 
889 	count = val & 0x7F;
890 
891 	if (!count)
892 		return 0;
893 
894 	/*
895 	 * If we getting called from IRQ handler we know the stored timestamp is
896 	 * fairly accurate for the last stored sample. Otherwise, if we are
897 	 * called as a result of a read operation from userspace and hence
898 	 * before the watermark interrupt was triggered, take a timestamp
899 	 * now. We can fall anywhere in between two samples so the error in this
900 	 * case is at most one sample period.
901 	 */
902 	if (!irq) {
903 		data->old_timestamp = data->timestamp;
904 		data->timestamp = iio_get_time_ns();
905 	}
906 
907 	/*
908 	 * Approximate timestamps for each of the sample based on the sampling
909 	 * frequency, timestamp for last sample and number of samples.
910 	 *
911 	 * Note that we can't use the current bandwidth settings to compute the
912 	 * sample period because the sample rate varies with the device
913 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
914 	 * small variation adds when we store a large number of samples and
915 	 * creates significant jitter between the last and first samples in
916 	 * different batches (e.g. 32ms vs 21ms).
917 	 *
918 	 * To avoid this issue we compute the actual sample period ourselves
919 	 * based on the timestamp delta between the last two flush operations.
920 	 */
921 	sample_period = (data->timestamp - data->old_timestamp);
922 	do_div(sample_period, count);
923 	tstamp = data->timestamp - (count - 1) * sample_period;
924 
925 	if (samples && count > samples)
926 		count = samples;
927 
928 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
929 	if (ret)
930 		return ret;
931 
932 	/*
933 	 * Ideally we want the IIO core to handle the demux when running in fifo
934 	 * mode but not when running in triggered buffer mode. Unfortunately
935 	 * this does not seem to be possible, so stick with driver demux for
936 	 * now.
937 	 */
938 	for (i = 0; i < count; i++) {
939 		u16 sample[8];
940 		int j, bit;
941 
942 		j = 0;
943 		for_each_set_bit(bit, indio_dev->active_scan_mask,
944 				 indio_dev->masklength)
945 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
946 
947 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
948 
949 		tstamp += sample_period;
950 	}
951 
952 	return count;
953 }
954 
955 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
956 {
957 	struct bmc150_accel_data *data = iio_priv(indio_dev);
958 	int ret;
959 
960 	mutex_lock(&data->mutex);
961 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
962 	mutex_unlock(&data->mutex);
963 
964 	return ret;
965 }
966 
967 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
968 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
969 
970 static struct attribute *bmc150_accel_attributes[] = {
971 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
972 	NULL,
973 };
974 
975 static const struct attribute_group bmc150_accel_attrs_group = {
976 	.attrs = bmc150_accel_attributes,
977 };
978 
979 static const struct iio_event_spec bmc150_accel_event = {
980 		.type = IIO_EV_TYPE_ROC,
981 		.dir = IIO_EV_DIR_EITHER,
982 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
983 				 BIT(IIO_EV_INFO_ENABLE) |
984 				 BIT(IIO_EV_INFO_PERIOD)
985 };
986 
987 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
988 	.type = IIO_ACCEL,						\
989 	.modified = 1,							\
990 	.channel2 = IIO_MOD_##_axis,					\
991 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
992 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
993 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
994 	.scan_index = AXIS_##_axis,					\
995 	.scan_type = {							\
996 		.sign = 's',						\
997 		.realbits = (bits),					\
998 		.storagebits = 16,					\
999 		.shift = 16 - (bits),					\
1000 		.endianness = IIO_LE,					\
1001 	},								\
1002 	.event_spec = &bmc150_accel_event,				\
1003 	.num_event_specs = 1						\
1004 }
1005 
1006 #define BMC150_ACCEL_CHANNELS(bits) {					\
1007 	{								\
1008 		.type = IIO_TEMP,					\
1009 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1010 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1011 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1012 		.scan_index = -1,					\
1013 	},								\
1014 	BMC150_ACCEL_CHANNEL(X, bits),					\
1015 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1016 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1017 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1018 }
1019 
1020 static const struct iio_chan_spec bma222e_accel_channels[] =
1021 	BMC150_ACCEL_CHANNELS(8);
1022 static const struct iio_chan_spec bma250e_accel_channels[] =
1023 	BMC150_ACCEL_CHANNELS(10);
1024 static const struct iio_chan_spec bmc150_accel_channels[] =
1025 	BMC150_ACCEL_CHANNELS(12);
1026 static const struct iio_chan_spec bma280_accel_channels[] =
1027 	BMC150_ACCEL_CHANNELS(14);
1028 
1029 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1030 	[bmc150] = {
1031 		.name = "BMC150A",
1032 		.chip_id = 0xFA,
1033 		.channels = bmc150_accel_channels,
1034 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1035 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1036 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1037 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1038 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1039 	},
1040 	[bmi055] = {
1041 		.name = "BMI055A",
1042 		.chip_id = 0xFA,
1043 		.channels = bmc150_accel_channels,
1044 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1045 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1046 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1047 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1048 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1049 	},
1050 	[bma255] = {
1051 		.name = "BMA0255",
1052 		.chip_id = 0xFA,
1053 		.channels = bmc150_accel_channels,
1054 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1055 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1056 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1057 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1058 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1059 	},
1060 	[bma250e] = {
1061 		.name = "BMA250E",
1062 		.chip_id = 0xF9,
1063 		.channels = bma250e_accel_channels,
1064 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1065 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1066 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1067 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1068 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1069 	},
1070 	[bma222e] = {
1071 		.name = "BMA222E",
1072 		.chip_id = 0xF8,
1073 		.channels = bma222e_accel_channels,
1074 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1075 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1076 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1077 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1078 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1079 	},
1080 	[bma280] = {
1081 		.name = "BMA0280",
1082 		.chip_id = 0xFB,
1083 		.channels = bma280_accel_channels,
1084 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1085 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1086 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1087 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1088 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1089 	},
1090 };
1091 
1092 static const struct iio_info bmc150_accel_info = {
1093 	.attrs			= &bmc150_accel_attrs_group,
1094 	.read_raw		= bmc150_accel_read_raw,
1095 	.write_raw		= bmc150_accel_write_raw,
1096 	.read_event_value	= bmc150_accel_read_event,
1097 	.write_event_value	= bmc150_accel_write_event,
1098 	.write_event_config	= bmc150_accel_write_event_config,
1099 	.read_event_config	= bmc150_accel_read_event_config,
1100 	.driver_module		= THIS_MODULE,
1101 };
1102 
1103 static const struct iio_info bmc150_accel_info_fifo = {
1104 	.attrs			= &bmc150_accel_attrs_group,
1105 	.read_raw		= bmc150_accel_read_raw,
1106 	.write_raw		= bmc150_accel_write_raw,
1107 	.read_event_value	= bmc150_accel_read_event,
1108 	.write_event_value	= bmc150_accel_write_event,
1109 	.write_event_config	= bmc150_accel_write_event_config,
1110 	.read_event_config	= bmc150_accel_read_event_config,
1111 	.validate_trigger	= bmc150_accel_validate_trigger,
1112 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1113 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1114 	.driver_module		= THIS_MODULE,
1115 };
1116 
1117 static const unsigned long bmc150_accel_scan_masks[] = {
1118 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1119 					0};
1120 
1121 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1122 {
1123 	struct iio_poll_func *pf = p;
1124 	struct iio_dev *indio_dev = pf->indio_dev;
1125 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1126 	int ret;
1127 
1128 	mutex_lock(&data->mutex);
1129 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1130 			       data->buffer, AXIS_MAX * 2);
1131 	mutex_unlock(&data->mutex);
1132 	if (ret < 0)
1133 		goto err_read;
1134 
1135 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1136 					   pf->timestamp);
1137 err_read:
1138 	iio_trigger_notify_done(indio_dev->trig);
1139 
1140 	return IRQ_HANDLED;
1141 }
1142 
1143 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1144 {
1145 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1146 	struct bmc150_accel_data *data = t->data;
1147 	struct device *dev = regmap_get_device(data->regmap);
1148 	int ret;
1149 
1150 	/* new data interrupts don't need ack */
1151 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1152 		return 0;
1153 
1154 	mutex_lock(&data->mutex);
1155 	/* clear any latched interrupt */
1156 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1157 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1158 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1159 	mutex_unlock(&data->mutex);
1160 	if (ret < 0) {
1161 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1162 		return ret;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1169 					  bool state)
1170 {
1171 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1172 	struct bmc150_accel_data *data = t->data;
1173 	int ret;
1174 
1175 	mutex_lock(&data->mutex);
1176 
1177 	if (t->enabled == state) {
1178 		mutex_unlock(&data->mutex);
1179 		return 0;
1180 	}
1181 
1182 	if (t->setup) {
1183 		ret = t->setup(t, state);
1184 		if (ret < 0) {
1185 			mutex_unlock(&data->mutex);
1186 			return ret;
1187 		}
1188 	}
1189 
1190 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1191 	if (ret < 0) {
1192 		mutex_unlock(&data->mutex);
1193 		return ret;
1194 	}
1195 
1196 	t->enabled = state;
1197 
1198 	mutex_unlock(&data->mutex);
1199 
1200 	return ret;
1201 }
1202 
1203 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1204 	.set_trigger_state = bmc150_accel_trigger_set_state,
1205 	.try_reenable = bmc150_accel_trig_try_reen,
1206 	.owner = THIS_MODULE,
1207 };
1208 
1209 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1210 {
1211 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1212 	struct device *dev = regmap_get_device(data->regmap);
1213 	int dir;
1214 	int ret;
1215 	unsigned int val;
1216 
1217 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1218 	if (ret < 0) {
1219 		dev_err(dev, "Error reading reg_int_status_2\n");
1220 		return ret;
1221 	}
1222 
1223 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1224 		dir = IIO_EV_DIR_FALLING;
1225 	else
1226 		dir = IIO_EV_DIR_RISING;
1227 
1228 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1229 		iio_push_event(indio_dev,
1230 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1231 						  0,
1232 						  IIO_MOD_X,
1233 						  IIO_EV_TYPE_ROC,
1234 						  dir),
1235 			       data->timestamp);
1236 
1237 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1238 		iio_push_event(indio_dev,
1239 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1240 						  0,
1241 						  IIO_MOD_Y,
1242 						  IIO_EV_TYPE_ROC,
1243 						  dir),
1244 			       data->timestamp);
1245 
1246 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1247 		iio_push_event(indio_dev,
1248 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1249 						  0,
1250 						  IIO_MOD_Z,
1251 						  IIO_EV_TYPE_ROC,
1252 						  dir),
1253 			       data->timestamp);
1254 
1255 	return ret;
1256 }
1257 
1258 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1259 {
1260 	struct iio_dev *indio_dev = private;
1261 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1262 	struct device *dev = regmap_get_device(data->regmap);
1263 	bool ack = false;
1264 	int ret;
1265 
1266 	mutex_lock(&data->mutex);
1267 
1268 	if (data->fifo_mode) {
1269 		ret = __bmc150_accel_fifo_flush(indio_dev,
1270 						BMC150_ACCEL_FIFO_LENGTH, true);
1271 		if (ret > 0)
1272 			ack = true;
1273 	}
1274 
1275 	if (data->ev_enable_state) {
1276 		ret = bmc150_accel_handle_roc_event(indio_dev);
1277 		if (ret > 0)
1278 			ack = true;
1279 	}
1280 
1281 	if (ack) {
1282 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1283 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1284 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1285 		if (ret)
1286 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1287 
1288 		ret = IRQ_HANDLED;
1289 	} else {
1290 		ret = IRQ_NONE;
1291 	}
1292 
1293 	mutex_unlock(&data->mutex);
1294 
1295 	return ret;
1296 }
1297 
1298 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1299 {
1300 	struct iio_dev *indio_dev = private;
1301 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1302 	bool ack = false;
1303 	int i;
1304 
1305 	data->old_timestamp = data->timestamp;
1306 	data->timestamp = iio_get_time_ns();
1307 
1308 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1309 		if (data->triggers[i].enabled) {
1310 			iio_trigger_poll(data->triggers[i].indio_trig);
1311 			ack = true;
1312 			break;
1313 		}
1314 	}
1315 
1316 	if (data->ev_enable_state || data->fifo_mode)
1317 		return IRQ_WAKE_THREAD;
1318 
1319 	if (ack)
1320 		return IRQ_HANDLED;
1321 
1322 	return IRQ_NONE;
1323 }
1324 
1325 static const struct {
1326 	int intr;
1327 	const char *name;
1328 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1329 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1330 	{
1331 		.intr = 0,
1332 		.name = "%s-dev%d",
1333 	},
1334 	{
1335 		.intr = 1,
1336 		.name = "%s-any-motion-dev%d",
1337 		.setup = bmc150_accel_any_motion_setup,
1338 	},
1339 };
1340 
1341 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1342 					     int from)
1343 {
1344 	int i;
1345 
1346 	for (i = from; i >= 0; i--) {
1347 		if (data->triggers[i].indio_trig) {
1348 			iio_trigger_unregister(data->triggers[i].indio_trig);
1349 			data->triggers[i].indio_trig = NULL;
1350 		}
1351 	}
1352 }
1353 
1354 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1355 				       struct bmc150_accel_data *data)
1356 {
1357 	struct device *dev = regmap_get_device(data->regmap);
1358 	int i, ret;
1359 
1360 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1361 		struct bmc150_accel_trigger *t = &data->triggers[i];
1362 
1363 		t->indio_trig = devm_iio_trigger_alloc(dev,
1364 					bmc150_accel_triggers[i].name,
1365 						       indio_dev->name,
1366 						       indio_dev->id);
1367 		if (!t->indio_trig) {
1368 			ret = -ENOMEM;
1369 			break;
1370 		}
1371 
1372 		t->indio_trig->dev.parent = dev;
1373 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1374 		t->intr = bmc150_accel_triggers[i].intr;
1375 		t->data = data;
1376 		t->setup = bmc150_accel_triggers[i].setup;
1377 		iio_trigger_set_drvdata(t->indio_trig, t);
1378 
1379 		ret = iio_trigger_register(t->indio_trig);
1380 		if (ret)
1381 			break;
1382 	}
1383 
1384 	if (ret)
1385 		bmc150_accel_unregister_triggers(data, i - 1);
1386 
1387 	return ret;
1388 }
1389 
1390 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1391 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1392 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1393 
1394 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1395 {
1396 	struct device *dev = regmap_get_device(data->regmap);
1397 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1398 	int ret;
1399 
1400 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1401 	if (ret < 0) {
1402 		dev_err(dev, "Error writing reg_fifo_config1\n");
1403 		return ret;
1404 	}
1405 
1406 	if (!data->fifo_mode)
1407 		return 0;
1408 
1409 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1410 			   data->watermark);
1411 	if (ret < 0)
1412 		dev_err(dev, "Error writing reg_fifo_config0\n");
1413 
1414 	return ret;
1415 }
1416 
1417 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1418 {
1419 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1420 
1421 	return bmc150_accel_set_power_state(data, true);
1422 }
1423 
1424 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1425 {
1426 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1427 	int ret = 0;
1428 
1429 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1430 		return iio_triggered_buffer_postenable(indio_dev);
1431 
1432 	mutex_lock(&data->mutex);
1433 
1434 	if (!data->watermark)
1435 		goto out;
1436 
1437 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1438 					 true);
1439 	if (ret)
1440 		goto out;
1441 
1442 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1443 
1444 	ret = bmc150_accel_fifo_set_mode(data);
1445 	if (ret) {
1446 		data->fifo_mode = 0;
1447 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1448 					   false);
1449 	}
1450 
1451 out:
1452 	mutex_unlock(&data->mutex);
1453 
1454 	return ret;
1455 }
1456 
1457 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1458 {
1459 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1460 
1461 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1462 		return iio_triggered_buffer_predisable(indio_dev);
1463 
1464 	mutex_lock(&data->mutex);
1465 
1466 	if (!data->fifo_mode)
1467 		goto out;
1468 
1469 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1470 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1471 	data->fifo_mode = 0;
1472 	bmc150_accel_fifo_set_mode(data);
1473 
1474 out:
1475 	mutex_unlock(&data->mutex);
1476 
1477 	return 0;
1478 }
1479 
1480 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1481 {
1482 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1483 
1484 	return bmc150_accel_set_power_state(data, false);
1485 }
1486 
1487 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1488 	.preenable = bmc150_accel_buffer_preenable,
1489 	.postenable = bmc150_accel_buffer_postenable,
1490 	.predisable = bmc150_accel_buffer_predisable,
1491 	.postdisable = bmc150_accel_buffer_postdisable,
1492 };
1493 
1494 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1495 {
1496 	struct device *dev = regmap_get_device(data->regmap);
1497 	int ret, i;
1498 	unsigned int val;
1499 
1500 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1501 	if (ret < 0) {
1502 		dev_err(dev, "Error: Reading chip id\n");
1503 		return ret;
1504 	}
1505 
1506 	dev_dbg(dev, "Chip Id %x\n", val);
1507 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1508 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1509 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1510 			break;
1511 		}
1512 	}
1513 
1514 	if (!data->chip_info) {
1515 		dev_err(dev, "Invalid chip %x\n", val);
1516 		return -ENODEV;
1517 	}
1518 
1519 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1520 	if (ret < 0)
1521 		return ret;
1522 
1523 	/* Set Bandwidth */
1524 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1525 	if (ret < 0)
1526 		return ret;
1527 
1528 	/* Set Default Range */
1529 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1530 			   BMC150_ACCEL_DEF_RANGE_4G);
1531 	if (ret < 0) {
1532 		dev_err(dev, "Error writing reg_pmu_range\n");
1533 		return ret;
1534 	}
1535 
1536 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1537 
1538 	/* Set default slope duration and thresholds */
1539 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1540 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1541 	ret = bmc150_accel_update_slope(data);
1542 	if (ret < 0)
1543 		return ret;
1544 
1545 	/* Set default as latched interrupts */
1546 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1547 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1548 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1549 	if (ret < 0) {
1550 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1551 		return ret;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1558 			    const char *name, bool block_supported)
1559 {
1560 	struct bmc150_accel_data *data;
1561 	struct iio_dev *indio_dev;
1562 	int ret;
1563 
1564 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1565 	if (!indio_dev)
1566 		return -ENOMEM;
1567 
1568 	data = iio_priv(indio_dev);
1569 	dev_set_drvdata(dev, indio_dev);
1570 	data->irq = irq;
1571 
1572 	data->regmap = regmap;
1573 
1574 	ret = bmc150_accel_chip_init(data);
1575 	if (ret < 0)
1576 		return ret;
1577 
1578 	mutex_init(&data->mutex);
1579 
1580 	indio_dev->dev.parent = dev;
1581 	indio_dev->channels = data->chip_info->channels;
1582 	indio_dev->num_channels = data->chip_info->num_channels;
1583 	indio_dev->name = name ? name : data->chip_info->name;
1584 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1585 	indio_dev->modes = INDIO_DIRECT_MODE;
1586 	indio_dev->info = &bmc150_accel_info;
1587 
1588 	ret = iio_triggered_buffer_setup(indio_dev,
1589 					 &iio_pollfunc_store_time,
1590 					 bmc150_accel_trigger_handler,
1591 					 &bmc150_accel_buffer_ops);
1592 	if (ret < 0) {
1593 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1594 		return ret;
1595 	}
1596 
1597 	if (data->irq > 0) {
1598 		ret = devm_request_threaded_irq(
1599 						dev, data->irq,
1600 						bmc150_accel_irq_handler,
1601 						bmc150_accel_irq_thread_handler,
1602 						IRQF_TRIGGER_RISING,
1603 						BMC150_ACCEL_IRQ_NAME,
1604 						indio_dev);
1605 		if (ret)
1606 			goto err_buffer_cleanup;
1607 
1608 		/*
1609 		 * Set latched mode interrupt. While certain interrupts are
1610 		 * non-latched regardless of this settings (e.g. new data) we
1611 		 * want to use latch mode when we can to prevent interrupt
1612 		 * flooding.
1613 		 */
1614 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1615 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1616 		if (ret < 0) {
1617 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1618 			goto err_buffer_cleanup;
1619 		}
1620 
1621 		bmc150_accel_interrupts_setup(indio_dev, data);
1622 
1623 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1624 		if (ret)
1625 			goto err_buffer_cleanup;
1626 
1627 		if (block_supported) {
1628 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1629 			indio_dev->info = &bmc150_accel_info_fifo;
1630 			indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1631 		}
1632 	}
1633 
1634 	ret = pm_runtime_set_active(dev);
1635 	if (ret)
1636 		goto err_trigger_unregister;
1637 
1638 	pm_runtime_enable(dev);
1639 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1640 	pm_runtime_use_autosuspend(dev);
1641 
1642 	ret = iio_device_register(indio_dev);
1643 	if (ret < 0) {
1644 		dev_err(dev, "Unable to register iio device\n");
1645 		goto err_trigger_unregister;
1646 	}
1647 
1648 	return 0;
1649 
1650 err_trigger_unregister:
1651 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1652 err_buffer_cleanup:
1653 	iio_triggered_buffer_cleanup(indio_dev);
1654 
1655 	return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1658 
1659 int bmc150_accel_core_remove(struct device *dev)
1660 {
1661 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1662 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1663 
1664 	iio_device_unregister(indio_dev);
1665 
1666 	pm_runtime_disable(dev);
1667 	pm_runtime_set_suspended(dev);
1668 	pm_runtime_put_noidle(dev);
1669 
1670 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1671 
1672 	iio_triggered_buffer_cleanup(indio_dev);
1673 
1674 	mutex_lock(&data->mutex);
1675 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1676 	mutex_unlock(&data->mutex);
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1681 
1682 #ifdef CONFIG_PM_SLEEP
1683 static int bmc150_accel_suspend(struct device *dev)
1684 {
1685 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1686 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1687 
1688 	mutex_lock(&data->mutex);
1689 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1690 	mutex_unlock(&data->mutex);
1691 
1692 	return 0;
1693 }
1694 
1695 static int bmc150_accel_resume(struct device *dev)
1696 {
1697 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1699 
1700 	mutex_lock(&data->mutex);
1701 	if (atomic_read(&data->active_intr))
1702 		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1703 	bmc150_accel_fifo_set_mode(data);
1704 	mutex_unlock(&data->mutex);
1705 
1706 	return 0;
1707 }
1708 #endif
1709 
1710 #ifdef CONFIG_PM
1711 static int bmc150_accel_runtime_suspend(struct device *dev)
1712 {
1713 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1714 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1715 	int ret;
1716 
1717 	dev_dbg(dev,  __func__);
1718 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1719 	if (ret < 0)
1720 		return -EAGAIN;
1721 
1722 	return 0;
1723 }
1724 
1725 static int bmc150_accel_runtime_resume(struct device *dev)
1726 {
1727 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1728 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1729 	int ret;
1730 	int sleep_val;
1731 
1732 	dev_dbg(dev,  __func__);
1733 
1734 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1735 	if (ret < 0)
1736 		return ret;
1737 	ret = bmc150_accel_fifo_set_mode(data);
1738 	if (ret < 0)
1739 		return ret;
1740 
1741 	sleep_val = bmc150_accel_get_startup_times(data);
1742 	if (sleep_val < 20)
1743 		usleep_range(sleep_val * 1000, 20000);
1744 	else
1745 		msleep_interruptible(sleep_val);
1746 
1747 	return 0;
1748 }
1749 #endif
1750 
1751 const struct dev_pm_ops bmc150_accel_pm_ops = {
1752 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1753 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1754 			   bmc150_accel_runtime_resume, NULL)
1755 };
1756 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1757 
1758 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1759 MODULE_LICENSE("GPL v2");
1760 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1761