xref: /linux/drivers/iio/accel/bma400_core.c (revision 62f6eca5de103c6823f6ca2abbf2ee242e132207)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
4  *
5  * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
6  *
7  * TODO:
8  *  - Support for power management
9  *  - Support events and interrupts
10  *  - Create channel for step count
11  *  - Create channel for sensor time
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23 
24 #include <asm/unaligned.h>
25 
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/sysfs.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
33 
34 #include "bma400.h"
35 
36 /*
37  * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
38  * be selected with the acc_range bits of the ACC_CONFIG1 register.
39  * NB: This buffer is populated in the device init.
40  */
41 static int bma400_scales[8];
42 
43 /*
44  * See the ACC_CONFIG1 section of the datasheet.
45  * NB: This buffer is populated in the device init.
46  */
47 static int bma400_sample_freqs[14];
48 
49 static const int bma400_osr_range[] = { 0, 1, 3 };
50 
51 static int tap_reset_timeout[BMA400_TAP_TIM_LIST_LEN] = {
52 	300000,
53 	400000,
54 	500000,
55 	600000
56 };
57 
58 static int tap_max2min_time[BMA400_TAP_TIM_LIST_LEN] = {
59 	30000,
60 	45000,
61 	60000,
62 	90000
63 };
64 
65 static int double_tap2_min_delay[BMA400_TAP_TIM_LIST_LEN] = {
66 	20000,
67 	40000,
68 	60000,
69 	80000
70 };
71 
72 /* See the ACC_CONFIG0 section of the datasheet */
73 enum bma400_power_mode {
74 	POWER_MODE_SLEEP   = 0x00,
75 	POWER_MODE_LOW     = 0x01,
76 	POWER_MODE_NORMAL  = 0x02,
77 	POWER_MODE_INVALID = 0x03,
78 };
79 
80 enum bma400_scan {
81 	BMA400_ACCL_X,
82 	BMA400_ACCL_Y,
83 	BMA400_ACCL_Z,
84 	BMA400_TEMP,
85 };
86 
87 struct bma400_sample_freq {
88 	int hz;
89 	int uhz;
90 };
91 
92 enum bma400_activity {
93 	BMA400_STILL,
94 	BMA400_WALKING,
95 	BMA400_RUNNING,
96 };
97 
98 struct bma400_data {
99 	struct device *dev;
100 	struct regmap *regmap;
101 	struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
102 	struct mutex mutex; /* data register lock */
103 	struct iio_mount_matrix orientation;
104 	enum bma400_power_mode power_mode;
105 	struct bma400_sample_freq sample_freq;
106 	int oversampling_ratio;
107 	int scale;
108 	struct iio_trigger *trig;
109 	int steps_enabled;
110 	bool step_event_en;
111 	bool activity_event_en;
112 	unsigned int generic_event_en;
113 	unsigned int tap_event_en_bitmask;
114 	/* Correct time stamp alignment */
115 	struct {
116 		__le16 buff[3];
117 		u8 temperature;
118 		s64 ts __aligned(8);
119 	} buffer __aligned(IIO_DMA_MINALIGN);
120 	__le16 status;
121 	__be16 duration;
122 };
123 
124 static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
125 {
126 	switch (reg) {
127 	case BMA400_CHIP_ID_REG:
128 	case BMA400_ERR_REG:
129 	case BMA400_STATUS_REG:
130 	case BMA400_X_AXIS_LSB_REG:
131 	case BMA400_X_AXIS_MSB_REG:
132 	case BMA400_Y_AXIS_LSB_REG:
133 	case BMA400_Y_AXIS_MSB_REG:
134 	case BMA400_Z_AXIS_LSB_REG:
135 	case BMA400_Z_AXIS_MSB_REG:
136 	case BMA400_SENSOR_TIME0:
137 	case BMA400_SENSOR_TIME1:
138 	case BMA400_SENSOR_TIME2:
139 	case BMA400_EVENT_REG:
140 	case BMA400_INT_STAT0_REG:
141 	case BMA400_INT_STAT1_REG:
142 	case BMA400_INT_STAT2_REG:
143 	case BMA400_TEMP_DATA_REG:
144 	case BMA400_FIFO_LENGTH0_REG:
145 	case BMA400_FIFO_LENGTH1_REG:
146 	case BMA400_FIFO_DATA_REG:
147 	case BMA400_STEP_CNT0_REG:
148 	case BMA400_STEP_CNT1_REG:
149 	case BMA400_STEP_CNT3_REG:
150 	case BMA400_STEP_STAT_REG:
151 		return false;
152 	default:
153 		return true;
154 	}
155 }
156 
157 static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
158 {
159 	switch (reg) {
160 	case BMA400_ERR_REG:
161 	case BMA400_STATUS_REG:
162 	case BMA400_X_AXIS_LSB_REG:
163 	case BMA400_X_AXIS_MSB_REG:
164 	case BMA400_Y_AXIS_LSB_REG:
165 	case BMA400_Y_AXIS_MSB_REG:
166 	case BMA400_Z_AXIS_LSB_REG:
167 	case BMA400_Z_AXIS_MSB_REG:
168 	case BMA400_SENSOR_TIME0:
169 	case BMA400_SENSOR_TIME1:
170 	case BMA400_SENSOR_TIME2:
171 	case BMA400_EVENT_REG:
172 	case BMA400_INT_STAT0_REG:
173 	case BMA400_INT_STAT1_REG:
174 	case BMA400_INT_STAT2_REG:
175 	case BMA400_TEMP_DATA_REG:
176 	case BMA400_FIFO_LENGTH0_REG:
177 	case BMA400_FIFO_LENGTH1_REG:
178 	case BMA400_FIFO_DATA_REG:
179 	case BMA400_STEP_CNT0_REG:
180 	case BMA400_STEP_CNT1_REG:
181 	case BMA400_STEP_CNT3_REG:
182 	case BMA400_STEP_STAT_REG:
183 		return true;
184 	default:
185 		return false;
186 	}
187 }
188 
189 const struct regmap_config bma400_regmap_config = {
190 	.reg_bits = 8,
191 	.val_bits = 8,
192 	.max_register = BMA400_CMD_REG,
193 	.cache_type = REGCACHE_RBTREE,
194 	.writeable_reg = bma400_is_writable_reg,
195 	.volatile_reg = bma400_is_volatile_reg,
196 };
197 EXPORT_SYMBOL_NS(bma400_regmap_config, IIO_BMA400);
198 
199 static const struct iio_mount_matrix *
200 bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
201 			      const struct iio_chan_spec *chan)
202 {
203 	struct bma400_data *data = iio_priv(indio_dev);
204 
205 	return &data->orientation;
206 }
207 
208 static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
209 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
210 	{ }
211 };
212 
213 static const struct iio_event_spec bma400_step_detect_event = {
214 	.type = IIO_EV_TYPE_CHANGE,
215 	.dir = IIO_EV_DIR_NONE,
216 	.mask_separate = BIT(IIO_EV_INFO_ENABLE),
217 };
218 
219 static const struct iio_event_spec bma400_activity_event = {
220 	.type = IIO_EV_TYPE_CHANGE,
221 	.dir = IIO_EV_DIR_NONE,
222 	.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE),
223 };
224 
225 static const struct iio_event_spec bma400_accel_event[] = {
226 	{
227 		.type = IIO_EV_TYPE_MAG,
228 		.dir = IIO_EV_DIR_FALLING,
229 		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
230 				       BIT(IIO_EV_INFO_PERIOD) |
231 				       BIT(IIO_EV_INFO_HYSTERESIS) |
232 				       BIT(IIO_EV_INFO_ENABLE),
233 	},
234 	{
235 		.type = IIO_EV_TYPE_MAG,
236 		.dir = IIO_EV_DIR_RISING,
237 		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
238 				       BIT(IIO_EV_INFO_PERIOD) |
239 				       BIT(IIO_EV_INFO_HYSTERESIS) |
240 				       BIT(IIO_EV_INFO_ENABLE),
241 	},
242 	{
243 		.type = IIO_EV_TYPE_GESTURE,
244 		.dir = IIO_EV_DIR_SINGLETAP,
245 		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
246 				       BIT(IIO_EV_INFO_ENABLE) |
247 				       BIT(IIO_EV_INFO_RESET_TIMEOUT),
248 	},
249 	{
250 		.type = IIO_EV_TYPE_GESTURE,
251 		.dir = IIO_EV_DIR_DOUBLETAP,
252 		.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
253 				       BIT(IIO_EV_INFO_ENABLE) |
254 				       BIT(IIO_EV_INFO_RESET_TIMEOUT) |
255 				       BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
256 	},
257 };
258 
259 static int usec_to_tapreg_raw(int usec, const int *time_list)
260 {
261 	int index;
262 
263 	for (index = 0; index < BMA400_TAP_TIM_LIST_LEN; index++) {
264 		if (usec == time_list[index])
265 			return index;
266 	}
267 	return -EINVAL;
268 }
269 
270 static ssize_t in_accel_gesture_tap_maxtomin_time_show(struct device *dev,
271 						       struct device_attribute *attr,
272 						       char *buf)
273 {
274 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
275 	struct bma400_data *data = iio_priv(indio_dev);
276 	int ret, reg_val, raw, vals[2];
277 
278 	ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1, &reg_val);
279 	if (ret)
280 		return ret;
281 
282 	raw = FIELD_GET(BMA400_TAP_TICSTH_MSK, reg_val);
283 	vals[0] = 0;
284 	vals[1] = tap_max2min_time[raw];
285 
286 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
287 }
288 
289 static ssize_t in_accel_gesture_tap_maxtomin_time_store(struct device *dev,
290 							struct device_attribute *attr,
291 							const char *buf, size_t len)
292 {
293 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
294 	struct bma400_data *data = iio_priv(indio_dev);
295 	int ret, val_int, val_fract, raw;
296 
297 	ret = iio_str_to_fixpoint(buf, 100000, &val_int, &val_fract);
298 	if (ret)
299 		return ret;
300 
301 	raw = usec_to_tapreg_raw(val_fract, tap_max2min_time);
302 	if (raw < 0)
303 		return -EINVAL;
304 
305 	ret = regmap_update_bits(data->regmap, BMA400_TAP_CONFIG1,
306 				 BMA400_TAP_TICSTH_MSK,
307 				 FIELD_PREP(BMA400_TAP_TICSTH_MSK, raw));
308 	if (ret)
309 		return ret;
310 
311 	return len;
312 }
313 
314 static IIO_DEVICE_ATTR_RW(in_accel_gesture_tap_maxtomin_time, 0);
315 
316 /*
317  * Tap interrupts works with 200 Hz input data rate and the time based tap
318  * controls are in the terms of data samples so the below calculation is
319  * used to convert the configuration values into seconds.
320  * e.g.:
321  * 60 data samples * 0.005 ms = 0.3 seconds.
322  * 80 data samples * 0.005 ms = 0.4 seconds.
323  */
324 
325 /* quiet configuration values in seconds */
326 static IIO_CONST_ATTR(in_accel_gesture_tap_reset_timeout_available,
327 		      "0.3 0.4 0.5 0.6");
328 
329 /* tics_th configuration values in seconds */
330 static IIO_CONST_ATTR(in_accel_gesture_tap_maxtomin_time_available,
331 		      "0.03 0.045 0.06 0.09");
332 
333 /* quiet_dt configuration values in seconds */
334 static IIO_CONST_ATTR(in_accel_gesture_doubletap_tap2_min_delay_available,
335 		      "0.02 0.04 0.06 0.08");
336 
337 /* List of sensitivity values available to configure tap interrupts */
338 static IIO_CONST_ATTR(in_accel_gesture_tap_value_available, "0 1 2 3 4 5 6 7");
339 
340 static struct attribute *bma400_event_attributes[] = {
341 	&iio_const_attr_in_accel_gesture_tap_value_available.dev_attr.attr,
342 	&iio_const_attr_in_accel_gesture_tap_reset_timeout_available.dev_attr.attr,
343 	&iio_const_attr_in_accel_gesture_tap_maxtomin_time_available.dev_attr.attr,
344 	&iio_const_attr_in_accel_gesture_doubletap_tap2_min_delay_available.dev_attr.attr,
345 	&iio_dev_attr_in_accel_gesture_tap_maxtomin_time.dev_attr.attr,
346 	NULL
347 };
348 
349 static const struct attribute_group bma400_event_attribute_group = {
350 	.attrs = bma400_event_attributes,
351 };
352 
353 #define BMA400_ACC_CHANNEL(_index, _axis) { \
354 	.type = IIO_ACCEL, \
355 	.modified = 1, \
356 	.channel2 = IIO_MOD_##_axis, \
357 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
358 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
359 		BIT(IIO_CHAN_INFO_SCALE) | \
360 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
361 	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
362 		BIT(IIO_CHAN_INFO_SCALE) | \
363 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
364 	.ext_info = bma400_ext_info, \
365 	.scan_index = _index,	\
366 	.scan_type = {		\
367 		.sign = 's',	\
368 		.realbits = 12,		\
369 		.storagebits = 16,	\
370 		.endianness = IIO_LE,	\
371 	},				\
372 	.event_spec = bma400_accel_event,			\
373 	.num_event_specs = ARRAY_SIZE(bma400_accel_event)	\
374 }
375 
376 #define BMA400_ACTIVITY_CHANNEL(_chan2) {	\
377 	.type = IIO_ACTIVITY,			\
378 	.modified = 1,				\
379 	.channel2 = _chan2,			\
380 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),	\
381 	.scan_index = -1, /* No buffer support */		\
382 	.event_spec = &bma400_activity_event,			\
383 	.num_event_specs = 1,					\
384 }
385 
386 static const struct iio_chan_spec bma400_channels[] = {
387 	BMA400_ACC_CHANNEL(0, X),
388 	BMA400_ACC_CHANNEL(1, Y),
389 	BMA400_ACC_CHANNEL(2, Z),
390 	{
391 		.type = IIO_TEMP,
392 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
393 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
394 		.scan_index = 3,
395 		.scan_type = {
396 			.sign = 's',
397 			.realbits = 8,
398 			.storagebits = 8,
399 			.endianness = IIO_LE,
400 		},
401 	},
402 	{
403 		.type = IIO_STEPS,
404 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
405 				      BIT(IIO_CHAN_INFO_ENABLE),
406 		.scan_index = -1, /* No buffer support */
407 		.event_spec = &bma400_step_detect_event,
408 		.num_event_specs = 1,
409 	},
410 	BMA400_ACTIVITY_CHANNEL(IIO_MOD_STILL),
411 	BMA400_ACTIVITY_CHANNEL(IIO_MOD_WALKING),
412 	BMA400_ACTIVITY_CHANNEL(IIO_MOD_RUNNING),
413 	IIO_CHAN_SOFT_TIMESTAMP(4),
414 };
415 
416 static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
417 {
418 	unsigned int raw_temp;
419 	int host_temp;
420 	int ret;
421 
422 	if (data->power_mode == POWER_MODE_SLEEP)
423 		return -EBUSY;
424 
425 	ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
426 	if (ret)
427 		return ret;
428 
429 	host_temp = sign_extend32(raw_temp, 7);
430 	/*
431 	 * The formula for the TEMP_DATA register in the datasheet
432 	 * is: x * 0.5 + 23
433 	 */
434 	*val = (host_temp >> 1) + 23;
435 	*val2 = (host_temp & 0x1) * 500000;
436 	return IIO_VAL_INT_PLUS_MICRO;
437 }
438 
439 static int bma400_get_accel_reg(struct bma400_data *data,
440 				const struct iio_chan_spec *chan,
441 				int *val)
442 {
443 	__le16 raw_accel;
444 	int lsb_reg;
445 	int ret;
446 
447 	if (data->power_mode == POWER_MODE_SLEEP)
448 		return -EBUSY;
449 
450 	switch (chan->channel2) {
451 	case IIO_MOD_X:
452 		lsb_reg = BMA400_X_AXIS_LSB_REG;
453 		break;
454 	case IIO_MOD_Y:
455 		lsb_reg = BMA400_Y_AXIS_LSB_REG;
456 		break;
457 	case IIO_MOD_Z:
458 		lsb_reg = BMA400_Z_AXIS_LSB_REG;
459 		break;
460 	default:
461 		dev_err(data->dev, "invalid axis channel modifier\n");
462 		return -EINVAL;
463 	}
464 
465 	/* bulk read two registers, with the base being the LSB register */
466 	ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
467 			       sizeof(raw_accel));
468 	if (ret)
469 		return ret;
470 
471 	*val = sign_extend32(le16_to_cpu(raw_accel), 11);
472 	return IIO_VAL_INT;
473 }
474 
475 static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
476 					     unsigned int *val2)
477 {
478 	*val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
479 	if (raw > BMA400_ACC_ODR_MIN_RAW)
480 		*val2 = 0;
481 	else
482 		*val2 = 500000;
483 }
484 
485 static int bma400_get_accel_output_data_rate(struct bma400_data *data)
486 {
487 	unsigned int val;
488 	unsigned int odr;
489 	int ret;
490 
491 	switch (data->power_mode) {
492 	case POWER_MODE_LOW:
493 		/*
494 		 * Runs at a fixed rate in low-power mode. See section 4.3
495 		 * in the datasheet.
496 		 */
497 		bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
498 						 &data->sample_freq.hz,
499 						 &data->sample_freq.uhz);
500 		return 0;
501 	case POWER_MODE_NORMAL:
502 		/*
503 		 * In normal mode the ODR can be found in the ACC_CONFIG1
504 		 * register.
505 		 */
506 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
507 		if (ret)
508 			goto error;
509 
510 		odr = val & BMA400_ACC_ODR_MASK;
511 		if (odr < BMA400_ACC_ODR_MIN_RAW ||
512 		    odr > BMA400_ACC_ODR_MAX_RAW) {
513 			ret = -EINVAL;
514 			goto error;
515 		}
516 
517 		bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
518 						 &data->sample_freq.uhz);
519 		return 0;
520 	case POWER_MODE_SLEEP:
521 		data->sample_freq.hz = 0;
522 		data->sample_freq.uhz = 0;
523 		return 0;
524 	default:
525 		ret = 0;
526 		goto error;
527 	}
528 error:
529 	data->sample_freq.hz = -1;
530 	data->sample_freq.uhz = -1;
531 	return ret;
532 }
533 
534 static int bma400_set_accel_output_data_rate(struct bma400_data *data,
535 					     int hz, int uhz)
536 {
537 	unsigned int idx;
538 	unsigned int odr;
539 	unsigned int val;
540 	int ret;
541 
542 	if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
543 		if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
544 			return -EINVAL;
545 
546 		/* Note this works because MIN_WHOLE_HZ is odd */
547 		idx = __ffs(hz);
548 
549 		if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
550 			return -EINVAL;
551 
552 		idx += BMA400_ACC_ODR_MIN_RAW + 1;
553 	} else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
554 		idx = BMA400_ACC_ODR_MIN_RAW;
555 	} else {
556 		return -EINVAL;
557 	}
558 
559 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
560 	if (ret)
561 		return ret;
562 
563 	/* preserve the range and normal mode osr */
564 	odr = (~BMA400_ACC_ODR_MASK & val) | idx;
565 
566 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
567 	if (ret)
568 		return ret;
569 
570 	bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
571 					 &data->sample_freq.uhz);
572 	return 0;
573 }
574 
575 static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
576 {
577 	unsigned int val;
578 	unsigned int osr;
579 	int ret;
580 
581 	/*
582 	 * The oversampling ratio is stored in a different register
583 	 * based on the power-mode. In normal mode the OSR is stored
584 	 * in ACC_CONFIG1. In low-power mode it is stored in
585 	 * ACC_CONFIG0.
586 	 */
587 	switch (data->power_mode) {
588 	case POWER_MODE_LOW:
589 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
590 		if (ret) {
591 			data->oversampling_ratio = -1;
592 			return ret;
593 		}
594 
595 		osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
596 
597 		data->oversampling_ratio = osr;
598 		return 0;
599 	case POWER_MODE_NORMAL:
600 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
601 		if (ret) {
602 			data->oversampling_ratio = -1;
603 			return ret;
604 		}
605 
606 		osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
607 
608 		data->oversampling_ratio = osr;
609 		return 0;
610 	case POWER_MODE_SLEEP:
611 		data->oversampling_ratio = 0;
612 		return 0;
613 	default:
614 		data->oversampling_ratio = -1;
615 		return -EINVAL;
616 	}
617 }
618 
619 static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
620 					       int val)
621 {
622 	unsigned int acc_config;
623 	int ret;
624 
625 	if (val & ~BMA400_TWO_BITS_MASK)
626 		return -EINVAL;
627 
628 	/*
629 	 * The oversampling ratio is stored in a different register
630 	 * based on the power-mode.
631 	 */
632 	switch (data->power_mode) {
633 	case POWER_MODE_LOW:
634 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
635 				  &acc_config);
636 		if (ret)
637 			return ret;
638 
639 		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
640 				   (acc_config & ~BMA400_LP_OSR_MASK) |
641 				   (val << BMA400_LP_OSR_SHIFT));
642 		if (ret) {
643 			dev_err(data->dev, "Failed to write out OSR\n");
644 			return ret;
645 		}
646 
647 		data->oversampling_ratio = val;
648 		return 0;
649 	case POWER_MODE_NORMAL:
650 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
651 				  &acc_config);
652 		if (ret)
653 			return ret;
654 
655 		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
656 				   (acc_config & ~BMA400_NP_OSR_MASK) |
657 				   (val << BMA400_NP_OSR_SHIFT));
658 		if (ret) {
659 			dev_err(data->dev, "Failed to write out OSR\n");
660 			return ret;
661 		}
662 
663 		data->oversampling_ratio = val;
664 		return 0;
665 	default:
666 		return -EINVAL;
667 	}
668 	return ret;
669 }
670 
671 static int bma400_accel_scale_to_raw(struct bma400_data *data,
672 				     unsigned int val)
673 {
674 	int raw;
675 
676 	if (val == 0)
677 		return -EINVAL;
678 
679 	/* Note this works because BMA400_SCALE_MIN is odd */
680 	raw = __ffs(val);
681 
682 	if (val >> raw != BMA400_SCALE_MIN)
683 		return -EINVAL;
684 
685 	return raw;
686 }
687 
688 static int bma400_get_accel_scale(struct bma400_data *data)
689 {
690 	unsigned int raw_scale;
691 	unsigned int val;
692 	int ret;
693 
694 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
695 	if (ret)
696 		return ret;
697 
698 	raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
699 	if (raw_scale > BMA400_TWO_BITS_MASK)
700 		return -EINVAL;
701 
702 	data->scale = BMA400_SCALE_MIN << raw_scale;
703 
704 	return 0;
705 }
706 
707 static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
708 {
709 	unsigned int acc_config;
710 	int raw;
711 	int ret;
712 
713 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
714 	if (ret)
715 		return ret;
716 
717 	raw = bma400_accel_scale_to_raw(data, val);
718 	if (raw < 0)
719 		return raw;
720 
721 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
722 			   (acc_config & ~BMA400_ACC_SCALE_MASK) |
723 			   (raw << BMA400_SCALE_SHIFT));
724 	if (ret)
725 		return ret;
726 
727 	data->scale = val;
728 	return 0;
729 }
730 
731 static int bma400_get_power_mode(struct bma400_data *data)
732 {
733 	unsigned int val;
734 	int ret;
735 
736 	ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
737 	if (ret) {
738 		dev_err(data->dev, "Failed to read status register\n");
739 		return ret;
740 	}
741 
742 	data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
743 	return 0;
744 }
745 
746 static int bma400_set_power_mode(struct bma400_data *data,
747 				 enum bma400_power_mode mode)
748 {
749 	unsigned int val;
750 	int ret;
751 
752 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
753 	if (ret)
754 		return ret;
755 
756 	if (data->power_mode == mode)
757 		return 0;
758 
759 	if (mode == POWER_MODE_INVALID)
760 		return -EINVAL;
761 
762 	/* Preserve the low-power oversample ratio etc */
763 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
764 			   mode | (val & ~BMA400_TWO_BITS_MASK));
765 	if (ret) {
766 		dev_err(data->dev, "Failed to write to power-mode\n");
767 		return ret;
768 	}
769 
770 	data->power_mode = mode;
771 
772 	/*
773 	 * Update our cached osr and odr based on the new
774 	 * power-mode.
775 	 */
776 	bma400_get_accel_output_data_rate(data);
777 	bma400_get_accel_oversampling_ratio(data);
778 	return 0;
779 }
780 
781 static int bma400_enable_steps(struct bma400_data *data, int val)
782 {
783 	int ret;
784 
785 	if (data->steps_enabled == val)
786 		return 0;
787 
788 	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG,
789 				 BMA400_STEP_INT_MSK,
790 				 FIELD_PREP(BMA400_STEP_INT_MSK, val ? 1 : 0));
791 	if (ret)
792 		return ret;
793 	data->steps_enabled = val;
794 	return ret;
795 }
796 
797 static int bma400_get_steps_reg(struct bma400_data *data, int *val)
798 {
799 	u8 *steps_raw;
800 	int ret;
801 
802 	steps_raw = kmalloc(BMA400_STEP_RAW_LEN, GFP_KERNEL);
803 	if (!steps_raw)
804 		return -ENOMEM;
805 
806 	ret = regmap_bulk_read(data->regmap, BMA400_STEP_CNT0_REG,
807 			       steps_raw, BMA400_STEP_RAW_LEN);
808 	if (ret) {
809 		kfree(steps_raw);
810 		return ret;
811 	}
812 	*val = get_unaligned_le24(steps_raw);
813 	kfree(steps_raw);
814 	return IIO_VAL_INT;
815 }
816 
817 static void bma400_init_tables(void)
818 {
819 	int raw;
820 	int i;
821 
822 	for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
823 		raw = (i / 2) + 5;
824 		bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
825 						 &bma400_sample_freqs[i + 1]);
826 	}
827 
828 	for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
829 		raw = i / 2;
830 		bma400_scales[i] = 0;
831 		bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
832 	}
833 }
834 
835 static void bma400_regulators_disable(void *data_ptr)
836 {
837 	struct bma400_data *data = data_ptr;
838 
839 	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
840 }
841 
842 static void bma400_power_disable(void *data_ptr)
843 {
844 	struct bma400_data *data = data_ptr;
845 	int ret;
846 
847 	mutex_lock(&data->mutex);
848 	ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
849 	mutex_unlock(&data->mutex);
850 	if (ret)
851 		dev_warn(data->dev, "Failed to put device into sleep mode (%pe)\n",
852 			 ERR_PTR(ret));
853 }
854 
855 static enum iio_modifier bma400_act_to_mod(enum bma400_activity activity)
856 {
857 	switch (activity) {
858 	case BMA400_STILL:
859 		return IIO_MOD_STILL;
860 	case BMA400_WALKING:
861 		return IIO_MOD_WALKING;
862 	case BMA400_RUNNING:
863 		return IIO_MOD_RUNNING;
864 	default:
865 		return IIO_NO_MOD;
866 	}
867 }
868 
869 static int bma400_init(struct bma400_data *data)
870 {
871 	unsigned int val;
872 	int ret;
873 
874 	data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
875 	data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
876 	ret = devm_regulator_bulk_get(data->dev,
877 				      ARRAY_SIZE(data->regulators),
878 				      data->regulators);
879 	if (ret) {
880 		if (ret != -EPROBE_DEFER)
881 			dev_err(data->dev,
882 				"Failed to get regulators: %d\n",
883 				ret);
884 
885 		return ret;
886 	}
887 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
888 				    data->regulators);
889 	if (ret) {
890 		dev_err(data->dev, "Failed to enable regulators: %d\n",
891 			ret);
892 		return ret;
893 	}
894 
895 	ret = devm_add_action_or_reset(data->dev, bma400_regulators_disable, data);
896 	if (ret)
897 		return ret;
898 
899 	/* Try to read chip_id register. It must return 0x90. */
900 	ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
901 	if (ret) {
902 		dev_err(data->dev, "Failed to read chip id register\n");
903 		return ret;
904 	}
905 
906 	if (val != BMA400_ID_REG_VAL) {
907 		dev_err(data->dev, "Chip ID mismatch\n");
908 		return -ENODEV;
909 	}
910 
911 	ret = bma400_get_power_mode(data);
912 	if (ret) {
913 		dev_err(data->dev, "Failed to get the initial power-mode\n");
914 		return ret;
915 	}
916 
917 	if (data->power_mode != POWER_MODE_NORMAL) {
918 		ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
919 		if (ret) {
920 			dev_err(data->dev, "Failed to wake up the device\n");
921 			return ret;
922 		}
923 		/*
924 		 * TODO: The datasheet waits 1500us here in the example, but
925 		 * lists 2/ODR as the wakeup time.
926 		 */
927 		usleep_range(1500, 2000);
928 	}
929 
930 	ret = devm_add_action_or_reset(data->dev, bma400_power_disable, data);
931 	if (ret)
932 		return ret;
933 
934 	bma400_init_tables();
935 
936 	ret = bma400_get_accel_output_data_rate(data);
937 	if (ret)
938 		return ret;
939 
940 	ret = bma400_get_accel_oversampling_ratio(data);
941 	if (ret)
942 		return ret;
943 
944 	ret = bma400_get_accel_scale(data);
945 	if (ret)
946 		return ret;
947 
948 	/* Configure INT1 pin to open drain */
949 	ret = regmap_write(data->regmap, BMA400_INT_IO_CTRL_REG, 0x06);
950 	if (ret)
951 		return ret;
952 	/*
953 	 * Once the interrupt engine is supported we might use the
954 	 * data_src_reg, but for now ensure this is set to the
955 	 * variable ODR filter selectable by the sample frequency
956 	 * channel.
957 	 */
958 	return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
959 }
960 
961 static int bma400_read_raw(struct iio_dev *indio_dev,
962 			   struct iio_chan_spec const *chan, int *val,
963 			   int *val2, long mask)
964 {
965 	struct bma400_data *data = iio_priv(indio_dev);
966 	unsigned int activity;
967 	int ret;
968 
969 	switch (mask) {
970 	case IIO_CHAN_INFO_PROCESSED:
971 		switch (chan->type) {
972 		case IIO_TEMP:
973 			mutex_lock(&data->mutex);
974 			ret = bma400_get_temp_reg(data, val, val2);
975 			mutex_unlock(&data->mutex);
976 			return ret;
977 		case IIO_STEPS:
978 			return bma400_get_steps_reg(data, val);
979 		case IIO_ACTIVITY:
980 			ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
981 					  &activity);
982 			if (ret)
983 				return ret;
984 			/*
985 			 * The device does not support confidence value levels,
986 			 * so we will always have 100% for current activity and
987 			 * 0% for the others.
988 			 */
989 			if (chan->channel2 == bma400_act_to_mod(activity))
990 				*val = 100;
991 			else
992 				*val = 0;
993 			return IIO_VAL_INT;
994 		default:
995 			return -EINVAL;
996 		}
997 	case IIO_CHAN_INFO_RAW:
998 		mutex_lock(&data->mutex);
999 		ret = bma400_get_accel_reg(data, chan, val);
1000 		mutex_unlock(&data->mutex);
1001 		return ret;
1002 	case IIO_CHAN_INFO_SAMP_FREQ:
1003 		switch (chan->type) {
1004 		case IIO_ACCEL:
1005 			if (data->sample_freq.hz < 0)
1006 				return -EINVAL;
1007 
1008 			*val = data->sample_freq.hz;
1009 			*val2 = data->sample_freq.uhz;
1010 			return IIO_VAL_INT_PLUS_MICRO;
1011 		case IIO_TEMP:
1012 			/*
1013 			 * Runs at a fixed sampling frequency. See Section 4.4
1014 			 * of the datasheet.
1015 			 */
1016 			*val = 6;
1017 			*val2 = 250000;
1018 			return IIO_VAL_INT_PLUS_MICRO;
1019 		default:
1020 			return -EINVAL;
1021 		}
1022 	case IIO_CHAN_INFO_SCALE:
1023 		*val = 0;
1024 		*val2 = data->scale;
1025 		return IIO_VAL_INT_PLUS_MICRO;
1026 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1027 		/*
1028 		 * TODO: We could avoid this logic and returning -EINVAL here if
1029 		 * we set both the low-power and normal mode OSR registers when
1030 		 * we configure the device.
1031 		 */
1032 		if (data->oversampling_ratio < 0)
1033 			return -EINVAL;
1034 
1035 		*val = data->oversampling_ratio;
1036 		return IIO_VAL_INT;
1037 	case IIO_CHAN_INFO_ENABLE:
1038 		*val = data->steps_enabled;
1039 		return IIO_VAL_INT;
1040 	default:
1041 		return -EINVAL;
1042 	}
1043 }
1044 
1045 static int bma400_read_avail(struct iio_dev *indio_dev,
1046 			     struct iio_chan_spec const *chan,
1047 			     const int **vals, int *type, int *length,
1048 			     long mask)
1049 {
1050 	switch (mask) {
1051 	case IIO_CHAN_INFO_SCALE:
1052 		*type = IIO_VAL_INT_PLUS_MICRO;
1053 		*vals = bma400_scales;
1054 		*length = ARRAY_SIZE(bma400_scales);
1055 		return IIO_AVAIL_LIST;
1056 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1057 		*type = IIO_VAL_INT;
1058 		*vals = bma400_osr_range;
1059 		*length = ARRAY_SIZE(bma400_osr_range);
1060 		return IIO_AVAIL_RANGE;
1061 	case IIO_CHAN_INFO_SAMP_FREQ:
1062 		*type = IIO_VAL_INT_PLUS_MICRO;
1063 		*vals = bma400_sample_freqs;
1064 		*length = ARRAY_SIZE(bma400_sample_freqs);
1065 		return IIO_AVAIL_LIST;
1066 	default:
1067 		return -EINVAL;
1068 	}
1069 }
1070 
1071 static int bma400_write_raw(struct iio_dev *indio_dev,
1072 			    struct iio_chan_spec const *chan, int val, int val2,
1073 			    long mask)
1074 {
1075 	struct bma400_data *data = iio_priv(indio_dev);
1076 	int ret;
1077 
1078 	switch (mask) {
1079 	case IIO_CHAN_INFO_SAMP_FREQ:
1080 		/*
1081 		 * The sample frequency is readonly for the temperature
1082 		 * register and a fixed value in low-power mode.
1083 		 */
1084 		if (chan->type != IIO_ACCEL)
1085 			return -EINVAL;
1086 
1087 		mutex_lock(&data->mutex);
1088 		ret = bma400_set_accel_output_data_rate(data, val, val2);
1089 		mutex_unlock(&data->mutex);
1090 		return ret;
1091 	case IIO_CHAN_INFO_SCALE:
1092 		if (val != 0 ||
1093 		    val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
1094 			return -EINVAL;
1095 
1096 		mutex_lock(&data->mutex);
1097 		ret = bma400_set_accel_scale(data, val2);
1098 		mutex_unlock(&data->mutex);
1099 		return ret;
1100 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1101 		mutex_lock(&data->mutex);
1102 		ret = bma400_set_accel_oversampling_ratio(data, val);
1103 		mutex_unlock(&data->mutex);
1104 		return ret;
1105 	case IIO_CHAN_INFO_ENABLE:
1106 		mutex_lock(&data->mutex);
1107 		ret = bma400_enable_steps(data, val);
1108 		mutex_unlock(&data->mutex);
1109 		return ret;
1110 	default:
1111 		return -EINVAL;
1112 	}
1113 }
1114 
1115 static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
1116 				    struct iio_chan_spec const *chan,
1117 				    long mask)
1118 {
1119 	switch (mask) {
1120 	case IIO_CHAN_INFO_SAMP_FREQ:
1121 		return IIO_VAL_INT_PLUS_MICRO;
1122 	case IIO_CHAN_INFO_SCALE:
1123 		return IIO_VAL_INT_PLUS_MICRO;
1124 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1125 		return IIO_VAL_INT;
1126 	case IIO_CHAN_INFO_ENABLE:
1127 		return IIO_VAL_INT;
1128 	default:
1129 		return -EINVAL;
1130 	}
1131 }
1132 
1133 static int bma400_read_event_config(struct iio_dev *indio_dev,
1134 				    const struct iio_chan_spec *chan,
1135 				    enum iio_event_type type,
1136 				    enum iio_event_direction dir)
1137 {
1138 	struct bma400_data *data = iio_priv(indio_dev);
1139 
1140 	switch (chan->type) {
1141 	case IIO_ACCEL:
1142 		switch (dir) {
1143 		case IIO_EV_DIR_RISING:
1144 			return FIELD_GET(BMA400_INT_GEN1_MSK,
1145 					 data->generic_event_en);
1146 		case IIO_EV_DIR_FALLING:
1147 			return FIELD_GET(BMA400_INT_GEN2_MSK,
1148 					 data->generic_event_en);
1149 		case IIO_EV_DIR_SINGLETAP:
1150 			return FIELD_GET(BMA400_S_TAP_MSK,
1151 					 data->tap_event_en_bitmask);
1152 		case IIO_EV_DIR_DOUBLETAP:
1153 			return FIELD_GET(BMA400_D_TAP_MSK,
1154 					 data->tap_event_en_bitmask);
1155 		default:
1156 			return -EINVAL;
1157 		}
1158 	case IIO_STEPS:
1159 		return data->step_event_en;
1160 	case IIO_ACTIVITY:
1161 		return data->activity_event_en;
1162 	default:
1163 		return -EINVAL;
1164 	}
1165 }
1166 
1167 static int bma400_steps_event_enable(struct bma400_data *data, int state)
1168 {
1169 	int ret;
1170 
1171 	ret = bma400_enable_steps(data, 1);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1176 				 BMA400_STEP_INT_MSK,
1177 				 FIELD_PREP(BMA400_STEP_INT_MSK,
1178 					    state));
1179 	if (ret)
1180 		return ret;
1181 	data->step_event_en = state;
1182 	return 0;
1183 }
1184 
1185 static int bma400_activity_event_en(struct bma400_data *data,
1186 				    enum iio_event_direction dir,
1187 				    int state)
1188 {
1189 	int ret, reg, msk, value;
1190 	int field_value = 0;
1191 
1192 	switch (dir) {
1193 	case IIO_EV_DIR_RISING:
1194 		reg = BMA400_GEN1INT_CONFIG0;
1195 		msk = BMA400_INT_GEN1_MSK;
1196 		value = 2;
1197 		set_mask_bits(&field_value, BMA400_INT_GEN1_MSK,
1198 			      FIELD_PREP(BMA400_INT_GEN1_MSK, state));
1199 		break;
1200 	case IIO_EV_DIR_FALLING:
1201 		reg = BMA400_GEN2INT_CONFIG0;
1202 		msk = BMA400_INT_GEN2_MSK;
1203 		value = 0;
1204 		set_mask_bits(&field_value, BMA400_INT_GEN2_MSK,
1205 			      FIELD_PREP(BMA400_INT_GEN2_MSK, state));
1206 		break;
1207 	default:
1208 		return -EINVAL;
1209 	}
1210 
1211 	/* Enabling all axis for interrupt evaluation */
1212 	ret = regmap_write(data->regmap, reg, 0xF8);
1213 	if (ret)
1214 		return ret;
1215 
1216 	/* OR combination of all axis for interrupt evaluation */
1217 	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG1_OFF, value);
1218 	if (ret)
1219 		return ret;
1220 
1221 	/* Initial value to avoid interrupts while enabling*/
1222 	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG2_OFF, 0x0A);
1223 	if (ret)
1224 		return ret;
1225 
1226 	/* Initial duration value to avoid interrupts while enabling*/
1227 	ret = regmap_write(data->regmap, reg + BMA400_GEN_CONFIG31_OFF, 0x0F);
1228 	if (ret)
1229 		return ret;
1230 
1231 	ret = regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG, msk,
1232 				 field_value);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG, msk,
1237 				 field_value);
1238 	if (ret)
1239 		return ret;
1240 
1241 	set_mask_bits(&data->generic_event_en, msk, field_value);
1242 	return 0;
1243 }
1244 
1245 static int bma400_tap_event_en(struct bma400_data *data,
1246 			       enum iio_event_direction dir, int state)
1247 {
1248 	unsigned int mask, field_value;
1249 	int ret;
1250 
1251 	/*
1252 	 * Tap interrupts can be configured only in normal mode.
1253 	 * See table in section 4.3 "Power modes - performance modes" of
1254 	 * datasheet v1.2.
1255 	 */
1256 	if (data->power_mode != POWER_MODE_NORMAL)
1257 		return -EINVAL;
1258 
1259 	/*
1260 	 * Tap interrupts are operating with a data rate of 200Hz.
1261 	 * See section 4.7 "Tap sensing interrupt" in datasheet v1.2.
1262 	 */
1263 	if (data->sample_freq.hz != 200 && state) {
1264 		dev_err(data->dev, "Invalid data rate for tap interrupts.\n");
1265 		return -EINVAL;
1266 	}
1267 
1268 	ret = regmap_update_bits(data->regmap, BMA400_INT12_MAP_REG,
1269 				 BMA400_S_TAP_MSK,
1270 				 FIELD_PREP(BMA400_S_TAP_MSK, state));
1271 	if (ret)
1272 		return ret;
1273 
1274 	switch (dir) {
1275 	case IIO_EV_DIR_SINGLETAP:
1276 		mask = BMA400_S_TAP_MSK;
1277 		set_mask_bits(&field_value, BMA400_S_TAP_MSK,
1278 			      FIELD_PREP(BMA400_S_TAP_MSK, state));
1279 		break;
1280 	case IIO_EV_DIR_DOUBLETAP:
1281 		mask = BMA400_D_TAP_MSK;
1282 		set_mask_bits(&field_value, BMA400_D_TAP_MSK,
1283 			      FIELD_PREP(BMA400_D_TAP_MSK, state));
1284 		break;
1285 	default:
1286 		return -EINVAL;
1287 	}
1288 
1289 	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG1_REG, mask,
1290 				 field_value);
1291 	if (ret)
1292 		return ret;
1293 
1294 	set_mask_bits(&data->tap_event_en_bitmask, mask, field_value);
1295 
1296 	return 0;
1297 }
1298 
1299 static int bma400_disable_adv_interrupt(struct bma400_data *data)
1300 {
1301 	int ret;
1302 
1303 	ret = regmap_write(data->regmap, BMA400_INT_CONFIG0_REG, 0);
1304 	if (ret)
1305 		return ret;
1306 
1307 	ret = regmap_write(data->regmap, BMA400_INT_CONFIG1_REG, 0);
1308 	if (ret)
1309 		return ret;
1310 
1311 	data->tap_event_en_bitmask = 0;
1312 	data->generic_event_en = 0;
1313 	data->step_event_en = false;
1314 	data->activity_event_en = false;
1315 
1316 	return 0;
1317 }
1318 
1319 static int bma400_write_event_config(struct iio_dev *indio_dev,
1320 				     const struct iio_chan_spec *chan,
1321 				     enum iio_event_type type,
1322 				     enum iio_event_direction dir, int state)
1323 {
1324 	struct bma400_data *data = iio_priv(indio_dev);
1325 	int ret;
1326 
1327 	switch (chan->type) {
1328 	case IIO_ACCEL:
1329 		switch (type) {
1330 		case IIO_EV_TYPE_MAG:
1331 			mutex_lock(&data->mutex);
1332 			ret = bma400_activity_event_en(data, dir, state);
1333 			mutex_unlock(&data->mutex);
1334 			return ret;
1335 		case IIO_EV_TYPE_GESTURE:
1336 			mutex_lock(&data->mutex);
1337 			ret = bma400_tap_event_en(data, dir, state);
1338 			mutex_unlock(&data->mutex);
1339 			return ret;
1340 		default:
1341 			return -EINVAL;
1342 		}
1343 	case IIO_STEPS:
1344 		mutex_lock(&data->mutex);
1345 		ret = bma400_steps_event_enable(data, state);
1346 		mutex_unlock(&data->mutex);
1347 		return ret;
1348 	case IIO_ACTIVITY:
1349 		mutex_lock(&data->mutex);
1350 		if (!data->step_event_en) {
1351 			ret = bma400_steps_event_enable(data, true);
1352 			if (ret) {
1353 				mutex_unlock(&data->mutex);
1354 				return ret;
1355 			}
1356 		}
1357 		data->activity_event_en = state;
1358 		mutex_unlock(&data->mutex);
1359 		return 0;
1360 	default:
1361 		return -EINVAL;
1362 	}
1363 }
1364 
1365 static int get_gen_config_reg(enum iio_event_direction dir)
1366 {
1367 	switch (dir) {
1368 	case IIO_EV_DIR_FALLING:
1369 		return BMA400_GEN2INT_CONFIG0;
1370 	case IIO_EV_DIR_RISING:
1371 		return BMA400_GEN1INT_CONFIG0;
1372 	default:
1373 		return -EINVAL;
1374 	}
1375 }
1376 
1377 static int bma400_read_event_value(struct iio_dev *indio_dev,
1378 				   const struct iio_chan_spec *chan,
1379 				   enum iio_event_type type,
1380 				   enum iio_event_direction dir,
1381 				   enum iio_event_info info,
1382 				   int *val, int *val2)
1383 {
1384 	struct bma400_data *data = iio_priv(indio_dev);
1385 	int ret, reg, reg_val, raw;
1386 
1387 	if (chan->type != IIO_ACCEL)
1388 		return -EINVAL;
1389 
1390 	switch (type) {
1391 	case IIO_EV_TYPE_MAG:
1392 		reg = get_gen_config_reg(dir);
1393 		if (reg < 0)
1394 			return -EINVAL;
1395 
1396 		*val2 = 0;
1397 		switch (info) {
1398 		case IIO_EV_INFO_VALUE:
1399 			ret = regmap_read(data->regmap,
1400 					  reg + BMA400_GEN_CONFIG2_OFF,
1401 					  val);
1402 			if (ret)
1403 				return ret;
1404 			return IIO_VAL_INT;
1405 		case IIO_EV_INFO_PERIOD:
1406 			mutex_lock(&data->mutex);
1407 			ret = regmap_bulk_read(data->regmap,
1408 					       reg + BMA400_GEN_CONFIG3_OFF,
1409 					       &data->duration,
1410 					       sizeof(data->duration));
1411 			if (ret) {
1412 				mutex_unlock(&data->mutex);
1413 				return ret;
1414 			}
1415 			*val = be16_to_cpu(data->duration);
1416 			mutex_unlock(&data->mutex);
1417 			return IIO_VAL_INT;
1418 		case IIO_EV_INFO_HYSTERESIS:
1419 			ret = regmap_read(data->regmap, reg, val);
1420 			if (ret)
1421 				return ret;
1422 			*val = FIELD_GET(BMA400_GEN_HYST_MSK, *val);
1423 			return IIO_VAL_INT;
1424 		default:
1425 			return -EINVAL;
1426 		}
1427 	case IIO_EV_TYPE_GESTURE:
1428 		switch (info) {
1429 		case IIO_EV_INFO_VALUE:
1430 			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG,
1431 					  &reg_val);
1432 			if (ret)
1433 				return ret;
1434 
1435 			*val = FIELD_GET(BMA400_TAP_SEN_MSK, reg_val);
1436 			return IIO_VAL_INT;
1437 		case IIO_EV_INFO_RESET_TIMEOUT:
1438 			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1439 					  &reg_val);
1440 			if (ret)
1441 				return ret;
1442 
1443 			raw = FIELD_GET(BMA400_TAP_QUIET_MSK, reg_val);
1444 			*val = 0;
1445 			*val2 = tap_reset_timeout[raw];
1446 			return IIO_VAL_INT_PLUS_MICRO;
1447 		case IIO_EV_INFO_TAP2_MIN_DELAY:
1448 			ret = regmap_read(data->regmap, BMA400_TAP_CONFIG1,
1449 					  &reg_val);
1450 			if (ret)
1451 				return ret;
1452 
1453 			raw = FIELD_GET(BMA400_TAP_QUIETDT_MSK, reg_val);
1454 			*val = 0;
1455 			*val2 = double_tap2_min_delay[raw];
1456 			return IIO_VAL_INT_PLUS_MICRO;
1457 		default:
1458 			return -EINVAL;
1459 		}
1460 	default:
1461 		return -EINVAL;
1462 	}
1463 }
1464 
1465 static int bma400_write_event_value(struct iio_dev *indio_dev,
1466 				    const struct iio_chan_spec *chan,
1467 				    enum iio_event_type type,
1468 				    enum iio_event_direction dir,
1469 				    enum iio_event_info info,
1470 				    int val, int val2)
1471 {
1472 	struct bma400_data *data = iio_priv(indio_dev);
1473 	int reg, ret, raw;
1474 
1475 	if (chan->type != IIO_ACCEL)
1476 		return -EINVAL;
1477 
1478 	switch (type) {
1479 	case IIO_EV_TYPE_MAG:
1480 		reg = get_gen_config_reg(dir);
1481 		if (reg < 0)
1482 			return -EINVAL;
1483 
1484 		switch (info) {
1485 		case IIO_EV_INFO_VALUE:
1486 			if (val < 1 || val > 255)
1487 				return -EINVAL;
1488 
1489 			return regmap_write(data->regmap,
1490 					    reg + BMA400_GEN_CONFIG2_OFF,
1491 					    val);
1492 		case IIO_EV_INFO_PERIOD:
1493 			if (val < 1 || val > 65535)
1494 				return -EINVAL;
1495 
1496 			mutex_lock(&data->mutex);
1497 			put_unaligned_be16(val, &data->duration);
1498 			ret = regmap_bulk_write(data->regmap,
1499 						reg + BMA400_GEN_CONFIG3_OFF,
1500 						&data->duration,
1501 						sizeof(data->duration));
1502 			mutex_unlock(&data->mutex);
1503 			return ret;
1504 		case IIO_EV_INFO_HYSTERESIS:
1505 			if (val < 0 || val > 3)
1506 				return -EINVAL;
1507 
1508 			return regmap_update_bits(data->regmap, reg,
1509 						  BMA400_GEN_HYST_MSK,
1510 						  FIELD_PREP(BMA400_GEN_HYST_MSK,
1511 							     val));
1512 		default:
1513 			return -EINVAL;
1514 		}
1515 	case IIO_EV_TYPE_GESTURE:
1516 		switch (info) {
1517 		case IIO_EV_INFO_VALUE:
1518 			if (val < 0 || val > 7)
1519 				return -EINVAL;
1520 
1521 			return regmap_update_bits(data->regmap,
1522 						  BMA400_TAP_CONFIG,
1523 						  BMA400_TAP_SEN_MSK,
1524 						  FIELD_PREP(BMA400_TAP_SEN_MSK,
1525 							     val));
1526 		case IIO_EV_INFO_RESET_TIMEOUT:
1527 			raw = usec_to_tapreg_raw(val2, tap_reset_timeout);
1528 			if (raw < 0)
1529 				return -EINVAL;
1530 
1531 			return regmap_update_bits(data->regmap,
1532 						  BMA400_TAP_CONFIG1,
1533 						  BMA400_TAP_QUIET_MSK,
1534 						  FIELD_PREP(BMA400_TAP_QUIET_MSK,
1535 							     raw));
1536 		case IIO_EV_INFO_TAP2_MIN_DELAY:
1537 			raw = usec_to_tapreg_raw(val2, double_tap2_min_delay);
1538 			if (raw < 0)
1539 				return -EINVAL;
1540 
1541 			return regmap_update_bits(data->regmap,
1542 						  BMA400_TAP_CONFIG1,
1543 						  BMA400_TAP_QUIETDT_MSK,
1544 						  FIELD_PREP(BMA400_TAP_QUIETDT_MSK,
1545 							     raw));
1546 		default:
1547 			return -EINVAL;
1548 		}
1549 	default:
1550 		return -EINVAL;
1551 	}
1552 }
1553 
1554 static int bma400_data_rdy_trigger_set_state(struct iio_trigger *trig,
1555 					     bool state)
1556 {
1557 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1558 	struct bma400_data *data = iio_priv(indio_dev);
1559 	int ret;
1560 
1561 	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG,
1562 				 BMA400_INT_DRDY_MSK,
1563 				 FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1564 	if (ret)
1565 		return ret;
1566 
1567 	return regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG,
1568 				  BMA400_INT_DRDY_MSK,
1569 				  FIELD_PREP(BMA400_INT_DRDY_MSK, state));
1570 }
1571 
1572 static const unsigned long bma400_avail_scan_masks[] = {
1573 	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z),
1574 	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z)
1575 	| BIT(BMA400_TEMP),
1576 	0
1577 };
1578 
1579 static const struct iio_info bma400_info = {
1580 	.read_raw          = bma400_read_raw,
1581 	.read_avail        = bma400_read_avail,
1582 	.write_raw         = bma400_write_raw,
1583 	.write_raw_get_fmt = bma400_write_raw_get_fmt,
1584 	.read_event_config = bma400_read_event_config,
1585 	.write_event_config = bma400_write_event_config,
1586 	.write_event_value = bma400_write_event_value,
1587 	.read_event_value = bma400_read_event_value,
1588 	.event_attrs = &bma400_event_attribute_group,
1589 };
1590 
1591 static const struct iio_trigger_ops bma400_trigger_ops = {
1592 	.set_trigger_state = &bma400_data_rdy_trigger_set_state,
1593 	.validate_device = &iio_trigger_validate_own_device,
1594 };
1595 
1596 static irqreturn_t bma400_trigger_handler(int irq, void *p)
1597 {
1598 	struct iio_poll_func *pf = p;
1599 	struct iio_dev *indio_dev = pf->indio_dev;
1600 	struct bma400_data *data = iio_priv(indio_dev);
1601 	int ret, temp;
1602 
1603 	/* Lock to protect the data->buffer */
1604 	mutex_lock(&data->mutex);
1605 
1606 	/* bulk read six registers, with the base being the LSB register */
1607 	ret = regmap_bulk_read(data->regmap, BMA400_X_AXIS_LSB_REG,
1608 			       &data->buffer.buff, sizeof(data->buffer.buff));
1609 	if (ret)
1610 		goto unlock_err;
1611 
1612 	if (test_bit(BMA400_TEMP, indio_dev->active_scan_mask)) {
1613 		ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &temp);
1614 		if (ret)
1615 			goto unlock_err;
1616 
1617 		data->buffer.temperature = temp;
1618 	}
1619 
1620 	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
1621 					   iio_get_time_ns(indio_dev));
1622 
1623 	mutex_unlock(&data->mutex);
1624 	iio_trigger_notify_done(indio_dev->trig);
1625 	return IRQ_HANDLED;
1626 
1627 unlock_err:
1628 	mutex_unlock(&data->mutex);
1629 	return IRQ_NONE;
1630 }
1631 
1632 static irqreturn_t bma400_interrupt(int irq, void *private)
1633 {
1634 	struct iio_dev *indio_dev = private;
1635 	struct bma400_data *data = iio_priv(indio_dev);
1636 	s64 timestamp = iio_get_time_ns(indio_dev);
1637 	unsigned int act, ev_dir = IIO_EV_DIR_NONE;
1638 	int ret;
1639 
1640 	/* Lock to protect the data->status */
1641 	mutex_lock(&data->mutex);
1642 	ret = regmap_bulk_read(data->regmap, BMA400_INT_STAT0_REG,
1643 			       &data->status,
1644 			       sizeof(data->status));
1645 	/*
1646 	 * if none of the bit is set in the status register then it is
1647 	 * spurious interrupt.
1648 	 */
1649 	if (ret || !data->status)
1650 		goto unlock_err;
1651 
1652 	/*
1653 	 * Disable all advance interrupts if interrupt engine overrun occurs.
1654 	 * See section 4.7 "Interrupt engine overrun" in datasheet v1.2.
1655 	 */
1656 	if (FIELD_GET(BMA400_INT_ENG_OVRUN_MSK, le16_to_cpu(data->status))) {
1657 		bma400_disable_adv_interrupt(data);
1658 		dev_err(data->dev, "Interrupt engine overrun\n");
1659 		goto unlock_err;
1660 	}
1661 
1662 	if (FIELD_GET(BMA400_INT_S_TAP_MSK, le16_to_cpu(data->status)))
1663 		iio_push_event(indio_dev,
1664 			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1665 						  IIO_MOD_X_OR_Y_OR_Z,
1666 						  IIO_EV_TYPE_GESTURE,
1667 						  IIO_EV_DIR_SINGLETAP),
1668 			       timestamp);
1669 
1670 	if (FIELD_GET(BMA400_INT_D_TAP_MSK, le16_to_cpu(data->status)))
1671 		iio_push_event(indio_dev,
1672 			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1673 						  IIO_MOD_X_OR_Y_OR_Z,
1674 						  IIO_EV_TYPE_GESTURE,
1675 						  IIO_EV_DIR_DOUBLETAP),
1676 			       timestamp);
1677 
1678 	if (FIELD_GET(BMA400_INT_GEN1_MSK, le16_to_cpu(data->status)))
1679 		ev_dir = IIO_EV_DIR_RISING;
1680 
1681 	if (FIELD_GET(BMA400_INT_GEN2_MSK, le16_to_cpu(data->status)))
1682 		ev_dir = IIO_EV_DIR_FALLING;
1683 
1684 	if (ev_dir != IIO_EV_DIR_NONE) {
1685 		iio_push_event(indio_dev,
1686 			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
1687 						  IIO_MOD_X_OR_Y_OR_Z,
1688 						  IIO_EV_TYPE_MAG, ev_dir),
1689 			       timestamp);
1690 	}
1691 
1692 	if (FIELD_GET(BMA400_STEP_STAT_MASK, le16_to_cpu(data->status))) {
1693 		iio_push_event(indio_dev,
1694 			       IIO_MOD_EVENT_CODE(IIO_STEPS, 0, IIO_NO_MOD,
1695 						  IIO_EV_TYPE_CHANGE,
1696 						  IIO_EV_DIR_NONE),
1697 			       timestamp);
1698 
1699 		if (data->activity_event_en) {
1700 			ret = regmap_read(data->regmap, BMA400_STEP_STAT_REG,
1701 					  &act);
1702 			if (ret)
1703 				goto unlock_err;
1704 
1705 			iio_push_event(indio_dev,
1706 				       IIO_MOD_EVENT_CODE(IIO_ACTIVITY, 0,
1707 							  bma400_act_to_mod(act),
1708 							  IIO_EV_TYPE_CHANGE,
1709 							  IIO_EV_DIR_NONE),
1710 				       timestamp);
1711 		}
1712 	}
1713 
1714 	if (FIELD_GET(BMA400_INT_DRDY_MSK, le16_to_cpu(data->status))) {
1715 		mutex_unlock(&data->mutex);
1716 		iio_trigger_poll_chained(data->trig);
1717 		return IRQ_HANDLED;
1718 	}
1719 
1720 	mutex_unlock(&data->mutex);
1721 	return IRQ_HANDLED;
1722 
1723 unlock_err:
1724 	mutex_unlock(&data->mutex);
1725 	return IRQ_NONE;
1726 }
1727 
1728 int bma400_probe(struct device *dev, struct regmap *regmap, int irq,
1729 		 const char *name)
1730 {
1731 	struct iio_dev *indio_dev;
1732 	struct bma400_data *data;
1733 	int ret;
1734 
1735 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1736 	if (!indio_dev)
1737 		return -ENOMEM;
1738 
1739 	data = iio_priv(indio_dev);
1740 	data->regmap = regmap;
1741 	data->dev = dev;
1742 
1743 	ret = bma400_init(data);
1744 	if (ret)
1745 		return ret;
1746 
1747 	ret = iio_read_mount_matrix(dev, &data->orientation);
1748 	if (ret)
1749 		return ret;
1750 
1751 	mutex_init(&data->mutex);
1752 	indio_dev->name = name;
1753 	indio_dev->info = &bma400_info;
1754 	indio_dev->channels = bma400_channels;
1755 	indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
1756 	indio_dev->available_scan_masks = bma400_avail_scan_masks;
1757 	indio_dev->modes = INDIO_DIRECT_MODE;
1758 
1759 	if (irq > 0) {
1760 		data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
1761 						    indio_dev->name,
1762 						    iio_device_id(indio_dev));
1763 		if (!data->trig)
1764 			return -ENOMEM;
1765 
1766 		data->trig->ops = &bma400_trigger_ops;
1767 		iio_trigger_set_drvdata(data->trig, indio_dev);
1768 
1769 		ret = devm_iio_trigger_register(data->dev, data->trig);
1770 		if (ret)
1771 			return dev_err_probe(data->dev, ret,
1772 					     "iio trigger register fail\n");
1773 
1774 		indio_dev->trig = iio_trigger_get(data->trig);
1775 		ret = devm_request_threaded_irq(dev, irq, NULL,
1776 						&bma400_interrupt,
1777 						IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1778 						indio_dev->name, indio_dev);
1779 		if (ret)
1780 			return dev_err_probe(data->dev, ret,
1781 					     "request irq %d failed\n", irq);
1782 	}
1783 
1784 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
1785 					      &bma400_trigger_handler, NULL);
1786 	if (ret)
1787 		return dev_err_probe(data->dev, ret,
1788 				     "iio triggered buffer setup failed\n");
1789 
1790 	return devm_iio_device_register(dev, indio_dev);
1791 }
1792 EXPORT_SYMBOL_NS(bma400_probe, IIO_BMA400);
1793 
1794 MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
1795 MODULE_AUTHOR("Jagath Jog J <jagathjog1996@gmail.com>");
1796 MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
1797 MODULE_LICENSE("GPL");
1798