xref: /linux/drivers/iio/accel/bma220_spi.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BMA220 Digital triaxial acceleration sensor driver
4  *
5  * Copyright (c) 2016,2020 Intel Corporation.
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/kernel.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/spi/spi.h>
14 
15 #include <linux/iio/buffer.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 
21 #define BMA220_REG_ID				0x00
22 #define BMA220_REG_ACCEL_X			0x02
23 #define BMA220_REG_ACCEL_Y			0x03
24 #define BMA220_REG_ACCEL_Z			0x04
25 #define BMA220_REG_RANGE			0x11
26 #define BMA220_REG_SUSPEND			0x18
27 
28 #define BMA220_CHIP_ID				0xDD
29 #define BMA220_READ_MASK			BIT(7)
30 #define BMA220_RANGE_MASK			GENMASK(1, 0)
31 #define BMA220_SUSPEND_SLEEP			0xFF
32 #define BMA220_SUSPEND_WAKE			0x00
33 
34 #define BMA220_DEVICE_NAME			"bma220"
35 
36 #define BMA220_ACCEL_CHANNEL(index, reg, axis) {			\
37 	.type = IIO_ACCEL,						\
38 	.address = reg,							\
39 	.modified = 1,							\
40 	.channel2 = IIO_MOD_##axis,					\
41 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
42 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
43 	.scan_index = index,						\
44 	.scan_type = {							\
45 		.sign = 's',						\
46 		.realbits = 6,						\
47 		.storagebits = 8,					\
48 		.shift = 2,						\
49 		.endianness = IIO_CPU,					\
50 	},								\
51 }
52 
53 enum bma220_axis {
54 	AXIS_X,
55 	AXIS_Y,
56 	AXIS_Z,
57 };
58 
59 static const int bma220_scale_table[][2] = {
60 	{0, 623000}, {1, 248000}, {2, 491000}, {4, 983000},
61 };
62 
63 struct bma220_data {
64 	struct spi_device *spi_device;
65 	struct mutex lock;
66 	struct {
67 		s8 chans[3];
68 		/* Ensure timestamp is naturally aligned. */
69 		s64 timestamp __aligned(8);
70 	} scan;
71 	u8 tx_buf[2] __aligned(IIO_DMA_MINALIGN);
72 };
73 
74 static const struct iio_chan_spec bma220_channels[] = {
75 	BMA220_ACCEL_CHANNEL(0, BMA220_REG_ACCEL_X, X),
76 	BMA220_ACCEL_CHANNEL(1, BMA220_REG_ACCEL_Y, Y),
77 	BMA220_ACCEL_CHANNEL(2, BMA220_REG_ACCEL_Z, Z),
78 	IIO_CHAN_SOFT_TIMESTAMP(3),
79 };
80 
81 static inline int bma220_read_reg(struct spi_device *spi, u8 reg)
82 {
83 	return spi_w8r8(spi, reg | BMA220_READ_MASK);
84 }
85 
86 static const unsigned long bma220_accel_scan_masks[] = {
87 	BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
88 	0
89 };
90 
91 static irqreturn_t bma220_trigger_handler(int irq, void *p)
92 {
93 	int ret;
94 	struct iio_poll_func *pf = p;
95 	struct iio_dev *indio_dev = pf->indio_dev;
96 	struct bma220_data *data = iio_priv(indio_dev);
97 	struct spi_device *spi = data->spi_device;
98 
99 	mutex_lock(&data->lock);
100 	data->tx_buf[0] = BMA220_REG_ACCEL_X | BMA220_READ_MASK;
101 	ret = spi_write_then_read(spi, data->tx_buf, 1, &data->scan.chans,
102 				  ARRAY_SIZE(bma220_channels) - 1);
103 	if (ret < 0)
104 		goto err;
105 
106 	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
107 					   pf->timestamp);
108 err:
109 	mutex_unlock(&data->lock);
110 	iio_trigger_notify_done(indio_dev->trig);
111 
112 	return IRQ_HANDLED;
113 }
114 
115 static int bma220_read_raw(struct iio_dev *indio_dev,
116 			   struct iio_chan_spec const *chan,
117 			   int *val, int *val2, long mask)
118 {
119 	int ret;
120 	u8 range_idx;
121 	struct bma220_data *data = iio_priv(indio_dev);
122 
123 	switch (mask) {
124 	case IIO_CHAN_INFO_RAW:
125 		ret = bma220_read_reg(data->spi_device, chan->address);
126 		if (ret < 0)
127 			return -EINVAL;
128 		*val = sign_extend32(ret >> chan->scan_type.shift,
129 				     chan->scan_type.realbits - 1);
130 		return IIO_VAL_INT;
131 	case IIO_CHAN_INFO_SCALE:
132 		ret = bma220_read_reg(data->spi_device, BMA220_REG_RANGE);
133 		if (ret < 0)
134 			return ret;
135 		range_idx = ret & BMA220_RANGE_MASK;
136 		*val = bma220_scale_table[range_idx][0];
137 		*val2 = bma220_scale_table[range_idx][1];
138 		return IIO_VAL_INT_PLUS_MICRO;
139 	}
140 
141 	return -EINVAL;
142 }
143 
144 static int bma220_write_raw(struct iio_dev *indio_dev,
145 			    struct iio_chan_spec const *chan,
146 			    int val, int val2, long mask)
147 {
148 	int i;
149 	int ret;
150 	int index = -1;
151 	struct bma220_data *data = iio_priv(indio_dev);
152 
153 	switch (mask) {
154 	case IIO_CHAN_INFO_SCALE:
155 		for (i = 0; i < ARRAY_SIZE(bma220_scale_table); i++)
156 			if (val == bma220_scale_table[i][0] &&
157 			    val2 == bma220_scale_table[i][1]) {
158 				index = i;
159 				break;
160 			}
161 		if (index < 0)
162 			return -EINVAL;
163 
164 		mutex_lock(&data->lock);
165 		data->tx_buf[0] = BMA220_REG_RANGE;
166 		data->tx_buf[1] = index;
167 		ret = spi_write(data->spi_device, data->tx_buf,
168 				sizeof(data->tx_buf));
169 		if (ret < 0)
170 			dev_err(&data->spi_device->dev,
171 				"failed to set measurement range\n");
172 		mutex_unlock(&data->lock);
173 
174 		return 0;
175 	}
176 
177 	return -EINVAL;
178 }
179 
180 static int bma220_read_avail(struct iio_dev *indio_dev,
181 			     struct iio_chan_spec const *chan,
182 			     const int **vals, int *type, int *length,
183 			     long mask)
184 {
185 	switch (mask) {
186 	case IIO_CHAN_INFO_SCALE:
187 		*vals = (int *)bma220_scale_table;
188 		*type = IIO_VAL_INT_PLUS_MICRO;
189 		*length = ARRAY_SIZE(bma220_scale_table) * 2;
190 		return IIO_AVAIL_LIST;
191 	default:
192 		return -EINVAL;
193 	}
194 }
195 
196 static const struct iio_info bma220_info = {
197 	.read_raw		= bma220_read_raw,
198 	.write_raw		= bma220_write_raw,
199 	.read_avail		= bma220_read_avail,
200 };
201 
202 static int bma220_init(struct spi_device *spi)
203 {
204 	int ret;
205 
206 	ret = bma220_read_reg(spi, BMA220_REG_ID);
207 	if (ret != BMA220_CHIP_ID)
208 		return -ENODEV;
209 
210 	/* Make sure the chip is powered on */
211 	ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
212 	if (ret == BMA220_SUSPEND_WAKE)
213 		ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
214 	if (ret < 0)
215 		return ret;
216 	if (ret == BMA220_SUSPEND_WAKE)
217 		return -EBUSY;
218 
219 	return 0;
220 }
221 
222 static int bma220_power(struct spi_device *spi, bool up)
223 {
224 	int i, ret;
225 
226 	/**
227 	 * The chip can be suspended/woken up by a simple register read.
228 	 * So, we need up to 2 register reads of the suspend register
229 	 * to make sure that the device is in the desired state.
230 	 */
231 	for (i = 0; i < 2; i++) {
232 		ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
233 		if (ret < 0)
234 			return ret;
235 
236 		if (up && ret == BMA220_SUSPEND_SLEEP)
237 			return 0;
238 
239 		if (!up && ret == BMA220_SUSPEND_WAKE)
240 			return 0;
241 	}
242 
243 	return -EBUSY;
244 }
245 
246 static void bma220_deinit(void *spi)
247 {
248 	bma220_power(spi, false);
249 }
250 
251 static int bma220_probe(struct spi_device *spi)
252 {
253 	int ret;
254 	struct iio_dev *indio_dev;
255 	struct bma220_data *data;
256 
257 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*data));
258 	if (!indio_dev) {
259 		dev_err(&spi->dev, "iio allocation failed!\n");
260 		return -ENOMEM;
261 	}
262 
263 	data = iio_priv(indio_dev);
264 	data->spi_device = spi;
265 	mutex_init(&data->lock);
266 
267 	indio_dev->info = &bma220_info;
268 	indio_dev->name = BMA220_DEVICE_NAME;
269 	indio_dev->modes = INDIO_DIRECT_MODE;
270 	indio_dev->channels = bma220_channels;
271 	indio_dev->num_channels = ARRAY_SIZE(bma220_channels);
272 	indio_dev->available_scan_masks = bma220_accel_scan_masks;
273 
274 	ret = bma220_init(data->spi_device);
275 	if (ret)
276 		return ret;
277 
278 	ret = devm_add_action_or_reset(&spi->dev, bma220_deinit, spi);
279 	if (ret)
280 		return ret;
281 
282 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
283 					      iio_pollfunc_store_time,
284 					      bma220_trigger_handler, NULL);
285 	if (ret < 0) {
286 		dev_err(&spi->dev, "iio triggered buffer setup failed\n");
287 		return ret;
288 	}
289 
290 	return devm_iio_device_register(&spi->dev, indio_dev);
291 }
292 
293 static int bma220_suspend(struct device *dev)
294 {
295 	struct spi_device *spi = to_spi_device(dev);
296 
297 	return bma220_power(spi, false);
298 }
299 
300 static int bma220_resume(struct device *dev)
301 {
302 	struct spi_device *spi = to_spi_device(dev);
303 
304 	return bma220_power(spi, true);
305 }
306 static DEFINE_SIMPLE_DEV_PM_OPS(bma220_pm_ops, bma220_suspend, bma220_resume);
307 
308 static const struct spi_device_id bma220_spi_id[] = {
309 	{"bma220", 0},
310 	{}
311 };
312 
313 static const struct acpi_device_id bma220_acpi_id[] = {
314 	{"BMA0220", 0},
315 	{}
316 };
317 MODULE_DEVICE_TABLE(spi, bma220_spi_id);
318 
319 static struct spi_driver bma220_driver = {
320 	.driver = {
321 		.name = "bma220_spi",
322 		.pm = pm_sleep_ptr(&bma220_pm_ops),
323 		.acpi_match_table = bma220_acpi_id,
324 	},
325 	.probe =            bma220_probe,
326 	.id_table =         bma220_spi_id,
327 };
328 module_spi_driver(bma220_driver);
329 
330 MODULE_AUTHOR("Tiberiu Breana <tiberiu.a.breana@intel.com>");
331 MODULE_DESCRIPTION("BMA220 acceleration sensor driver");
332 MODULE_LICENSE("GPL v2");
333