1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ADXL355 3-Axis Digital Accelerometer IIO core driver 4 * 5 * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com> 6 * 7 * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf 8 */ 9 10 #include <linux/bits.h> 11 #include <linux/bitfield.h> 12 #include <linux/iio/buffer.h> 13 #include <linux/iio/iio.h> 14 #include <linux/iio/trigger.h> 15 #include <linux/iio/triggered_buffer.h> 16 #include <linux/iio/trigger_consumer.h> 17 #include <linux/limits.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/mod_devicetable.h> 21 #include <linux/property.h> 22 #include <linux/regmap.h> 23 #include <linux/units.h> 24 25 #include <linux/unaligned.h> 26 27 #include "adxl355.h" 28 29 /* ADXL355 Register Definitions */ 30 #define ADXL355_DEVID_AD_REG 0x00 31 #define ADXL355_DEVID_MST_REG 0x01 32 #define ADXL355_PARTID_REG 0x02 33 #define ADXL355_STATUS_REG 0x04 34 #define ADXL355_FIFO_ENTRIES_REG 0x05 35 #define ADXL355_TEMP2_REG 0x06 36 #define ADXL355_XDATA3_REG 0x08 37 #define ADXL355_YDATA3_REG 0x0B 38 #define ADXL355_ZDATA3_REG 0x0E 39 #define ADXL355_FIFO_DATA_REG 0x11 40 #define ADXL355_OFFSET_X_H_REG 0x1E 41 #define ADXL355_OFFSET_Y_H_REG 0x20 42 #define ADXL355_OFFSET_Z_H_REG 0x22 43 #define ADXL355_ACT_EN_REG 0x24 44 #define ADXL355_ACT_THRESH_H_REG 0x25 45 #define ADXL355_ACT_THRESH_L_REG 0x26 46 #define ADXL355_ACT_COUNT_REG 0x27 47 #define ADXL355_FILTER_REG 0x28 48 #define ADXL355_FILTER_ODR_MSK GENMASK(3, 0) 49 #define ADXL355_FILTER_HPF_MSK GENMASK(6, 4) 50 #define ADXL355_FIFO_SAMPLES_REG 0x29 51 #define ADXL355_INT_MAP_REG 0x2A 52 #define ADXL355_SYNC_REG 0x2B 53 #define ADXL355_RANGE_REG 0x2C 54 #define ADXL355_POWER_CTL_REG 0x2D 55 #define ADXL355_POWER_CTL_MODE_MSK GENMASK(1, 0) 56 #define ADXL355_POWER_CTL_DRDY_MSK BIT(2) 57 #define ADXL355_SELF_TEST_REG 0x2E 58 #define ADXL355_RESET_REG 0x2F 59 60 #define ADXL355_DEVID_AD_VAL 0xAD 61 #define ADXL355_DEVID_MST_VAL 0x1D 62 #define ADXL355_PARTID_VAL 0xED 63 #define ADXL359_PARTID_VAL 0xE9 64 #define ADXL355_RESET_CODE 0x52 65 66 static const struct regmap_range adxl355_read_reg_range[] = { 67 regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG), 68 regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG), 69 }; 70 71 const struct regmap_access_table adxl355_readable_regs_tbl = { 72 .yes_ranges = adxl355_read_reg_range, 73 .n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range), 74 }; 75 EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355); 76 77 static const struct regmap_range adxl355_write_reg_range[] = { 78 regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG), 79 }; 80 81 const struct regmap_access_table adxl355_writeable_regs_tbl = { 82 .yes_ranges = adxl355_write_reg_range, 83 .n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range), 84 }; 85 EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355); 86 87 const struct adxl355_chip_info adxl35x_chip_info[] = { 88 [ADXL355] = { 89 .name = "adxl355", 90 .part_id = ADXL355_PARTID_VAL, 91 /* 92 * At +/- 2g with 20-bit resolution, scale is given in datasheet 93 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2. 94 */ 95 .accel_scale = { 96 .integer = 0, 97 .decimal = 38245, 98 }, 99 /* 100 * The datasheet defines an intercept of 1885 LSB at 25 degC 101 * and a slope of -9.05 LSB/C. The following formula can be used 102 * to find the temperature: 103 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow 104 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. 105 * Hence using some rearranging we get the scale as -110.497238 106 * and offset as -2111.25. 107 */ 108 .temp_offset = { 109 .integer = -2111, 110 .decimal = 250000, 111 }, 112 }, 113 [ADXL359] = { 114 .name = "adxl359", 115 .part_id = ADXL359_PARTID_VAL, 116 /* 117 * At +/- 10g with 20-bit resolution, scale is given in datasheet 118 * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2. 119 */ 120 .accel_scale = { 121 .integer = 0, 122 .decimal = 191229, 123 }, 124 /* 125 * The datasheet defines an intercept of 1852 LSB at 25 degC 126 * and a slope of -9.05 LSB/C. The following formula can be used 127 * to find the temperature: 128 * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow 129 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE. 130 * Hence using some rearranging we get the scale as -110.497238 131 * and offset as -2079.25. 132 */ 133 .temp_offset = { 134 .integer = -2079, 135 .decimal = 250000, 136 }, 137 }, 138 }; 139 EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, IIO_ADXL355); 140 141 enum adxl355_op_mode { 142 ADXL355_MEASUREMENT, 143 ADXL355_STANDBY, 144 ADXL355_TEMP_OFF, 145 }; 146 147 enum adxl355_odr { 148 ADXL355_ODR_4000HZ, 149 ADXL355_ODR_2000HZ, 150 ADXL355_ODR_1000HZ, 151 ADXL355_ODR_500HZ, 152 ADXL355_ODR_250HZ, 153 ADXL355_ODR_125HZ, 154 ADXL355_ODR_62_5HZ, 155 ADXL355_ODR_31_25HZ, 156 ADXL355_ODR_15_625HZ, 157 ADXL355_ODR_7_813HZ, 158 ADXL355_ODR_3_906HZ, 159 }; 160 161 enum adxl355_hpf_3db { 162 ADXL355_HPF_OFF, 163 ADXL355_HPF_24_7, 164 ADXL355_HPF_6_2084, 165 ADXL355_HPF_1_5545, 166 ADXL355_HPF_0_3862, 167 ADXL355_HPF_0_0954, 168 ADXL355_HPF_0_0238, 169 }; 170 171 static const int adxl355_odr_table[][2] = { 172 [0] = {4000, 0}, 173 [1] = {2000, 0}, 174 [2] = {1000, 0}, 175 [3] = {500, 0}, 176 [4] = {250, 0}, 177 [5] = {125, 0}, 178 [6] = {62, 500000}, 179 [7] = {31, 250000}, 180 [8] = {15, 625000}, 181 [9] = {7, 813000}, 182 [10] = {3, 906000}, 183 }; 184 185 static const int adxl355_hpf_3db_multipliers[] = { 186 0, 187 247000, 188 62084, 189 15545, 190 3862, 191 954, 192 238, 193 }; 194 195 enum adxl355_chans { 196 chan_x, chan_y, chan_z, 197 }; 198 199 struct adxl355_chan_info { 200 u8 data_reg; 201 u8 offset_reg; 202 }; 203 204 static const struct adxl355_chan_info adxl355_chans[] = { 205 [chan_x] = { 206 .data_reg = ADXL355_XDATA3_REG, 207 .offset_reg = ADXL355_OFFSET_X_H_REG 208 }, 209 [chan_y] = { 210 .data_reg = ADXL355_YDATA3_REG, 211 .offset_reg = ADXL355_OFFSET_Y_H_REG 212 }, 213 [chan_z] = { 214 .data_reg = ADXL355_ZDATA3_REG, 215 .offset_reg = ADXL355_OFFSET_Z_H_REG 216 }, 217 }; 218 219 struct adxl355_data { 220 const struct adxl355_chip_info *chip_info; 221 struct regmap *regmap; 222 struct device *dev; 223 struct mutex lock; /* lock to protect op_mode */ 224 enum adxl355_op_mode op_mode; 225 enum adxl355_odr odr; 226 enum adxl355_hpf_3db hpf_3db; 227 int calibbias[3]; 228 int adxl355_hpf_3db_table[7][2]; 229 struct iio_trigger *dready_trig; 230 union { 231 u8 transf_buf[3]; 232 struct { 233 u8 buf[14]; 234 s64 ts; 235 } buffer; 236 } __aligned(IIO_DMA_MINALIGN); 237 }; 238 239 static int adxl355_set_op_mode(struct adxl355_data *data, 240 enum adxl355_op_mode op_mode) 241 { 242 int ret; 243 244 if (data->op_mode == op_mode) 245 return 0; 246 247 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, 248 ADXL355_POWER_CTL_MODE_MSK, op_mode); 249 if (ret) 250 return ret; 251 252 data->op_mode = op_mode; 253 254 return ret; 255 } 256 257 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig, 258 bool state) 259 { 260 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 261 struct adxl355_data *data = iio_priv(indio_dev); 262 int ret; 263 264 mutex_lock(&data->lock); 265 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, 266 ADXL355_POWER_CTL_DRDY_MSK, 267 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 268 state ? 0 : 1)); 269 mutex_unlock(&data->lock); 270 271 return ret; 272 } 273 274 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data) 275 { 276 u32 multiplier; 277 u64 div, rem; 278 u64 odr; 279 int i; 280 281 odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) + 282 adxl355_odr_table[data->odr][1]; 283 284 for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) { 285 multiplier = adxl355_hpf_3db_multipliers[i]; 286 div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0), 287 TERA * 100, &rem); 288 289 data->adxl355_hpf_3db_table[i][0] = div; 290 data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100); 291 } 292 } 293 294 static int adxl355_setup(struct adxl355_data *data) 295 { 296 unsigned int regval; 297 int ret; 298 299 ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, ®val); 300 if (ret) 301 return ret; 302 303 if (regval != ADXL355_DEVID_AD_VAL) { 304 dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval); 305 return -ENODEV; 306 } 307 308 ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, ®val); 309 if (ret) 310 return ret; 311 312 if (regval != ADXL355_DEVID_MST_VAL) { 313 dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval); 314 return -ENODEV; 315 } 316 317 ret = regmap_read(data->regmap, ADXL355_PARTID_REG, ®val); 318 if (ret) 319 return ret; 320 321 if (regval != ADXL355_PARTID_VAL) 322 dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval); 323 324 /* 325 * Perform a software reset to make sure the device is in a consistent 326 * state after start-up. 327 */ 328 ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE); 329 if (ret) 330 return ret; 331 332 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG, 333 ADXL355_POWER_CTL_DRDY_MSK, 334 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1)); 335 if (ret) 336 return ret; 337 338 adxl355_fill_3db_frequency_table(data); 339 340 return adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 341 } 342 343 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr) 344 { 345 return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2); 346 } 347 348 static int adxl355_read_axis(struct adxl355_data *data, u8 addr) 349 { 350 int ret; 351 352 ret = regmap_bulk_read(data->regmap, addr, data->transf_buf, 353 ARRAY_SIZE(data->transf_buf)); 354 if (ret) 355 return ret; 356 357 return get_unaligned_be24(data->transf_buf); 358 } 359 360 static int adxl355_find_match(const int (*freq_tbl)[2], const int n, 361 const int val, const int val2) 362 { 363 int i; 364 365 for (i = 0; i < n; i++) { 366 if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2) 367 return i; 368 } 369 370 return -EINVAL; 371 } 372 373 static int adxl355_set_odr(struct adxl355_data *data, 374 enum adxl355_odr odr) 375 { 376 int ret; 377 378 mutex_lock(&data->lock); 379 380 if (data->odr == odr) { 381 mutex_unlock(&data->lock); 382 return 0; 383 } 384 385 ret = adxl355_set_op_mode(data, ADXL355_STANDBY); 386 if (ret) 387 goto err_unlock; 388 389 ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, 390 ADXL355_FILTER_ODR_MSK, 391 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr)); 392 if (ret) 393 goto err_set_opmode; 394 395 data->odr = odr; 396 adxl355_fill_3db_frequency_table(data); 397 398 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 399 if (ret) 400 goto err_set_opmode; 401 402 mutex_unlock(&data->lock); 403 return 0; 404 405 err_set_opmode: 406 adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 407 err_unlock: 408 mutex_unlock(&data->lock); 409 return ret; 410 } 411 412 static int adxl355_set_hpf_3db(struct adxl355_data *data, 413 enum adxl355_hpf_3db hpf) 414 { 415 int ret; 416 417 mutex_lock(&data->lock); 418 419 if (data->hpf_3db == hpf) { 420 mutex_unlock(&data->lock); 421 return 0; 422 } 423 424 ret = adxl355_set_op_mode(data, ADXL355_STANDBY); 425 if (ret) 426 goto err_unlock; 427 428 ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG, 429 ADXL355_FILTER_HPF_MSK, 430 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf)); 431 if (ret) 432 goto err_set_opmode; 433 434 data->hpf_3db = hpf; 435 436 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 437 if (ret) 438 goto err_set_opmode; 439 440 mutex_unlock(&data->lock); 441 return 0; 442 443 err_set_opmode: 444 adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 445 err_unlock: 446 mutex_unlock(&data->lock); 447 return ret; 448 } 449 450 static int adxl355_set_calibbias(struct adxl355_data *data, 451 enum adxl355_chans chan, int calibbias) 452 { 453 int ret; 454 455 mutex_lock(&data->lock); 456 457 ret = adxl355_set_op_mode(data, ADXL355_STANDBY); 458 if (ret) 459 goto err_unlock; 460 461 put_unaligned_be16(calibbias, data->transf_buf); 462 ret = regmap_bulk_write(data->regmap, 463 adxl355_chans[chan].offset_reg, 464 data->transf_buf, 2); 465 if (ret) 466 goto err_set_opmode; 467 468 data->calibbias[chan] = calibbias; 469 470 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 471 if (ret) 472 goto err_set_opmode; 473 474 mutex_unlock(&data->lock); 475 return 0; 476 477 err_set_opmode: 478 adxl355_set_op_mode(data, ADXL355_MEASUREMENT); 479 err_unlock: 480 mutex_unlock(&data->lock); 481 return ret; 482 } 483 484 static int adxl355_read_raw(struct iio_dev *indio_dev, 485 struct iio_chan_spec const *chan, 486 int *val, int *val2, long mask) 487 { 488 struct adxl355_data *data = iio_priv(indio_dev); 489 int ret; 490 491 switch (mask) { 492 case IIO_CHAN_INFO_RAW: 493 switch (chan->type) { 494 case IIO_TEMP: 495 ret = adxl355_get_temp_data(data, chan->address); 496 if (ret < 0) 497 return ret; 498 *val = get_unaligned_be16(data->transf_buf); 499 500 return IIO_VAL_INT; 501 case IIO_ACCEL: 502 ret = adxl355_read_axis(data, adxl355_chans[ 503 chan->address].data_reg); 504 if (ret < 0) 505 return ret; 506 *val = sign_extend32(ret >> chan->scan_type.shift, 507 chan->scan_type.realbits - 1); 508 return IIO_VAL_INT; 509 default: 510 return -EINVAL; 511 } 512 513 case IIO_CHAN_INFO_SCALE: 514 switch (chan->type) { 515 case IIO_TEMP: 516 /* 517 * Temperature scale is -110.497238. 518 * See the detailed explanation in adxl35x_chip_info 519 * definition above. 520 */ 521 *val = -110; 522 *val2 = 497238; 523 return IIO_VAL_INT_PLUS_MICRO; 524 case IIO_ACCEL: 525 *val = data->chip_info->accel_scale.integer; 526 *val2 = data->chip_info->accel_scale.decimal; 527 return IIO_VAL_INT_PLUS_NANO; 528 default: 529 return -EINVAL; 530 } 531 case IIO_CHAN_INFO_OFFSET: 532 *val = data->chip_info->temp_offset.integer; 533 *val2 = data->chip_info->temp_offset.decimal; 534 return IIO_VAL_INT_PLUS_MICRO; 535 case IIO_CHAN_INFO_CALIBBIAS: 536 *val = sign_extend32(data->calibbias[chan->address], 15); 537 return IIO_VAL_INT; 538 case IIO_CHAN_INFO_SAMP_FREQ: 539 *val = adxl355_odr_table[data->odr][0]; 540 *val2 = adxl355_odr_table[data->odr][1]; 541 return IIO_VAL_INT_PLUS_MICRO; 542 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 543 *val = data->adxl355_hpf_3db_table[data->hpf_3db][0]; 544 *val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1]; 545 return IIO_VAL_INT_PLUS_MICRO; 546 default: 547 return -EINVAL; 548 } 549 } 550 551 static int adxl355_write_raw(struct iio_dev *indio_dev, 552 struct iio_chan_spec const *chan, 553 int val, int val2, long mask) 554 { 555 struct adxl355_data *data = iio_priv(indio_dev); 556 int odr_idx, hpf_idx, calibbias; 557 558 switch (mask) { 559 case IIO_CHAN_INFO_SAMP_FREQ: 560 odr_idx = adxl355_find_match(adxl355_odr_table, 561 ARRAY_SIZE(adxl355_odr_table), 562 val, val2); 563 if (odr_idx < 0) 564 return odr_idx; 565 566 return adxl355_set_odr(data, odr_idx); 567 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 568 hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table, 569 ARRAY_SIZE(data->adxl355_hpf_3db_table), 570 val, val2); 571 if (hpf_idx < 0) 572 return hpf_idx; 573 574 return adxl355_set_hpf_3db(data, hpf_idx); 575 case IIO_CHAN_INFO_CALIBBIAS: 576 calibbias = clamp_t(int, val, S16_MIN, S16_MAX); 577 578 return adxl355_set_calibbias(data, chan->address, calibbias); 579 default: 580 return -EINVAL; 581 } 582 } 583 584 static int adxl355_read_avail(struct iio_dev *indio_dev, 585 struct iio_chan_spec const *chan, 586 const int **vals, int *type, int *length, 587 long mask) 588 { 589 struct adxl355_data *data = iio_priv(indio_dev); 590 591 switch (mask) { 592 case IIO_CHAN_INFO_SAMP_FREQ: 593 *vals = (const int *)adxl355_odr_table; 594 *type = IIO_VAL_INT_PLUS_MICRO; 595 /* Values are stored in a 2D matrix */ 596 *length = ARRAY_SIZE(adxl355_odr_table) * 2; 597 598 return IIO_AVAIL_LIST; 599 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: 600 *vals = (const int *)data->adxl355_hpf_3db_table; 601 *type = IIO_VAL_INT_PLUS_MICRO; 602 /* Values are stored in a 2D matrix */ 603 *length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2; 604 605 return IIO_AVAIL_LIST; 606 default: 607 return -EINVAL; 608 } 609 } 610 611 static const unsigned long adxl355_avail_scan_masks[] = { 612 GENMASK(3, 0), 613 0 614 }; 615 616 static const struct iio_info adxl355_info = { 617 .read_raw = adxl355_read_raw, 618 .write_raw = adxl355_write_raw, 619 .read_avail = &adxl355_read_avail, 620 }; 621 622 static const struct iio_trigger_ops adxl355_trigger_ops = { 623 .set_trigger_state = &adxl355_data_rdy_trigger_set_state, 624 .validate_device = &iio_trigger_validate_own_device, 625 }; 626 627 static irqreturn_t adxl355_trigger_handler(int irq, void *p) 628 { 629 struct iio_poll_func *pf = p; 630 struct iio_dev *indio_dev = pf->indio_dev; 631 struct adxl355_data *data = iio_priv(indio_dev); 632 int ret; 633 634 mutex_lock(&data->lock); 635 636 /* 637 * data->buffer is used both for triggered buffer support 638 * and read/write_raw(), hence, it has to be zeroed here before usage. 639 */ 640 data->buffer.buf[0] = 0; 641 642 /* 643 * The acceleration data is 24 bits and big endian. It has to be saved 644 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer. 645 * The buf array is 14 bytes as it includes 3x4=12 bytes for 646 * accelaration data of x, y, and z axis. It also includes 2 bytes for 647 * temperature data. 648 */ 649 ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG, 650 &data->buffer.buf[1], 3); 651 if (ret) 652 goto out_unlock_notify; 653 654 ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG, 655 &data->buffer.buf[5], 3); 656 if (ret) 657 goto out_unlock_notify; 658 659 ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG, 660 &data->buffer.buf[9], 3); 661 if (ret) 662 goto out_unlock_notify; 663 664 ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG, 665 &data->buffer.buf[12], 2); 666 if (ret) 667 goto out_unlock_notify; 668 669 iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer, 670 pf->timestamp); 671 672 out_unlock_notify: 673 mutex_unlock(&data->lock); 674 iio_trigger_notify_done(indio_dev->trig); 675 676 return IRQ_HANDLED; 677 } 678 679 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) { \ 680 .type = IIO_ACCEL, \ 681 .address = reg, \ 682 .modified = 1, \ 683 .channel2 = IIO_MOD_##axis, \ 684 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 685 BIT(IIO_CHAN_INFO_CALIBBIAS), \ 686 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 687 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 688 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ 689 .info_mask_shared_by_type_available = \ 690 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 691 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \ 692 .scan_index = index, \ 693 .scan_type = { \ 694 .sign = 's', \ 695 .realbits = 20, \ 696 .storagebits = 32, \ 697 .shift = 4, \ 698 .endianness = IIO_BE, \ 699 } \ 700 } 701 702 static const struct iio_chan_spec adxl355_channels[] = { 703 ADXL355_ACCEL_CHANNEL(0, chan_x, X), 704 ADXL355_ACCEL_CHANNEL(1, chan_y, Y), 705 ADXL355_ACCEL_CHANNEL(2, chan_z, Z), 706 { 707 .type = IIO_TEMP, 708 .address = ADXL355_TEMP2_REG, 709 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 710 BIT(IIO_CHAN_INFO_SCALE) | 711 BIT(IIO_CHAN_INFO_OFFSET), 712 .scan_index = 3, 713 .scan_type = { 714 .sign = 's', 715 .realbits = 12, 716 .storagebits = 16, 717 .endianness = IIO_BE, 718 }, 719 }, 720 IIO_CHAN_SOFT_TIMESTAMP(4), 721 }; 722 723 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq) 724 { 725 struct adxl355_data *data = iio_priv(indio_dev); 726 int ret; 727 728 data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d", 729 indio_dev->name, 730 iio_device_id(indio_dev)); 731 if (!data->dready_trig) 732 return -ENOMEM; 733 734 data->dready_trig->ops = &adxl355_trigger_ops; 735 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 736 737 ret = devm_request_irq(data->dev, irq, 738 &iio_trigger_generic_data_rdy_poll, 739 IRQF_ONESHOT, "adxl355_irq", data->dready_trig); 740 if (ret) 741 return dev_err_probe(data->dev, ret, "request irq %d failed\n", 742 irq); 743 744 ret = devm_iio_trigger_register(data->dev, data->dready_trig); 745 if (ret) { 746 dev_err(data->dev, "iio trigger register failed\n"); 747 return ret; 748 } 749 750 indio_dev->trig = iio_trigger_get(data->dready_trig); 751 752 return 0; 753 } 754 755 int adxl355_core_probe(struct device *dev, struct regmap *regmap, 756 const struct adxl355_chip_info *chip_info) 757 { 758 struct adxl355_data *data; 759 struct iio_dev *indio_dev; 760 int ret; 761 int irq; 762 763 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 764 if (!indio_dev) 765 return -ENOMEM; 766 767 data = iio_priv(indio_dev); 768 data->regmap = regmap; 769 data->dev = dev; 770 data->op_mode = ADXL355_STANDBY; 771 data->chip_info = chip_info; 772 mutex_init(&data->lock); 773 774 indio_dev->name = chip_info->name; 775 indio_dev->info = &adxl355_info; 776 indio_dev->modes = INDIO_DIRECT_MODE; 777 indio_dev->channels = adxl355_channels; 778 indio_dev->num_channels = ARRAY_SIZE(adxl355_channels); 779 indio_dev->available_scan_masks = adxl355_avail_scan_masks; 780 781 ret = adxl355_setup(data); 782 if (ret) { 783 dev_err(dev, "ADXL355 setup failed\n"); 784 return ret; 785 } 786 787 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, 788 &iio_pollfunc_store_time, 789 &adxl355_trigger_handler, NULL); 790 if (ret) { 791 dev_err(dev, "iio triggered buffer setup failed\n"); 792 return ret; 793 } 794 795 irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY"); 796 if (irq > 0) { 797 ret = adxl355_probe_trigger(indio_dev, irq); 798 if (ret) 799 return ret; 800 } 801 802 return devm_iio_device_register(dev, indio_dev); 803 } 804 EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355); 805 806 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>"); 807 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver"); 808 MODULE_LICENSE("GPL v2"); 809