xref: /linux/drivers/i3c/master/svc-i3c-master.c (revision c02ce1735b150cf7c3b43790b48e23dcd17c0d46)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7  * Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36 
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57 
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83 
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86 						       ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107 
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110 
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120 
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124 
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127 
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 
131 #define SVC_I3C_EVENT_IBI	BIT(0)
132 #define SVC_I3C_EVENT_HOTJOIN	BIT(1)
133 
134 struct svc_i3c_cmd {
135 	u8 addr;
136 	bool rnw;
137 	u8 *in;
138 	const void *out;
139 	unsigned int len;
140 	unsigned int actual_len;
141 	struct i3c_priv_xfer *xfer;
142 	bool continued;
143 };
144 
145 struct svc_i3c_xfer {
146 	struct list_head node;
147 	struct completion comp;
148 	int ret;
149 	unsigned int type;
150 	unsigned int ncmds;
151 	struct svc_i3c_cmd cmds[] __counted_by(ncmds);
152 };
153 
154 struct svc_i3c_regs_save {
155 	u32 mconfig;
156 	u32 mdynaddr;
157 };
158 
159 /**
160  * struct svc_i3c_master - Silvaco I3C Master structure
161  * @base: I3C master controller
162  * @dev: Corresponding device
163  * @regs: Memory mapping
164  * @saved_regs: Volatile values for PM operations
165  * @free_slots: Bit array of available slots
166  * @addrs: Array containing the dynamic addresses of each attached device
167  * @descs: Array of descriptors, one per attached device
168  * @hj_work: Hot-join work
169  * @ibi_work: IBI work
170  * @irq: Main interrupt
171  * @pclk: System clock
172  * @fclk: Fast clock (bus)
173  * @sclk: Slow clock (other events)
174  * @xferqueue: Transfer queue structure
175  * @xferqueue.list: List member
176  * @xferqueue.cur: Current ongoing transfer
177  * @xferqueue.lock: Queue lock
178  * @ibi: IBI structure
179  * @ibi.num_slots: Number of slots available in @ibi.slots
180  * @ibi.slots: Available IBI slots
181  * @ibi.tbq_slot: To be queued IBI slot
182  * @ibi.lock: IBI lock
183  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
184  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
185  */
186 struct svc_i3c_master {
187 	struct i3c_master_controller base;
188 	struct device *dev;
189 	void __iomem *regs;
190 	struct svc_i3c_regs_save saved_regs;
191 	u32 free_slots;
192 	u8 addrs[SVC_I3C_MAX_DEVS];
193 	struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
194 	struct work_struct hj_work;
195 	struct work_struct ibi_work;
196 	int irq;
197 	struct clk *pclk;
198 	struct clk *fclk;
199 	struct clk *sclk;
200 	struct {
201 		struct list_head list;
202 		struct svc_i3c_xfer *cur;
203 		/* Prevent races between transfers */
204 		spinlock_t lock;
205 	} xferqueue;
206 	struct {
207 		unsigned int num_slots;
208 		struct i3c_dev_desc **slots;
209 		struct i3c_ibi_slot *tbq_slot;
210 		/* Prevent races within IBI handlers */
211 		spinlock_t lock;
212 	} ibi;
213 	struct mutex lock;
214 	int enabled_events;
215 };
216 
217 /**
218  * struct svc_i3c_i2c_dev_data - Device specific data
219  * @index: Index in the master tables corresponding to this device
220  * @ibi: IBI slot index in the master structure
221  * @ibi_pool: IBI pool associated to this device
222  */
223 struct svc_i3c_i2c_dev_data {
224 	u8 index;
225 	int ibi;
226 	struct i3c_generic_ibi_pool *ibi_pool;
227 };
228 
229 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
230 {
231 	return !!(master->enabled_events & mask);
232 }
233 
234 static bool svc_i3c_master_error(struct svc_i3c_master *master)
235 {
236 	u32 mstatus, merrwarn;
237 
238 	mstatus = readl(master->regs + SVC_I3C_MSTATUS);
239 	if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
240 		merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
241 		writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
242 
243 		/* Ignore timeout error */
244 		if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
245 			dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
246 				mstatus, merrwarn);
247 			return false;
248 		}
249 
250 		dev_err(master->dev,
251 			"Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
252 			mstatus, merrwarn);
253 
254 		return true;
255 	}
256 
257 	return false;
258 }
259 
260 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
261 {
262 	writel(mask, master->regs + SVC_I3C_MINTSET);
263 }
264 
265 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
266 {
267 	u32 mask = readl(master->regs + SVC_I3C_MINTSET);
268 
269 	writel(mask, master->regs + SVC_I3C_MINTCLR);
270 }
271 
272 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
273 {
274 	/* Clear pending warnings */
275 	writel(readl(master->regs + SVC_I3C_MERRWARN),
276 	       master->regs + SVC_I3C_MERRWARN);
277 }
278 
279 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
280 {
281 	/* Flush FIFOs */
282 	writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
283 	       master->regs + SVC_I3C_MDATACTRL);
284 }
285 
286 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
287 {
288 	u32 reg;
289 
290 	/* Set RX and TX tigger levels, flush FIFOs */
291 	reg = SVC_I3C_MDATACTRL_FLUSHTB |
292 	      SVC_I3C_MDATACTRL_FLUSHRB |
293 	      SVC_I3C_MDATACTRL_UNLOCK_TRIG |
294 	      SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
295 	      SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
296 	writel(reg, master->regs + SVC_I3C_MDATACTRL);
297 }
298 
299 static void svc_i3c_master_reset(struct svc_i3c_master *master)
300 {
301 	svc_i3c_master_clear_merrwarn(master);
302 	svc_i3c_master_reset_fifo_trigger(master);
303 	svc_i3c_master_disable_interrupts(master);
304 }
305 
306 static inline struct svc_i3c_master *
307 to_svc_i3c_master(struct i3c_master_controller *master)
308 {
309 	return container_of(master, struct svc_i3c_master, base);
310 }
311 
312 static void svc_i3c_master_hj_work(struct work_struct *work)
313 {
314 	struct svc_i3c_master *master;
315 
316 	master = container_of(work, struct svc_i3c_master, hj_work);
317 	i3c_master_do_daa(&master->base);
318 }
319 
320 static struct i3c_dev_desc *
321 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
322 			     unsigned int ibiaddr)
323 {
324 	int i;
325 
326 	for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
327 		if (master->addrs[i] == ibiaddr)
328 			break;
329 
330 	if (i == SVC_I3C_MAX_DEVS)
331 		return NULL;
332 
333 	return master->descs[i];
334 }
335 
336 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
337 {
338 	writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
339 
340 	/*
341 	 * This delay is necessary after the emission of a stop, otherwise eg.
342 	 * repeating IBIs do not get detected. There is a note in the manual
343 	 * about it, stating that the stop condition might not be settled
344 	 * correctly if a start condition follows too rapidly.
345 	 */
346 	udelay(1);
347 }
348 
349 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
350 				     struct i3c_dev_desc *dev)
351 {
352 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
353 	struct i3c_ibi_slot *slot;
354 	unsigned int count;
355 	u32 mdatactrl;
356 	int ret, val;
357 	u8 *buf;
358 
359 	slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
360 	if (!slot)
361 		return -ENOSPC;
362 
363 	slot->len = 0;
364 	buf = slot->data;
365 
366 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
367 						SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
368 	if (ret) {
369 		dev_err(master->dev, "Timeout when polling for COMPLETE\n");
370 		return ret;
371 	}
372 
373 	while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
374 	       slot->len < SVC_I3C_FIFO_SIZE) {
375 		mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
376 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
377 		readsl(master->regs + SVC_I3C_MRDATAB, buf, count);
378 		slot->len += count;
379 		buf += count;
380 	}
381 
382 	master->ibi.tbq_slot = slot;
383 
384 	return 0;
385 }
386 
387 static void svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
388 				   bool mandatory_byte)
389 {
390 	unsigned int ibi_ack_nack;
391 
392 	ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
393 	if (mandatory_byte)
394 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
395 	else
396 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
397 
398 	writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
399 }
400 
401 static void svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
402 {
403 	writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
404 	       SVC_I3C_MCTRL_IBIRESP_NACK,
405 	       master->regs + SVC_I3C_MCTRL);
406 }
407 
408 static void svc_i3c_master_ibi_work(struct work_struct *work)
409 {
410 	struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
411 	struct svc_i3c_i2c_dev_data *data;
412 	unsigned int ibitype, ibiaddr;
413 	struct i3c_dev_desc *dev;
414 	u32 status, val;
415 	int ret;
416 
417 	mutex_lock(&master->lock);
418 	/* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
419 	writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
420 	       SVC_I3C_MCTRL_IBIRESP_AUTO,
421 	       master->regs + SVC_I3C_MCTRL);
422 
423 	/* Wait for IBIWON, should take approximately 100us */
424 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
425 					 SVC_I3C_MSTATUS_IBIWON(val), 0, 1000);
426 	if (ret) {
427 		dev_err(master->dev, "Timeout when polling for IBIWON\n");
428 		svc_i3c_master_emit_stop(master);
429 		goto reenable_ibis;
430 	}
431 
432 	/* Clear the interrupt status */
433 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
434 
435 	status = readl(master->regs + SVC_I3C_MSTATUS);
436 	ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
437 	ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
438 
439 	/* Handle the critical responses to IBI's */
440 	switch (ibitype) {
441 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
442 		dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
443 		if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
444 			svc_i3c_master_nack_ibi(master);
445 		else
446 			svc_i3c_master_handle_ibi(master, dev);
447 		break;
448 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
449 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
450 			svc_i3c_master_ack_ibi(master, false);
451 		else
452 			svc_i3c_master_nack_ibi(master);
453 		break;
454 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
455 		svc_i3c_master_nack_ibi(master);
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	/*
462 	 * If an error happened, we probably got interrupted and the exchange
463 	 * timedout. In this case we just drop everything, emit a stop and wait
464 	 * for the slave to interrupt again.
465 	 */
466 	if (svc_i3c_master_error(master)) {
467 		if (master->ibi.tbq_slot) {
468 			data = i3c_dev_get_master_data(dev);
469 			i3c_generic_ibi_recycle_slot(data->ibi_pool,
470 						     master->ibi.tbq_slot);
471 			master->ibi.tbq_slot = NULL;
472 		}
473 
474 		svc_i3c_master_emit_stop(master);
475 
476 		goto reenable_ibis;
477 	}
478 
479 	/* Handle the non critical tasks */
480 	switch (ibitype) {
481 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
482 		if (dev) {
483 			i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
484 			master->ibi.tbq_slot = NULL;
485 		}
486 		svc_i3c_master_emit_stop(master);
487 		break;
488 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
489 		svc_i3c_master_emit_stop(master);
490 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
491 			queue_work(master->base.wq, &master->hj_work);
492 		break;
493 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
494 	default:
495 		break;
496 	}
497 
498 reenable_ibis:
499 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
500 	mutex_unlock(&master->lock);
501 }
502 
503 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
504 {
505 	struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
506 	u32 active = readl(master->regs + SVC_I3C_MSTATUS);
507 
508 	if (!SVC_I3C_MSTATUS_SLVSTART(active))
509 		return IRQ_NONE;
510 
511 	/* Clear the interrupt status */
512 	writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
513 
514 	svc_i3c_master_disable_interrupts(master);
515 
516 	/* Handle the interrupt in a non atomic context */
517 	queue_work(master->base.wq, &master->ibi_work);
518 
519 	return IRQ_HANDLED;
520 }
521 
522 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
523 {
524 	struct svc_i3c_master *master = to_svc_i3c_master(m);
525 	struct i3c_bus *bus = i3c_master_get_bus(m);
526 	struct i3c_device_info info = {};
527 	unsigned long fclk_rate, fclk_period_ns;
528 	unsigned int high_period_ns, od_low_period_ns;
529 	u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
530 	int ret;
531 
532 	ret = pm_runtime_resume_and_get(master->dev);
533 	if (ret < 0) {
534 		dev_err(master->dev,
535 			"<%s> cannot resume i3c bus master, err: %d\n",
536 			__func__, ret);
537 		return ret;
538 	}
539 
540 	/* Timings derivation */
541 	fclk_rate = clk_get_rate(master->fclk);
542 	if (!fclk_rate) {
543 		ret = -EINVAL;
544 		goto rpm_out;
545 	}
546 
547 	fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
548 
549 	/*
550 	 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
551 	 * Simplest configuration is using a 50% duty-cycle of 40ns.
552 	 */
553 	ppbaud = DIV_ROUND_UP(40, fclk_period_ns) - 1;
554 	pplow = 0;
555 
556 	/*
557 	 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
558 	 * duty-cycle tuned so that high levels are filetered out by
559 	 * the 50ns filter (target being 40ns).
560 	 */
561 	odhpp = 1;
562 	high_period_ns = (ppbaud + 1) * fclk_period_ns;
563 	odbaud = DIV_ROUND_UP(240 - high_period_ns, high_period_ns) - 1;
564 	od_low_period_ns = (odbaud + 1) * high_period_ns;
565 
566 	switch (bus->mode) {
567 	case I3C_BUS_MODE_PURE:
568 		i2cbaud = 0;
569 		odstop = 0;
570 		break;
571 	case I3C_BUS_MODE_MIXED_FAST:
572 	case I3C_BUS_MODE_MIXED_LIMITED:
573 		/*
574 		 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
575 		 * between the high and low period does not really matter.
576 		 */
577 		i2cbaud = DIV_ROUND_UP(1000, od_low_period_ns) - 2;
578 		odstop = 1;
579 		break;
580 	case I3C_BUS_MODE_MIXED_SLOW:
581 		/*
582 		 * Using I2C Fm mode, target is 0.4MHz/2500ns, with the same
583 		 * constraints as the FM+ mode.
584 		 */
585 		i2cbaud = DIV_ROUND_UP(2500, od_low_period_ns) - 2;
586 		odstop = 1;
587 		break;
588 	default:
589 		goto rpm_out;
590 	}
591 
592 	reg = SVC_I3C_MCONFIG_MASTER_EN |
593 	      SVC_I3C_MCONFIG_DISTO(0) |
594 	      SVC_I3C_MCONFIG_HKEEP(0) |
595 	      SVC_I3C_MCONFIG_ODSTOP(odstop) |
596 	      SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
597 	      SVC_I3C_MCONFIG_PPLOW(pplow) |
598 	      SVC_I3C_MCONFIG_ODBAUD(odbaud) |
599 	      SVC_I3C_MCONFIG_ODHPP(odhpp) |
600 	      SVC_I3C_MCONFIG_SKEW(0) |
601 	      SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
602 	writel(reg, master->regs + SVC_I3C_MCONFIG);
603 
604 	/* Master core's registration */
605 	ret = i3c_master_get_free_addr(m, 0);
606 	if (ret < 0)
607 		goto rpm_out;
608 
609 	info.dyn_addr = ret;
610 
611 	writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
612 	       master->regs + SVC_I3C_MDYNADDR);
613 
614 	ret = i3c_master_set_info(&master->base, &info);
615 	if (ret)
616 		goto rpm_out;
617 
618 rpm_out:
619 	pm_runtime_mark_last_busy(master->dev);
620 	pm_runtime_put_autosuspend(master->dev);
621 
622 	return ret;
623 }
624 
625 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
626 {
627 	struct svc_i3c_master *master = to_svc_i3c_master(m);
628 	int ret;
629 
630 	ret = pm_runtime_resume_and_get(master->dev);
631 	if (ret < 0) {
632 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
633 		return;
634 	}
635 
636 	svc_i3c_master_disable_interrupts(master);
637 
638 	/* Disable master */
639 	writel(0, master->regs + SVC_I3C_MCONFIG);
640 
641 	pm_runtime_mark_last_busy(master->dev);
642 	pm_runtime_put_autosuspend(master->dev);
643 }
644 
645 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
646 {
647 	unsigned int slot;
648 
649 	if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
650 		return -ENOSPC;
651 
652 	slot = ffs(master->free_slots) - 1;
653 
654 	master->free_slots &= ~BIT(slot);
655 
656 	return slot;
657 }
658 
659 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
660 					unsigned int slot)
661 {
662 	master->free_slots |= BIT(slot);
663 }
664 
665 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
666 {
667 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
668 	struct svc_i3c_master *master = to_svc_i3c_master(m);
669 	struct svc_i3c_i2c_dev_data *data;
670 	int slot;
671 
672 	slot = svc_i3c_master_reserve_slot(master);
673 	if (slot < 0)
674 		return slot;
675 
676 	data = kzalloc(sizeof(*data), GFP_KERNEL);
677 	if (!data) {
678 		svc_i3c_master_release_slot(master, slot);
679 		return -ENOMEM;
680 	}
681 
682 	data->ibi = -1;
683 	data->index = slot;
684 	master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
685 						   dev->info.static_addr;
686 	master->descs[slot] = dev;
687 
688 	i3c_dev_set_master_data(dev, data);
689 
690 	return 0;
691 }
692 
693 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
694 					   u8 old_dyn_addr)
695 {
696 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
697 	struct svc_i3c_master *master = to_svc_i3c_master(m);
698 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
699 
700 	master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
701 							  dev->info.static_addr;
702 
703 	return 0;
704 }
705 
706 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
707 {
708 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
709 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
710 	struct svc_i3c_master *master = to_svc_i3c_master(m);
711 
712 	master->addrs[data->index] = 0;
713 	svc_i3c_master_release_slot(master, data->index);
714 
715 	kfree(data);
716 }
717 
718 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
719 {
720 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
721 	struct svc_i3c_master *master = to_svc_i3c_master(m);
722 	struct svc_i3c_i2c_dev_data *data;
723 	int slot;
724 
725 	slot = svc_i3c_master_reserve_slot(master);
726 	if (slot < 0)
727 		return slot;
728 
729 	data = kzalloc(sizeof(*data), GFP_KERNEL);
730 	if (!data) {
731 		svc_i3c_master_release_slot(master, slot);
732 		return -ENOMEM;
733 	}
734 
735 	data->index = slot;
736 	master->addrs[slot] = dev->addr;
737 
738 	i2c_dev_set_master_data(dev, data);
739 
740 	return 0;
741 }
742 
743 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
744 {
745 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
746 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
747 	struct svc_i3c_master *master = to_svc_i3c_master(m);
748 
749 	svc_i3c_master_release_slot(master, data->index);
750 
751 	kfree(data);
752 }
753 
754 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
755 				unsigned int len)
756 {
757 	int ret, i;
758 	u32 reg;
759 
760 	for (i = 0; i < len; i++) {
761 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
762 						reg,
763 						SVC_I3C_MSTATUS_RXPEND(reg),
764 						0, 1000);
765 		if (ret)
766 			return ret;
767 
768 		dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
769 	}
770 
771 	return 0;
772 }
773 
774 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
775 					u8 *addrs, unsigned int *count)
776 {
777 	u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
778 	unsigned int dev_nb = 0, last_addr = 0;
779 	u32 reg;
780 	int ret, i;
781 
782 	while (true) {
783 		/* Enter/proceed with DAA */
784 		writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
785 		       SVC_I3C_MCTRL_TYPE_I3C |
786 		       SVC_I3C_MCTRL_IBIRESP_NACK |
787 		       SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
788 		       master->regs + SVC_I3C_MCTRL);
789 
790 		/*
791 		 * Either one slave will send its ID, or the assignment process
792 		 * is done.
793 		 */
794 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
795 						reg,
796 						SVC_I3C_MSTATUS_RXPEND(reg) |
797 						SVC_I3C_MSTATUS_MCTRLDONE(reg),
798 						1, 1000);
799 		if (ret)
800 			return ret;
801 
802 		if (SVC_I3C_MSTATUS_RXPEND(reg)) {
803 			u8 data[6];
804 
805 			/*
806 			 * We only care about the 48-bit provisioned ID yet to
807 			 * be sure a device does not nack an address twice.
808 			 * Otherwise, we would just need to flush the RX FIFO.
809 			 */
810 			ret = svc_i3c_master_readb(master, data, 6);
811 			if (ret)
812 				return ret;
813 
814 			for (i = 0; i < 6; i++)
815 				prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
816 
817 			/* We do not care about the BCR and DCR yet */
818 			ret = svc_i3c_master_readb(master, data, 2);
819 			if (ret)
820 				return ret;
821 		} else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
822 			if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
823 			    SVC_I3C_MSTATUS_COMPLETE(reg)) {
824 				/*
825 				 * All devices received and acked they dynamic
826 				 * address, this is the natural end of the DAA
827 				 * procedure.
828 				 */
829 				break;
830 			} else if (SVC_I3C_MSTATUS_NACKED(reg)) {
831 				/* No I3C devices attached */
832 				if (dev_nb == 0)
833 					break;
834 
835 				/*
836 				 * A slave device nacked the address, this is
837 				 * allowed only once, DAA will be stopped and
838 				 * then resumed. The same device is supposed to
839 				 * answer again immediately and shall ack the
840 				 * address this time.
841 				 */
842 				if (prov_id[dev_nb] == nacking_prov_id)
843 					return -EIO;
844 
845 				dev_nb--;
846 				nacking_prov_id = prov_id[dev_nb];
847 				svc_i3c_master_emit_stop(master);
848 
849 				continue;
850 			} else {
851 				return -EIO;
852 			}
853 		}
854 
855 		/* Wait for the slave to be ready to receive its address */
856 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
857 						reg,
858 						SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
859 						SVC_I3C_MSTATUS_STATE_DAA(reg) &&
860 						SVC_I3C_MSTATUS_BETWEEN(reg),
861 						0, 1000);
862 		if (ret)
863 			return ret;
864 
865 		/* Give the slave device a suitable dynamic address */
866 		ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
867 		if (ret < 0)
868 			return ret;
869 
870 		addrs[dev_nb] = ret;
871 		dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
872 			dev_nb, addrs[dev_nb]);
873 
874 		writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
875 		last_addr = addrs[dev_nb++];
876 	}
877 
878 	*count = dev_nb;
879 
880 	return 0;
881 }
882 
883 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
884 {
885 	struct i3c_dev_desc *dev;
886 	u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
887 	unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
888 		nobyte_addr_ko = 0;
889 	bool list_mbyte = false, list_nobyte = false;
890 
891 	/* Create the IBIRULES register for both cases */
892 	i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
893 		if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER)
894 			continue;
895 
896 		if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
897 			reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
898 							   dev->info.dyn_addr);
899 
900 			/* IBI rules cannot be applied to devices with MSb=1 */
901 			if (dev->info.dyn_addr & BIT(7))
902 				mbyte_addr_ko++;
903 			else
904 				mbyte_addr_ok++;
905 		} else {
906 			reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
907 							    dev->info.dyn_addr);
908 
909 			/* IBI rules cannot be applied to devices with MSb=1 */
910 			if (dev->info.dyn_addr & BIT(7))
911 				nobyte_addr_ko++;
912 			else
913 				nobyte_addr_ok++;
914 		}
915 	}
916 
917 	/* Device list cannot be handled by hardware */
918 	if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
919 		list_mbyte = true;
920 
921 	if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
922 		list_nobyte = true;
923 
924 	/* No list can be properly handled, return an error */
925 	if (!list_mbyte && !list_nobyte)
926 		return -ERANGE;
927 
928 	/* Pick the first list that can be handled by hardware, randomly */
929 	if (list_mbyte)
930 		writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
931 	else
932 		writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
933 
934 	return 0;
935 }
936 
937 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
938 {
939 	struct svc_i3c_master *master = to_svc_i3c_master(m);
940 	u8 addrs[SVC_I3C_MAX_DEVS];
941 	unsigned long flags;
942 	unsigned int dev_nb;
943 	int ret, i;
944 
945 	ret = pm_runtime_resume_and_get(master->dev);
946 	if (ret < 0) {
947 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
948 		return ret;
949 	}
950 
951 	spin_lock_irqsave(&master->xferqueue.lock, flags);
952 	ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
953 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
954 	if (ret) {
955 		svc_i3c_master_emit_stop(master);
956 		svc_i3c_master_clear_merrwarn(master);
957 		goto rpm_out;
958 	}
959 
960 	/* Register all devices who participated to the core */
961 	for (i = 0; i < dev_nb; i++) {
962 		ret = i3c_master_add_i3c_dev_locked(m, addrs[i]);
963 		if (ret)
964 			goto rpm_out;
965 	}
966 
967 	/* Configure IBI auto-rules */
968 	ret = svc_i3c_update_ibirules(master);
969 	if (ret)
970 		dev_err(master->dev, "Cannot handle such a list of devices");
971 
972 rpm_out:
973 	pm_runtime_mark_last_busy(master->dev);
974 	pm_runtime_put_autosuspend(master->dev);
975 
976 	return ret;
977 }
978 
979 static int svc_i3c_master_read(struct svc_i3c_master *master,
980 			       u8 *in, unsigned int len)
981 {
982 	int offset = 0, i;
983 	u32 mdctrl, mstatus;
984 	bool completed = false;
985 	unsigned int count;
986 	unsigned long start = jiffies;
987 
988 	while (!completed) {
989 		mstatus = readl(master->regs + SVC_I3C_MSTATUS);
990 		if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
991 			completed = true;
992 
993 		if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
994 			dev_dbg(master->dev, "I3C read timeout\n");
995 			return -ETIMEDOUT;
996 		}
997 
998 		mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
999 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1000 		if (offset + count > len) {
1001 			dev_err(master->dev, "I3C receive length too long!\n");
1002 			return -EINVAL;
1003 		}
1004 		for (i = 0; i < count; i++)
1005 			in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1006 
1007 		offset += count;
1008 	}
1009 
1010 	return offset;
1011 }
1012 
1013 static int svc_i3c_master_write(struct svc_i3c_master *master,
1014 				const u8 *out, unsigned int len)
1015 {
1016 	int offset = 0, ret;
1017 	u32 mdctrl;
1018 
1019 	while (offset < len) {
1020 		ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1021 					 mdctrl,
1022 					 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1023 					 0, 1000);
1024 		if (ret)
1025 			return ret;
1026 
1027 		/*
1028 		 * The last byte to be sent over the bus must either have the
1029 		 * "end" bit set or be written in MWDATABE.
1030 		 */
1031 		if (likely(offset < (len - 1)))
1032 			writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1033 		else
1034 			writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1041 			       bool rnw, unsigned int xfer_type, u8 addr,
1042 			       u8 *in, const u8 *out, unsigned int xfer_len,
1043 			       unsigned int *actual_len, bool continued)
1044 {
1045 	u32 reg;
1046 	int ret;
1047 
1048 	/* clean SVC_I3C_MINT_IBIWON w1c bits */
1049 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1050 
1051 	writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1052 	       xfer_type |
1053 	       SVC_I3C_MCTRL_IBIRESP_NACK |
1054 	       SVC_I3C_MCTRL_DIR(rnw) |
1055 	       SVC_I3C_MCTRL_ADDR(addr) |
1056 	       SVC_I3C_MCTRL_RDTERM(*actual_len),
1057 	       master->regs + SVC_I3C_MCTRL);
1058 
1059 	ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1060 				 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1061 	if (ret)
1062 		goto emit_stop;
1063 
1064 	if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1065 		ret = -ENXIO;
1066 		*actual_len = 0;
1067 		goto emit_stop;
1068 	}
1069 
1070 	/*
1071 	 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a Frame
1072 	 * with I3C Target Address.
1073 	 *
1074 	 * The I3C Controller normally should start a Frame, the Address may be arbitrated, and so
1075 	 * the Controller shall monitor to see whether an In-Band Interrupt request, a Controller
1076 	 * Role Request (i.e., Secondary Controller requests to become the Active Controller), or
1077 	 * a Hot-Join Request has been made.
1078 	 *
1079 	 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, return failure
1080 	 * and yield the above events handler.
1081 	 */
1082 	if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1083 		ret = -ENXIO;
1084 		*actual_len = 0;
1085 		goto emit_stop;
1086 	}
1087 
1088 	if (rnw)
1089 		ret = svc_i3c_master_read(master, in, xfer_len);
1090 	else
1091 		ret = svc_i3c_master_write(master, out, xfer_len);
1092 	if (ret < 0)
1093 		goto emit_stop;
1094 
1095 	if (rnw)
1096 		*actual_len = ret;
1097 
1098 	ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1099 				 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1100 	if (ret)
1101 		goto emit_stop;
1102 
1103 	writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1104 
1105 	if (!continued) {
1106 		svc_i3c_master_emit_stop(master);
1107 
1108 		/* Wait idle if stop is sent. */
1109 		readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1110 				   SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1111 	}
1112 
1113 	return 0;
1114 
1115 emit_stop:
1116 	svc_i3c_master_emit_stop(master);
1117 	svc_i3c_master_clear_merrwarn(master);
1118 
1119 	return ret;
1120 }
1121 
1122 static struct svc_i3c_xfer *
1123 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1124 {
1125 	struct svc_i3c_xfer *xfer;
1126 
1127 	xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1128 	if (!xfer)
1129 		return NULL;
1130 
1131 	INIT_LIST_HEAD(&xfer->node);
1132 	xfer->ncmds = ncmds;
1133 	xfer->ret = -ETIMEDOUT;
1134 
1135 	return xfer;
1136 }
1137 
1138 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1139 {
1140 	kfree(xfer);
1141 }
1142 
1143 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1144 					       struct svc_i3c_xfer *xfer)
1145 {
1146 	if (master->xferqueue.cur == xfer)
1147 		master->xferqueue.cur = NULL;
1148 	else
1149 		list_del_init(&xfer->node);
1150 }
1151 
1152 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1153 					struct svc_i3c_xfer *xfer)
1154 {
1155 	unsigned long flags;
1156 
1157 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1158 	svc_i3c_master_dequeue_xfer_locked(master, xfer);
1159 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1160 }
1161 
1162 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1163 {
1164 	struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1165 	int ret, i;
1166 
1167 	if (!xfer)
1168 		return;
1169 
1170 	svc_i3c_master_clear_merrwarn(master);
1171 	svc_i3c_master_flush_fifo(master);
1172 
1173 	for (i = 0; i < xfer->ncmds; i++) {
1174 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1175 
1176 		ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1177 					  cmd->addr, cmd->in, cmd->out,
1178 					  cmd->len, &cmd->actual_len,
1179 					  cmd->continued);
1180 		/* cmd->xfer is NULL if I2C or CCC transfer */
1181 		if (cmd->xfer)
1182 			cmd->xfer->actual_len = cmd->actual_len;
1183 
1184 		if (ret)
1185 			break;
1186 	}
1187 
1188 	xfer->ret = ret;
1189 	complete(&xfer->comp);
1190 
1191 	if (ret < 0)
1192 		svc_i3c_master_dequeue_xfer_locked(master, xfer);
1193 
1194 	xfer = list_first_entry_or_null(&master->xferqueue.list,
1195 					struct svc_i3c_xfer,
1196 					node);
1197 	if (xfer)
1198 		list_del_init(&xfer->node);
1199 
1200 	master->xferqueue.cur = xfer;
1201 	svc_i3c_master_start_xfer_locked(master);
1202 }
1203 
1204 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1205 					struct svc_i3c_xfer *xfer)
1206 {
1207 	unsigned long flags;
1208 	int ret;
1209 
1210 	ret = pm_runtime_resume_and_get(master->dev);
1211 	if (ret < 0) {
1212 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1213 		return;
1214 	}
1215 
1216 	init_completion(&xfer->comp);
1217 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1218 	if (master->xferqueue.cur) {
1219 		list_add_tail(&xfer->node, &master->xferqueue.list);
1220 	} else {
1221 		master->xferqueue.cur = xfer;
1222 		svc_i3c_master_start_xfer_locked(master);
1223 	}
1224 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1225 
1226 	pm_runtime_mark_last_busy(master->dev);
1227 	pm_runtime_put_autosuspend(master->dev);
1228 }
1229 
1230 static bool
1231 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1232 				const struct i3c_ccc_cmd *cmd)
1233 {
1234 	/* No software support for CCC commands targeting more than one slave */
1235 	return (cmd->ndests == 1);
1236 }
1237 
1238 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1239 					      struct i3c_ccc_cmd *ccc)
1240 {
1241 	unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1242 	struct svc_i3c_xfer *xfer;
1243 	struct svc_i3c_cmd *cmd;
1244 	u8 *buf;
1245 	int ret;
1246 
1247 	xfer = svc_i3c_master_alloc_xfer(master, 1);
1248 	if (!xfer)
1249 		return -ENOMEM;
1250 
1251 	buf = kmalloc(xfer_len, GFP_KERNEL);
1252 	if (!buf) {
1253 		svc_i3c_master_free_xfer(xfer);
1254 		return -ENOMEM;
1255 	}
1256 
1257 	buf[0] = ccc->id;
1258 	memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1259 
1260 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1261 
1262 	cmd = &xfer->cmds[0];
1263 	cmd->addr = ccc->dests[0].addr;
1264 	cmd->rnw = ccc->rnw;
1265 	cmd->in = NULL;
1266 	cmd->out = buf;
1267 	cmd->len = xfer_len;
1268 	cmd->actual_len = 0;
1269 	cmd->continued = false;
1270 
1271 	mutex_lock(&master->lock);
1272 	svc_i3c_master_enqueue_xfer(master, xfer);
1273 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1274 		svc_i3c_master_dequeue_xfer(master, xfer);
1275 	mutex_unlock(&master->lock);
1276 
1277 	ret = xfer->ret;
1278 	kfree(buf);
1279 	svc_i3c_master_free_xfer(xfer);
1280 
1281 	return ret;
1282 }
1283 
1284 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1285 					      struct i3c_ccc_cmd *ccc)
1286 {
1287 	unsigned int xfer_len = ccc->dests[0].payload.len;
1288 	unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1289 	struct svc_i3c_xfer *xfer;
1290 	struct svc_i3c_cmd *cmd;
1291 	int ret;
1292 
1293 	xfer = svc_i3c_master_alloc_xfer(master, 2);
1294 	if (!xfer)
1295 		return -ENOMEM;
1296 
1297 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1298 
1299 	/* Broadcasted message */
1300 	cmd = &xfer->cmds[0];
1301 	cmd->addr = I3C_BROADCAST_ADDR;
1302 	cmd->rnw = 0;
1303 	cmd->in = NULL;
1304 	cmd->out = &ccc->id;
1305 	cmd->len = 1;
1306 	cmd->actual_len = 0;
1307 	cmd->continued = true;
1308 
1309 	/* Directed message */
1310 	cmd = &xfer->cmds[1];
1311 	cmd->addr = ccc->dests[0].addr;
1312 	cmd->rnw = ccc->rnw;
1313 	cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1314 	cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data,
1315 	cmd->len = xfer_len;
1316 	cmd->actual_len = actual_len;
1317 	cmd->continued = false;
1318 
1319 	mutex_lock(&master->lock);
1320 	svc_i3c_master_enqueue_xfer(master, xfer);
1321 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1322 		svc_i3c_master_dequeue_xfer(master, xfer);
1323 	mutex_unlock(&master->lock);
1324 
1325 	if (cmd->actual_len != xfer_len)
1326 		ccc->dests[0].payload.len = cmd->actual_len;
1327 
1328 	ret = xfer->ret;
1329 	svc_i3c_master_free_xfer(xfer);
1330 
1331 	return ret;
1332 }
1333 
1334 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1335 				       struct i3c_ccc_cmd *cmd)
1336 {
1337 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1338 	bool broadcast = cmd->id < 0x80;
1339 	int ret;
1340 
1341 	if (broadcast)
1342 		ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1343 	else
1344 		ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1345 
1346 	if (ret)
1347 		cmd->err = I3C_ERROR_M2;
1348 
1349 	return ret;
1350 }
1351 
1352 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1353 				     struct i3c_priv_xfer *xfers,
1354 				     int nxfers)
1355 {
1356 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1357 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1358 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1359 	struct svc_i3c_xfer *xfer;
1360 	int ret, i;
1361 
1362 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1363 	if (!xfer)
1364 		return -ENOMEM;
1365 
1366 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1367 
1368 	for (i = 0; i < nxfers; i++) {
1369 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1370 
1371 		cmd->xfer = &xfers[i];
1372 		cmd->addr = master->addrs[data->index];
1373 		cmd->rnw = xfers[i].rnw;
1374 		cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1375 		cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1376 		cmd->len = xfers[i].len;
1377 		cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1378 		cmd->continued = (i + 1) < nxfers;
1379 	}
1380 
1381 	mutex_lock(&master->lock);
1382 	svc_i3c_master_enqueue_xfer(master, xfer);
1383 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1384 		svc_i3c_master_dequeue_xfer(master, xfer);
1385 	mutex_unlock(&master->lock);
1386 
1387 	ret = xfer->ret;
1388 	svc_i3c_master_free_xfer(xfer);
1389 
1390 	return ret;
1391 }
1392 
1393 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1394 				    const struct i2c_msg *xfers,
1395 				    int nxfers)
1396 {
1397 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
1398 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1399 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1400 	struct svc_i3c_xfer *xfer;
1401 	int ret, i;
1402 
1403 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1404 	if (!xfer)
1405 		return -ENOMEM;
1406 
1407 	xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1408 
1409 	for (i = 0; i < nxfers; i++) {
1410 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1411 
1412 		cmd->addr = master->addrs[data->index];
1413 		cmd->rnw = xfers[i].flags & I2C_M_RD;
1414 		cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1415 		cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1416 		cmd->len = xfers[i].len;
1417 		cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1418 		cmd->continued = (i + 1 < nxfers);
1419 	}
1420 
1421 	mutex_lock(&master->lock);
1422 	svc_i3c_master_enqueue_xfer(master, xfer);
1423 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1424 		svc_i3c_master_dequeue_xfer(master, xfer);
1425 	mutex_unlock(&master->lock);
1426 
1427 	ret = xfer->ret;
1428 	svc_i3c_master_free_xfer(xfer);
1429 
1430 	return ret;
1431 }
1432 
1433 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1434 				      const struct i3c_ibi_setup *req)
1435 {
1436 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1437 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1438 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1439 	unsigned long flags;
1440 	unsigned int i;
1441 
1442 	if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1443 		dev_err(master->dev, "IBI max payload %d should be < %d\n",
1444 			dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1445 		return -ERANGE;
1446 	}
1447 
1448 	data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1449 	if (IS_ERR(data->ibi_pool))
1450 		return PTR_ERR(data->ibi_pool);
1451 
1452 	spin_lock_irqsave(&master->ibi.lock, flags);
1453 	for (i = 0; i < master->ibi.num_slots; i++) {
1454 		if (!master->ibi.slots[i]) {
1455 			data->ibi = i;
1456 			master->ibi.slots[i] = dev;
1457 			break;
1458 		}
1459 	}
1460 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1461 
1462 	if (i < master->ibi.num_slots)
1463 		return 0;
1464 
1465 	i3c_generic_ibi_free_pool(data->ibi_pool);
1466 	data->ibi_pool = NULL;
1467 
1468 	return -ENOSPC;
1469 }
1470 
1471 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1472 {
1473 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1474 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1475 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&master->ibi.lock, flags);
1479 	master->ibi.slots[data->ibi] = NULL;
1480 	data->ibi = -1;
1481 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1482 
1483 	i3c_generic_ibi_free_pool(data->ibi_pool);
1484 }
1485 
1486 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1487 {
1488 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1489 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1490 	int ret;
1491 
1492 	ret = pm_runtime_resume_and_get(master->dev);
1493 	if (ret < 0) {
1494 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1495 		return ret;
1496 	}
1497 
1498 	master->enabled_events |= SVC_I3C_EVENT_IBI;
1499 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1500 
1501 	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1502 }
1503 
1504 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1505 {
1506 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1507 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1508 	int ret;
1509 
1510 	master->enabled_events &= ~SVC_I3C_EVENT_IBI;
1511 	if (!master->enabled_events)
1512 		svc_i3c_master_disable_interrupts(master);
1513 
1514 	ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1515 
1516 	pm_runtime_mark_last_busy(master->dev);
1517 	pm_runtime_put_autosuspend(master->dev);
1518 
1519 	return ret;
1520 }
1521 
1522 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1523 {
1524 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1525 	int ret;
1526 
1527 	ret = pm_runtime_resume_and_get(master->dev);
1528 	if (ret < 0) {
1529 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1530 		return ret;
1531 	}
1532 
1533 	master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1534 
1535 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1536 
1537 	return 0;
1538 }
1539 
1540 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1541 {
1542 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1543 
1544 	master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1545 
1546 	if (!master->enabled_events)
1547 		svc_i3c_master_disable_interrupts(master);
1548 
1549 	pm_runtime_mark_last_busy(master->dev);
1550 	pm_runtime_put_autosuspend(master->dev);
1551 
1552 	return 0;
1553 }
1554 
1555 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1556 					    struct i3c_ibi_slot *slot)
1557 {
1558 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1559 
1560 	i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1561 }
1562 
1563 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1564 	.bus_init = svc_i3c_master_bus_init,
1565 	.bus_cleanup = svc_i3c_master_bus_cleanup,
1566 	.attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1567 	.detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1568 	.reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1569 	.attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1570 	.detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1571 	.do_daa = svc_i3c_master_do_daa,
1572 	.supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1573 	.send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1574 	.priv_xfers = svc_i3c_master_priv_xfers,
1575 	.i2c_xfers = svc_i3c_master_i2c_xfers,
1576 	.request_ibi = svc_i3c_master_request_ibi,
1577 	.free_ibi = svc_i3c_master_free_ibi,
1578 	.recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1579 	.enable_ibi = svc_i3c_master_enable_ibi,
1580 	.disable_ibi = svc_i3c_master_disable_ibi,
1581 	.enable_hotjoin = svc_i3c_master_enable_hotjoin,
1582 	.disable_hotjoin = svc_i3c_master_disable_hotjoin,
1583 };
1584 
1585 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1586 {
1587 	int ret = 0;
1588 
1589 	ret = clk_prepare_enable(master->pclk);
1590 	if (ret)
1591 		return ret;
1592 
1593 	ret = clk_prepare_enable(master->fclk);
1594 	if (ret) {
1595 		clk_disable_unprepare(master->pclk);
1596 		return ret;
1597 	}
1598 
1599 	ret = clk_prepare_enable(master->sclk);
1600 	if (ret) {
1601 		clk_disable_unprepare(master->pclk);
1602 		clk_disable_unprepare(master->fclk);
1603 		return ret;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1610 {
1611 	clk_disable_unprepare(master->pclk);
1612 	clk_disable_unprepare(master->fclk);
1613 	clk_disable_unprepare(master->sclk);
1614 }
1615 
1616 static int svc_i3c_master_probe(struct platform_device *pdev)
1617 {
1618 	struct device *dev = &pdev->dev;
1619 	struct svc_i3c_master *master;
1620 	int ret;
1621 
1622 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1623 	if (!master)
1624 		return -ENOMEM;
1625 
1626 	master->regs = devm_platform_ioremap_resource(pdev, 0);
1627 	if (IS_ERR(master->regs))
1628 		return PTR_ERR(master->regs);
1629 
1630 	master->pclk = devm_clk_get(dev, "pclk");
1631 	if (IS_ERR(master->pclk))
1632 		return PTR_ERR(master->pclk);
1633 
1634 	master->fclk = devm_clk_get(dev, "fast_clk");
1635 	if (IS_ERR(master->fclk))
1636 		return PTR_ERR(master->fclk);
1637 
1638 	master->sclk = devm_clk_get(dev, "slow_clk");
1639 	if (IS_ERR(master->sclk))
1640 		return PTR_ERR(master->sclk);
1641 
1642 	master->irq = platform_get_irq(pdev, 0);
1643 	if (master->irq < 0)
1644 		return master->irq;
1645 
1646 	master->dev = dev;
1647 
1648 	ret = svc_i3c_master_prepare_clks(master);
1649 	if (ret)
1650 		return ret;
1651 
1652 	INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1653 	INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1654 	mutex_init(&master->lock);
1655 
1656 	ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1657 			       IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1658 	if (ret)
1659 		goto err_disable_clks;
1660 
1661 	master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1662 
1663 	spin_lock_init(&master->xferqueue.lock);
1664 	INIT_LIST_HEAD(&master->xferqueue.list);
1665 
1666 	spin_lock_init(&master->ibi.lock);
1667 	master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1668 	master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1669 					 sizeof(*master->ibi.slots),
1670 					 GFP_KERNEL);
1671 	if (!master->ibi.slots) {
1672 		ret = -ENOMEM;
1673 		goto err_disable_clks;
1674 	}
1675 
1676 	platform_set_drvdata(pdev, master);
1677 
1678 	pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1679 	pm_runtime_use_autosuspend(&pdev->dev);
1680 	pm_runtime_get_noresume(&pdev->dev);
1681 	pm_runtime_set_active(&pdev->dev);
1682 	pm_runtime_enable(&pdev->dev);
1683 
1684 	svc_i3c_master_reset(master);
1685 
1686 	/* Register the master */
1687 	ret = i3c_master_register(&master->base, &pdev->dev,
1688 				  &svc_i3c_master_ops, false);
1689 	if (ret)
1690 		goto rpm_disable;
1691 
1692 	pm_runtime_mark_last_busy(&pdev->dev);
1693 	pm_runtime_put_autosuspend(&pdev->dev);
1694 
1695 	return 0;
1696 
1697 rpm_disable:
1698 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1699 	pm_runtime_put_noidle(&pdev->dev);
1700 	pm_runtime_set_suspended(&pdev->dev);
1701 	pm_runtime_disable(&pdev->dev);
1702 
1703 err_disable_clks:
1704 	svc_i3c_master_unprepare_clks(master);
1705 
1706 	return ret;
1707 }
1708 
1709 static void svc_i3c_master_remove(struct platform_device *pdev)
1710 {
1711 	struct svc_i3c_master *master = platform_get_drvdata(pdev);
1712 
1713 	i3c_master_unregister(&master->base);
1714 
1715 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1716 	pm_runtime_disable(&pdev->dev);
1717 }
1718 
1719 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1720 {
1721 	master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1722 	master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1723 }
1724 
1725 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1726 {
1727 	if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1728 	    master->saved_regs.mdynaddr) {
1729 		writel(master->saved_regs.mconfig,
1730 		       master->regs + SVC_I3C_MCONFIG);
1731 		writel(master->saved_regs.mdynaddr,
1732 		       master->regs + SVC_I3C_MDYNADDR);
1733 	}
1734 }
1735 
1736 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1737 {
1738 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1739 
1740 	svc_i3c_save_regs(master);
1741 	svc_i3c_master_unprepare_clks(master);
1742 	pinctrl_pm_select_sleep_state(dev);
1743 
1744 	return 0;
1745 }
1746 
1747 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1748 {
1749 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1750 
1751 	pinctrl_pm_select_default_state(dev);
1752 	svc_i3c_master_prepare_clks(master);
1753 
1754 	svc_i3c_restore_regs(master);
1755 
1756 	return 0;
1757 }
1758 
1759 static const struct dev_pm_ops svc_i3c_pm_ops = {
1760 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1761 				      pm_runtime_force_resume)
1762 	SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1763 			   svc_i3c_runtime_resume, NULL)
1764 };
1765 
1766 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1767 	{ .compatible = "silvaco,i3c-master-v1"},
1768 	{ /* sentinel */ },
1769 };
1770 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1771 
1772 static struct platform_driver svc_i3c_master = {
1773 	.probe = svc_i3c_master_probe,
1774 	.remove_new = svc_i3c_master_remove,
1775 	.driver = {
1776 		.name = "silvaco-i3c-master",
1777 		.of_match_table = svc_i3c_master_of_match_tbl,
1778 		.pm = &svc_i3c_pm_ops,
1779 	},
1780 };
1781 module_platform_driver(svc_i3c_master);
1782 
1783 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
1784 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1785 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1786 MODULE_LICENSE("GPL v2");
1787